CN103996601A - 一种锗n+/p浅结的制备方法 - Google Patents

一种锗n+/p浅结的制备方法 Download PDF

Info

Publication number
CN103996601A
CN103996601A CN201410245729.5A CN201410245729A CN103996601A CN 103996601 A CN103996601 A CN 103996601A CN 201410245729 A CN201410245729 A CN 201410245729A CN 103996601 A CN103996601 A CN 103996601A
Authority
CN
China
Prior art keywords
germanium
shallow junction
annealing
layer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410245729.5A
Other languages
English (en)
Inventor
李成
王尘
陈松岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201410245729.5A priority Critical patent/CN103996601A/zh
Publication of CN103996601A publication Critical patent/CN103996601A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一种锗n+/p浅结的制备方法,涉及半导体器件。在p型Ge衬底上生长SiO2层;在制备好的SiO2/p-Ge结构上注入磷离子层,再用氢氟酸缓冲溶液中腐蚀,去掉p-Ge表面SiO2层;将处理后的样品清洗后,退火处理,再放入充满氮气的透明玻璃器皿中,进行单脉冲激光退火,得锗n+/p浅结。采用离子注入的方式作为Ge中n型掺杂的杂质来源,结合低温预退火和激光退火激活杂质形成浅结,不受杂质在Ge中固溶度的限制,激活浓度理论可达1020cm-3以上,且激光退火时间短,容易在Ge中形成浅结,在低温预退火过程既可部分修复由离子注入所带来的晶体损伤,又不会导致杂质的扩散,还可压制杂质在激光退火过程中的扩散。

Description

一种锗n+/p浅结的制备方法
技术领域
本发明涉及半导体器件,尤其是涉及一种锗n+/p浅结的制备方法。
背景技术
近年来,采用高介电常数栅介质的金属-氧化物-半导体场效应晶体管(MOSFET)特征尺寸的减小接近其物理极限,使得具有高电子和空穴迁移率的锗材料成为下一代集成电路的热门候选材料之一。目前,人们在锗(Ge)的pMOSFET器件的研制上已取得长足进步,但是在nMOSFET上却遇到很多困难。最近的研究表明,限制锗的nMOSFET器件性能提高的主要原因之一是:由于n型杂质在Ge中具有较高的扩散系数以及较低的固溶度,使得很难获得高掺杂浓度n型锗以及n+/p浅结,阻碍了器件性能的提高(K.Martens,C.O.Chui,G.Brammertz,B.De Jaeger,D.Kuzum,M.Meuris,M.M.Heyns,T.Krishnamohan,K.Saraswat,and H.E.Maes,“On the correct extraction of interface trap density of MOS devices withhigh-mobility semiconductor substrates,”IEEE Trans.Electron Devices55,547(2008);H.Shang,M.M.Frank,E.P.Gusev,J.O.Chu,S.W.Bedell,K.W.Guarini,and M.Ieong,“Germaniumchannel MOSFETs:opportunities and challenges,”IBM J.Res.Develop50,377(2006).;E.Simoen,A.Satta,A.D’Amore,T.Janssens,T.Clarysse,K.Martens,B.De Jaeger,A.Benedetti,I.Hoflijk,B.Brijs,M.Meuris,and W.Vandervorst,“Ion-implantation issues in the formation ofshallow junctions in germanium,”Mater.Sci.Semicond.Process9,634(2006).)。
目前,解决这种Ge中n型杂质的高掺浅结主要方法之一是通过离子注入外加激光退火(excimer laser annealing)的方式。然而,这种方法仍然存在一些问题:一方面,要获得较好性能的Ge n+/p二极管以及高的激活浓度,就需要一个较高能量密度的激光退火去激活杂质和修复离子注入晶体损伤;另一方面,由于n型杂质在Ge中具有较高的扩散系数,退火能量密度较高会导致杂质扩散长度变长,掺杂浓度变低,结深增大(G.Thareja,S.Chopra,B.Adamas,Y.Kim,S.Moffatt,K.Saraswat,“High n-Type Antimony Dopant Activation inGermanium Using Laser Annealingfor n+/p Junction Diode,”IEEE Electron Device Lett.32,838(2011);R.Milazzo,E.Napolitani,G.Impellizzeri,G.Fisicaro,S.Boninelli,M.Cuscuna,D.DeSalvador,M.Mastromatteo,M.Italia,and A.La Magna,“N-type doping of Ge by Asimplantation and excimer laser annealing,”J.Appl.Phys.115,053501(2014);P.Tsouroutas,D.Tsoukalas,A.Florakis,I.Zergioti,A.A.Serafetinides,N.Cherkashin,B.Marty,and A.Claverie,“Laser annealing for n+/p junction formation in germanium,”Mater.Sci.Semicond.Processing9,644(2006).)。
发明内容
本发明的目的在于针对目前存在的锗中n型杂质激活浓度低、扩散长度大(结深大)等问题,提供一种锗n+/p浅结的制备方法。
本发明包括以下步骤:
1)在p型Ge衬底上生长SiO2层;
2)在步骤1)中制备好的SiO2/p-Ge结构上注入磷离子层,再用氢氟酸缓冲溶液中腐蚀,去掉p-Ge表面SiO2层;
3)将步骤2)处理后的样品清洗后,退火处理,再放入充满氮气的透明玻璃器皿中,进行单脉冲激光退火,得锗n+/p浅结。
在步骤1)中,所述在p型Ge衬底上生长SiO2层的方法可采用等离子体增强化学气相淀积系统(PECVD)在p型Ge衬底上生长15nm SiO2层,以防止离子注入过程中的沟道效应。
在步骤2)中,所述注入磷离子层的条件可为:在能量为10keV,剂量为5×1014cm-2注入磷离子层。
在步骤3)中,所述退火处理的方法可将步骤2)处理后的样品清洗后放入退火炉中,在400℃下退火处理10min,其目的是初步修复由离子注入所带来的晶体损伤,减小杂质在锗中的扩散;所述单脉冲激光退火可采用248nm KrF准分子束激光器,其脉冲持续时间为25ns,激光退火激光光斑大小为4mm×3mm。
当激光退火的能量密度在150mJ/cm2时,磷在Ge中的分布区域只有44nm,几乎和未退火样品杂质分布相同,其扩散长度可以忽略,杂质的激活浓度可达6×1019cm-3,杂质损失低至9%,激活率高达85%。
本发明首先在清洗后的p型Ge衬底上,用等离子体增强化学气相淀积系统生长一层SiO2,而后在能量为10keV,剂量为5×1014cm-2进行磷离子的注入,再去除样品表面SiO2,并清洗干净;其次在400℃下进行10min的低温预退火;最后对整个样品进行单个脉冲扫描式激光退火。激光退火所用的激光器为248nm KrF准分子束激光器,其脉冲持续时间为25ns,激光退火激光光斑大小为4×3mm2
本发明采用离子注入的方式作为Ge中n型掺杂的杂质来源,结合低温预退火和激光退火激活杂质形成浅结,一方面不受杂质在Ge中固溶度的限制,激活浓度理论可达1020cm-3以上,且激光退火时间极短,容易在Ge中形成浅结,另一方面在低温预退火过程既可以部分修复由离子注入所带来的晶体损伤,又不会导致杂质的扩散,还可以一定程度上压制杂质在激光退火过程中的扩散。本发明是一种简易、低成本、与微电子工艺兼容的制备锗中n型杂质高掺浅结的新方法。
在现有技术中,一般在Ge中获得n型杂质的高掺浅结,但是结果都不尽如人意。本发明提供一种激活注入Ge中杂质离子获得高激活掺杂浓度以及低扩散深度的新退火方法。
附图说明
图1为本发明制备锗n型杂质高掺浅结的流程示意图。
图2为磷离子注入的Ge在特定条件退火前后,磷随深度分布的二次离子质谱(SIMS)及扩展电阻剖面分布(SRP)图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
实施例1:图1给发明制备Ge n型杂质高掺浅结的流程示意图。其中:1为p型Ge衬底,2为SiO2层,3为磷离子注入层;4为n型高掺Ge层。首先对电阻率为0.088Ωcm的p-Ge(100)衬底进行清洗:先利用丙酮、乙醇依次超声10min,去除有机污染物,重复此过程两遍,用冷去离子水清洗;然后将超声后的p型Ge衬底浸泡在HCl(36%)∶H2O=1(ml)∶4(ml)溶液中约30s,去除氧化物和金属杂质,再用冷去离子水清洗,这个过程需要重复五遍;随后将浸泡过盐酸溶液的p-Ge浸泡在HF∶H2O=1(ml)∶50(ml)溶液中约15s,再浸泡去离子水15s,去除氧化物,重复此过程三遍;最后用氮气吹干(见图1(a))。
将清洗后的p型锗衬底迅速放入真空室中,用等离子体化学汽相淀积的方法在p型锗衬底正面沉积厚度约为15nm的SiO2(见图1(b));然后,在能量为10keV,剂量为5×1014cm-2进行磷离子的注入(见图1(c));最后将SiO2层利用氢氟酸溶液(HF∶H2O=1∶20)腐蚀去除(见图1(c))。
紧接着,将经过上述处理后的样片放入充满氮气的快速退火炉中,在400℃下退火10min,而后再放入透明玻璃器皿中,在激光能量密度为150mJ/cm2时,用248nm KrF准分子束激光器对样品进行扫描式单脉冲激光退火,制备得到锗n型杂质高掺浅结(见图1(d))。最终锗中n型磷的化学浓度和载流子浓度随深度分布如图2所示。
实施例2:与实施例1类似,其区别在于样片未进行400℃-10min的预退火处理,仅在能量密度为150mJ/cm2下单脉冲激光退火,得到的n型杂质的化学浓度随深度分布如图2所示。

Claims (6)

1.一种锗n+/p浅结的制备方法,其特征在于包括以下步骤:
1)在p型Ge衬底上生长SiO2层;
2)在步骤1)中制备好的SiO2/p-Ge结构上注入磷离子层,再用氢氟酸缓冲溶液中腐蚀,去掉p-Ge表面SiO2层;
3)将步骤2)处理后的样品清洗后,退火处理,再放入充满氮气的透明玻璃器皿中,进行单脉冲激光退火,得锗n+/p浅结。
2.如权利要求1所述一种锗n+/p浅结的制备方法,其特征在于在步骤1)中,所述在p型Ge衬底上生长SiO2层的方法是采用等离子体增强化学气相淀积系统在p型Ge衬底上生长15nm SiO2层。
3.如权利要求1所述一种锗n+/p浅结的制备方法,其特征在于在步骤2)中,所述注入磷离子层的条件为:在能量为10keV,剂量为5×1014cm-2注入磷离子层。
4.如权利要求1所述一种锗n+/p浅结的制备方法,其特征在于在步骤3)中,所述退火处理的方法是将步骤2)处理后的样品清洗后放入退火炉中,在400℃下退火处理10min。
5.如权利要求1所述一种锗n+/p浅结的制备方法,其特征在于在步骤3)中,所述单脉冲激光退火采用248nm KrF准分子束激光器。
6.如权利要求5所述一种锗n+/p浅结的制备方法,其特征在于所述248nm KrF准分子束激光器的脉冲持续时间为25ns,激光退火激光光斑大小为4mm×3mm。
CN201410245729.5A 2014-06-05 2014-06-05 一种锗n+/p浅结的制备方法 Pending CN103996601A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410245729.5A CN103996601A (zh) 2014-06-05 2014-06-05 一种锗n+/p浅结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410245729.5A CN103996601A (zh) 2014-06-05 2014-06-05 一种锗n+/p浅结的制备方法

Publications (1)

Publication Number Publication Date
CN103996601A true CN103996601A (zh) 2014-08-20

Family

ID=51310721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410245729.5A Pending CN103996601A (zh) 2014-06-05 2014-06-05 一种锗n+/p浅结的制备方法

Country Status (1)

Country Link
CN (1) CN103996601A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456611A (zh) * 2013-03-06 2013-12-18 深圳信息职业技术学院 提高锗材料n型掺杂载流子浓度的方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103443A (zh) * 2004-12-17 2008-01-09 应用材料有限公司 减小瞬态增强扩散的离子注入方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101103443A (zh) * 2004-12-17 2008-01-09 应用材料有限公司 减小瞬态增强扩散的离子注入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN WANG,CHENG LI等: "Phosphorus diffusion in germanium following implantation and excimer laser annealing", 《APPLIED SURFACE SCIENCE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456611A (zh) * 2013-03-06 2013-12-18 深圳信息职业技术学院 提高锗材料n型掺杂载流子浓度的方法与应用

Similar Documents

Publication Publication Date Title
US20160118466A1 (en) Semiconductor chip arrangement
Ding et al. Silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial III-V material growth
CN101789446B (zh) 一种双异质结mos-hemt器件
CN103339713A (zh) 用于降低soi结构的器件层中的金属含量的方法以及通过该方法制造的soi结构
JP2012199517A (ja) 太陽電池の製造方法
CN101620990A (zh) 一种减少4H-SiC中本征深能级缺陷的方法
CN102201364A (zh) 一种绝缘体上锗衬底的制备方法
Collett et al. An enhanced alneal process to produce SRV< 1 cm/s in 1 Ω cm n-type Si
CN111584679A (zh) 一种用于N型TOPCon电池背表面钝化的掺杂方法
Poon et al. Dopant Loss Mechanism in n+∕ p Germanium Junctions during Rapid Thermal Annealing
JP2016535457A (ja) イオン注入によってドーピングし、外方拡散バリアを堆積することを含む太陽電池の製造方法
CN101931030B (zh) 纳米改性高效率低成本多晶硅太阳能电池制备工艺
CN103996601A (zh) 一种锗n+/p浅结的制备方法
Dastgheib-Shirazi et al. Effects of process conditions for the n+-emitter formation in crystalline silicon
CN103489776B (zh) 一种实现场截止型绝缘栅双极型晶体管的工艺方法
CN103730541B (zh) 太阳能电池纳米发射极及其制备方法
CN102427027A (zh) 一种改善半导体自动对准镍硅化物热稳定性的工艺方法
Pawlak et al. Chemical and electrical dopants profile evolution during solid phase epitaxial regrowth
RU2011134068A (ru) Способ увеличения поверхностного сопротивления пластины и/или уровня плотности мощности фотоэлектрического элемента
Carrere et al. Silicon bulk issues during processing of homo-heterojunction solar cells
CN202120962U (zh) 一种选择性发射极单晶硅太阳能电池
CN102222637A (zh) 一种绝缘体上锗衬底的制备方法
Janssens et al. Advanced phosphorous emitters for high efficiency Si solar cells
CN109559990A (zh) 一种快恢复二极管及其制作方法
CN106548937A (zh) 退火的工艺方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140820

RJ01 Rejection of invention patent application after publication