CN103964994A - 一种烷基化反应的方法 - Google Patents

一种烷基化反应的方法 Download PDF

Info

Publication number
CN103964994A
CN103964994A CN201310038433.1A CN201310038433A CN103964994A CN 103964994 A CN103964994 A CN 103964994A CN 201310038433 A CN201310038433 A CN 201310038433A CN 103964994 A CN103964994 A CN 103964994A
Authority
CN
China
Prior art keywords
molecular sieve
alcohol
zeolite
organic bases
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310038433.1A
Other languages
English (en)
Other versions
CN103964994B (zh
Inventor
付强
李永祥
胡合新
慕旭宏
张久顺
舒兴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201310038433.1A priority Critical patent/CN103964994B/zh
Publication of CN103964994A publication Critical patent/CN103964994A/zh
Application granted granted Critical
Publication of CN103964994B publication Critical patent/CN103964994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种烷基化反应的方法,其特征在于在一种催化剂存在和烷基化反应的条件下进行异丁烷和丁烯的烷基化反应,其中所说的催化剂是由包括改性分子筛的步骤和引入基质的步骤制备的,所说的改性分子筛的步骤为将分子筛、选自水、醇、酯中的一种或多种的物质以及有机碱混合均匀后,在密封反应釜中100~250℃和自生压力下处理,再将处理所得产物回收后,再经稀土离子盐交换。

Description

一种烷基化反应的方法
技术领域
本发明涉及一种烷基化反应方法,更进一步说涉及异丁烷/丁烯烷基化反应的方法。
背景技术
异丁烷与丁烯的烷基化反应是一个生产高辛烷值汽油组分的重要过程。目前工业应用的烷基化生产工艺有硫酸法和氢氟酸法,在全球近9000万t/a的烷基化生产能力中,两种方法约各占一半。从烷基化油在总汽油组成中所占比例来看,美国约占12.5%,欧洲约占4%,而中国仅占约0.4%。
由于硫酸和氢氟酸本身的腐蚀性、毒性以及工艺过程的废酸排放对环境的危害,使烷基化油生产企业面临的安全环保压力日益增加。为了解决这些问题,上世纪八十年代以来,世界许多大的石油公司和科研机构一直致力于固体酸烷基化工艺的研究和开发,以期用环境友好的固体酸工艺替代液体酸工艺。由于开发的固体酸催化剂在烷基化反应过程中快速失活,固体酸烷基化工艺技术至今尚未实现工业化。
利用沸石特定的孔道结构和孔径尺寸上的差别,可以在一定程度上实现分子筛分作。由于在研究和生产实际中需要识别的分子动力学直径差别远小于0.1nm,而沸石的孔径变化是跳跃式的,变化幅度超过0.1nm,通过传统的一次合成方法难以实现对其孔径进行精细调变。另一方面,为了提高沸石分子筛的吸附和催化选择性,还需要对沸石表面结构和酸性能进行改性研究。改性方法主要有:(1)沸石分子筛阳离子交换;(2)沸石分子筛骨架的杂原子同晶置换;(3)沸石分子筛骨架的脱铝改性和脱铝改性;(4)分子筛孔道与表面修饰。
相对酸处理脱铝改性沸石的方法,用碱液处理沸石则是一种脱硅的改性方法。它也可以改变沸石的SiO2/M2O2(M=Al或Fe、B、Ca等)。从而达到改变沸石酸性的目的,同时对催化剂的比表面积和微孔体积也有影响。碱液处理对沸石孔结构和酸性质的改性作用有限,碱液浓度过高或者改性条件苛刻会破坏分子筛的结构。
对分子筛进行稀土离子改性可调变分子筛酸性。稀土离子通过极化和诱导作用,使其周围的水分子极化,有效吸引着OH-,使H+处于游离状态,产生B酸中心,从而提高了催化剂的裂化活性。稀土离子的另一个重要作用是增加骨架Al的稳定性。稀土离子通过表面修饰进入分子筛晶体内部,由超笼迁移到β笼,与骨架氧原子发生相互作用,抑制了分子筛在水热条件下的骨架脱Al,从而增强了分子筛骨架结构的稳定性。稀土改性的程度受稀土负载量的影响,稀土负载量过高会造成孔道堵塞。
CN1775360A公开了一种用于提高酮类化合物氨氧化催化剂稳定性的方法。此方法中纳米钛硅分子筛经过酸性化合物处理,再用有机碱处理,或者直接用有机碱处理。处理后的分子筛形成了大量孔径为0.1-10nm左右的微孔以及大量的空腔和凹坑。该法改性得到分子筛具有优异的催化氧化活性和活性稳定性。
CN1245090A将所得经酸处理的TS-1分子筛、有机碱和水混合均匀,并在密封反应釜中于120~200℃的温度和自生压力下反应2小时至8天时间,其中所说的有机碱为脂肪胺类,醇胺类或者季铵碱类化合物;将所得产物过滤、洗涤并干燥。
USP6475465公开了一种将钛硅分子筛直接用脂肪胺类、醇胺类、季铵碱类等有机碱类化合物处理的方法。
USP4497969公开了一种用有机碱、有机酸、乙醇、甘油、苯酚、酯处理结晶硅铝分子筛的方法。
USP5705729公开了一种USY分子筛部分或全部进行稀土交换改性的方法。该法改性得到分子筛在异丁烷/丁烯烷基化反应中具有良好的烷基化反应活性和活性稳定性。
USP7550405和USP7470645公开了一种用于催化异丁烷/丁烯烷基化反应的催化剂。该催化剂的制备方法为将β、Y、丝光沸石、L沸石用Al、Ti、Mo、Ni、Co、Fe、Pa、Pt等金属进行改性。
上述改性方法均为单一的有机金属改性或稀土改性,因此不能避免碱金属改性和稀土改性带来的缺点。不能满足烷基化反应对催化剂的要求,以实现最佳的选择性、转化率和寿命。
发明内容
本发明人通过大量的试验发现,当分子筛用有机碱和稀土共同改性,意外地可在保证分子筛孔道畅通的同时,显著增加改性后的分子筛的稀土原子的负载量,由此结合引入基质而得到的催化剂用于异丁烷/丁烯烷基化反应时具有更好催化性能。基于此,形成本发明。
因此,本发明的目的是提供一种催化性能更好的异丁烷/丁烯烷基化反应的方法。
本发明提供的烷基化反应的方法,其特征在于在一种催化剂存在和烷基化反应的条件下进行异丁烷和丁烯的烷基化反应,其中所说的催化剂是由包括改性分子筛的步骤和引入基质的步骤制备的,所说的改性分子筛的步骤为将分子筛、选自水、醇、酯中的一种或多种的物质以及有机碱混合均匀后,在密封反应釜中100~250℃和自生压力下处理,再将处理所得产物回收后,再经稀土离子盐交换。
本发明提供的烷基化方法,在相同的引入基质条件和相同的烷基化反应条件下,显著提高目的产物三甲基戊烷(TMP)的选择性和催化剂寿命。
具体实施方式
本发明提供的烷基化反应的方法,其特征在于在一种催化剂存在和烷基化反应的条件下进行异丁烷和丁烯的烷基化反应,其中所说的催化剂是由包括改性分子筛的步骤和引入基质的步骤制备的,所说的改性分子筛的步骤为将分子筛、选自水、醇、酯中的一种或多种的物质以及有机碱混合均匀后,在密封反应釜中100~250℃和自生压力下处理,再将处理所得产物回收后,再经稀土离子盐交换。
本发明提供的方法中,所说的改性分子筛的步骤,该步骤包括将分子筛、选自水、醇、酯中的一种或多种的物质以及有机碱混合均匀后,在密封反应釜中100~250℃和自生压力下处理,再将处理所得产物回收后,再经稀土离子盐交换。
所说的分子筛为硅铝分子筛或硅磷铝分子筛,经水热晶化合成得到、经过铵交换已经将其中的钠离子以氧化钠计≤0.2重量%,焙烧脱除其中的有机模板剂的分子筛。更进一步,也可以是在一定的温度下,将有机酸或无机酸或水蒸气与分子筛接触得到的硅铝分子筛或硅磷铝分子筛。所说的硅铝分子筛或硅磷铝分子筛可以选自FAU结构沸石、BETA结构沸石、MFI结构沸石、CHA结构沸石、丝光沸石、ZSM-11沸石、ZSM-22沸石和ZSM-48沸石中的一种或多种。
所说的选自水、醇、酯中的一种或多种的物质中,醇选自包括饱和一元醇、不饱和一元醇、饱和二元醇、不饱和二元醇、饱和三元醇和不饱和三元醇中的一种;酯选自饱和有机酸酯、不饱和有机酸酯、饱和无机酸酯和不饱和无机酸酯中的一种;在本发明的一些具体实施方案中,可以是水、甲醇、乙醇,甲酸甲酯中的一种或多种。
所说的有机碱为分子中含有氨基(-NH2)的有机碱性化合物。有机碱为脂肪胺类、醇胺类、季铵碱类、含氮杂环有机碱、芳香胺化合物,例如为二乙胺、三乙胺、四乙基氢氧化铵、砒啶等。
所说的有机碱也可以用选自ⅠA、ⅡA族金属的醇盐替代,优选的醇盐为乙醇钠。
所说的分子筛、选自水、醇、酯中的一种或多种的物质以及有机碱的重量投料比例优选为1:2~10:0.5~3。所说的处理,优选在密封反应釜中反应温度为120~200℃,自生压力下反应1小时至8天时间。所说的将处理所得产物回收的过程通常是指洗涤和干燥,例如110℃烘干的过程。
所说的改性分子筛的步骤中所说的稀土离子盐交换,是将分子筛与稀土离子接触交换的过程。所说的稀土离子盐为一种或多种选自La系和Ac系的稀土金属的盐,其中优选为镧和/或铈的可溶性金属盐,如硝酸镧、硝酸铈等。所说的交换,是在温度为50~200℃、优选50~100℃,所说的交换,可以进行1-5次;每次交换后,进行洗涤、抽滤,干燥和在350~650℃焙烧的步骤。
本发明提供的方法中,还包括所说的引入基质的步骤。所述基质在催化剂中起粘结剂、稀释剂和载体的作用。所述基质可任选自常用作催化剂载体和/或基质的各种耐热无机氧化物中的一种或几种。例如,选自氧化铝、氧化硅、氧化钛、氧化镁、氧化铝-氧化镁、氧化硅-氧化铝、氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-氧化钛、氧化硅-氧化锆、氧化钛-氧化锆、氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化钛、氧化硅-氧化铝-氧化镁、氧化硅-氧化铝-氧化锆、天然沸石、合成沸石分子筛、非沸石型分子筛和粘土中的一种或几种。优选合成沸石分子筛、非沸石型分子筛、氧化硅、氧化铝、氧化硅-氧化铝中一种或它们的混合物;更优选为氧化铝、氧化硅、氧化硅-氧化铝中的一种或几种。以催化剂总量为基准,所述基质组分的含量不超过95重量%,更优选为10重量%~90重量%。
所述基质的引入方法为本领域惯用方法,在优选的实施方式中,所述基质是在足以将所述改性步骤得到的分子筛和基质浆化的条件下,将所述基质与所述改性得到的分子筛与水混合并打浆,之后干燥并焙烧。而所说的干燥和焙烧的方法和条件为本领域惯用的方法和条件,例如所述焙烧温度可以是400~1000℃,优选为450~800℃。所说的催化剂中的分子筛,可以为多种分子筛经改性步骤得到的分子筛的混合物,例如,丝光沸石、β分子筛、Y分子筛、ZSM-5分子筛、ZSM-22分子筛、SAPO-34分子筛中两种及两种以上的混合物。在本发明的优选的实施方式中,可以为丝光沸石、β分子筛和Y分子筛的混合物,可以为SAPO-34和ZSM-5分子筛的混合物,也可以为Y分子筛和ZSM-22分子筛的混合物。
本发明提供的方法,视不同目的或要求还可包括制成各种易于操作的成型物的步骤,例如形成微球、球形、片剂或条形的成型步骤等。成型步骤可按常规方法进行,如喷雾干燥成型、压片成型、滚球成型、挤条成型等方法均可。
本发明提供的方法中,所说的烷基化反应的方法,其反应条件为反应温度为30-200℃、压力为0.5-6.0MPa,进料空速为10-3000mL/g.h,烷烯比为1.0-1000。
下面通过实施例对本发明做进一步的说明,但并不因此而限制本发明的内容。
实施例中,分子筛组成用X射线荧光光谱法(XRF)测定,稀土含量以RE2O3%计。
分子筛的比表面积和孔体积由静态低温氮吸附容量法(BET)测定,所用实验仪器为美国Micromeritics公司ASAP-2405静态氮吸附仪。测试过程为:液氮在77K下与吸附剂接触,静置达到吸附平衡。由氮气进气量和吸附后残存于气相中的气量差值计算出吸附剂吸附氮气的量。比表面积采用二参数BET方程计算,孔分布采用BJH法计算。
实施例中所用原料除特别说明的以外,均为化学纯试剂。
实施例1
本实施例说明本发明提供的方法中β分子筛的改性步骤。
10g β分子筛(周村催化剂厂提供,SiO2/Al2O3=25,Na2O%<0.1%,550℃焙烧2h)加入10g二乙胺和50g乙醇,加入到压力溶弹中,120℃加热24h。将所得样品抽滤、洗涤,110℃烘干后,再将上述有机碱改性样品5g加入300g水,加入六水合硝酸镧40g,50℃交换5h,洗涤抽滤,110℃烘干后,所得样品计为A,进行XRD、BET表征的结果列于表1。
对比例1
本对比例说明对β分子筛仅进行稀土改性的步骤。
5g β分子筛(周村催化剂厂提供,SiO2/Al2O3=25,Na2O%<0.1%,550℃焙烧2h)加入300g水,加入六水合硝酸镧40g,50℃交换5h,洗涤抽滤,110℃烘干后,所得样品计为X,进行XRD、BET表征的结果列于表1。
实施例2
本实施例说明本发明提供的方法中Y型分子筛的改性步骤。
10g Y分子筛(长岭催化剂厂提供,SiO2/Al2O3=5,Na2O%<0.1%,550℃焙烧2h)加入10g三乙胺和50g甲醇,加入到压力溶弹中,120℃加热144h。将所得样品抽滤、洗涤,110℃烘干后,再将上述有机碱改性样品5g加入200g水,加入六水合硝酸铈30g,60℃交换4h,洗涤抽滤,110℃烘干后,所得样品计为B,进行XRD、BET表征的结果列于表1。
实施例3
本实施例说明本发明提供的方法中丝光沸石的改性步骤。
10g丝光沸石分子筛(周村催化剂厂提供,SiO2/Al2O3=10,Na2O%<0.1%,550℃焙烧2h)加入10g乙二胺和50g水,加入到压力溶弹中,150℃加热1h。将所得样品抽滤、洗涤,110℃烘干后,再将上述有机碱改性样品加入200g水,加入六水合硝酸镧30g,70℃交换3h,洗涤抽滤,110℃烘干后,所得样品计为C,进行XRD、BET表征的结果列于表1。
实施例4
本实施例说明本发明提供的方法中ZSM-5分子筛的改性步骤。
10g ZSM-5分子筛(周村催化剂厂提供,SiO2/Al2O3=25,Na2O%<0.1%,550℃焙烧2h)加入20g四乙基氢氧化胺和50g甲酸甲酯,加入到压力溶弹中,150℃加热24h。将所得样品抽滤、洗涤,110℃烘干后,再将上述有机碱改性样品加入100g水,加入六水合硝酸镧15g,80℃交换2h,洗涤抽滤,110℃烘干后,所得样品计为D,进行XRD、BET表征的结果列于表1。
实施例5
本实施例说明本发明提供的方法中ZSM-22分子筛的改性步骤。
10g ZSM-22分子筛(周村催化剂厂提供,SiO2/Al2O3=25,Na2O%<0.1%,550℃焙烧2h)加入20g砒啶和50g乙醇,加入到压力溶弹中,200℃加热2h。将所得样品抽滤、洗涤,110℃烘干后,再将上述有机碱改性样品加入100g水,加入六水合硝酸镧15g,90℃交换1h,洗涤抽滤,110℃烘干后,所得样品计为E,进行XRD、BET表征的结果列于表1。
实施例6
本实施例说明本发明提供的方法中SAPO-34分子筛的改性步骤。
10g SAPO-34分子筛(长岭催化剂厂提供,SiO2/Al2O3=25,Na2O%<0.1%,550℃焙烧2h)加入10g乙醇钠和50g乙醇,加入到压力溶弹中,250℃加热1h。将所的样品抽滤、洗涤,110℃烘干后,再将上述有机碱改性样品加入100g水,加入六水合硝酸镧15g,100℃交换0.5h,洗涤抽滤,110℃烘干后,所得样品计为F,进行XRD、BET表征的结果列于表1。
表1
从表1可以看出,本发明提供的方法改性得到的分子筛,其以XRF测定的稀土含量以Re2O3%计,从对比例1的10%增加到14%,增加了40%的稀土负载量。
实施例7~10说明本发明提供的方法所用的催化剂的制备。
实施例7
在16.0Kg脱阳离子水中加入3.8Kg多水高岭土(苏州高岭土公司生产,固含量为74.0重%),搅拌1h,使高岭土充分分散。加入320mL盐酸(北京化工厂生产,化学纯,浓度36-38重%),和3.3Kg拟薄水铝石(山东铝厂生产,含Al2O3浓度61.0重%),搅拌1h,使拟薄水铝石溶胶后,升温至60℃,保持1h,冷却。
在7.0Kg脱阳离子水中加入2.7Kg C,1.1Kg A,和0.5Kg B,经均质器充分分散后,加入到上述拟薄水铝石-粘土浆液中,搅拌0.5h。将上述浆液在尾气温度250℃下喷雾干燥成型,经650℃焙烧2h后,得到微球状催化剂G。
实施例8
在5.0Kg脱阳离子水中加入0.9Kg多水高岭土(苏州高岭土公司生产,固含量为74.0重%),搅拌1h,使高岭土充分分散。加入60mL盐酸(北京化工厂生产,化学纯,浓度36-38重%),搅拌1h,使拟薄水铝石溶胶后,升温至60℃,保持1h,之后冷却至室温。
在16.8Kg脱阳离子水中加入1.6KgF和1.6Kg D,经均质器充分分散后,加入到上述拟薄水铝石-粘土浆液中,搅拌0.5h,再加入36.2Kg铝溶胶(齐鲁催化剂厂生产,含Al2O3浓度22.0重%),继续搅拌0.5h,得固含量13.7重%,pH值为2.6的催化剂浆液。
将上述浆液在尾气温度250℃下喷雾干燥成型,经650℃焙烧2h后,得到微球状催化剂H。
实施例9
在6.0Kg脱阳离子水中加入0.9Kg多水高岭土(苏州高岭土公司生产,固含量为74.0重%),搅拌1h,使高岭土充分分散。加入60mL盐酸(北京化工厂生产,化学纯,浓度36-38重%),和0.7Kg拟薄水铝石(山东铝厂生产,含Al2O3浓度61.0重%),搅拌1h,使拟薄水铝石溶胶后,升温至60℃,保持1h,之后冷却至室温。
在6.8Kg脱阳离子水中加入0.3Kg B和3.7KgE,经均质器充分分散后,加入到上述拟薄水铝石-粘土浆液中,搅拌0.5h,再加入3.6Kg铝溶胶(齐鲁催化剂厂生产,含Al2O3浓度22.0重%),继续搅拌0.5h,得固含量26.2重%,pH值为3.9的催化剂浆液。将上述浆液在尾气温度250℃下喷雾干燥成型,经650℃焙烧2h后,得到微球状催化剂I。
实施例10
在6.0Kg脱阳离子水中加入0.9Kg多水高岭土(苏州高岭土公司生产,固含量为74.0重%),搅拌1h,使高岭土充分分散。加入60mL盐酸(北京化工厂生产,化学纯,浓度36-38重%),和0.7Kg拟薄水铝石(山东铝厂生产,含Al2O3浓度61.0重%),搅拌1h,使拟薄水铝石溶胶后,升温至60℃,保持1h,之后冷却至室温。
在6.8Kg脱阳离子水中加入4Kg实施例1制得的改性分子筛A,经均质器充分分散后,加入到上述拟薄水铝石-粘土浆液中,搅拌0.5h,再加入3.6Kg铝溶胶(齐鲁催化剂厂生产,含Al2O3浓度22.0重%),继续搅拌0.5h,得固含量26.2重%,pH值为3.9的催化剂浆液。将上述浆液在尾气温度250℃下喷雾干燥成型,经650℃焙烧2h后,得到微球状催化剂J。
对比例2
在6.0Kg脱阳离子水中加入0.9Kg多水高岭土(苏州高岭土公司生产,固含量为74.0重%),搅拌1h,使高岭土充分分散。加入60mL盐酸(北京化工厂生产,化学纯,浓度36-38重%),和0.7Kg拟薄水铝石(山东铝厂生产,含Al2O3浓度61.0重%),搅拌1h,使拟薄水铝石溶胶后,升温至60℃,保持1h,之后冷却至室温。
在6.8Kg脱阳离子水中加入4Kg对比例1制得的改性分子筛,经均质器充分分散后,加入到上述拟薄水铝石-粘土浆液中,搅拌0.5h,再加入3.6Kg铝溶胶(齐鲁催化剂厂生产,含Al2O3浓度22.0重%),继续搅拌0.5h,得固含量26.2重%,pH值为3.9的催化剂浆液。将上述浆液在尾气温度250℃下喷雾干燥成型,经650℃焙烧2h后,得到微球状催化剂Y。
对比例3
在16.0Kg脱阳离子水中加入3.8Kg多水高岭土(苏州高岭土公司生产,固含量为74.0重%),搅拌1h,使高岭土充分分散。加入320mL盐酸(北京化工厂生产,化学纯,浓度36-38重%),和3.3Kg拟薄水铝石(山东铝厂生产,含Al2O3浓度61.0重%),搅拌1h,使拟薄水铝石溶胶后,升温至60℃,保持1h,冷却。
在7.0Kg脱阳离子水中加入2.7Kg丝光沸石分子筛(周村催化剂厂提供,SiO2/Al2O3=10,Na2O%<0.1%,550℃焙烧2h),1.1Kg β分子筛(周村催化剂厂提供,SiO2/Al2O3=25,Na2O%<0.1%,550℃焙烧2h,和0.5Kg Y分子筛(长岭催化剂厂提供,SiO2/Al2O3=5,Na2O%<0.1%,550℃焙烧2h),经均质器充分分散后,加入到上述拟薄水铝石-粘土浆液中,搅拌0.5h。将上述浆液在尾气温度250℃下喷雾干燥成型,经650℃焙烧2h后,得到微球状催化剂Z。
实施例11~14
实施例11~14说明本发明提供的烷基化方法。
用实施例7~10制得的催化剂,在连续流动固定床反应器加压反应评价装置中进行气相反应。催化剂装填量为1.5克,催化剂在装填完后,反应前先将催化剂用异丁烷200℃吹扫5小时。还原完毕后调整至反应温度,在一定的进料空速下将异丁烷/丁烯的混合气通入反应器。用HP7890型气相色谱仪在线分析。具体操作条件、目的产物三甲基戊烷(TMP)和催化剂寿命(原料丁烯100%转化时间)见表2。
对比例4、5
用对比例2、3所制得的催化剂,同实施例11的方法。具体操作条件、目的产物三甲基戊烷(TMP)和催化剂寿命(原料丁烯100%转化时间)见表2。
表2

Claims (15)

1.一种烷基化反应的方法,其特征在于在一种催化剂存在和烷基化反应的条件下进行异丁烷和丁烯的烷基化反应,其中所说的催化剂是由包括改性分子筛的步骤和引入基质的步骤制备的,所说的改性分子筛的步骤为将分子筛、选自水、醇、酯中的一种或多种的物质以及有机碱混合均匀后,在密封反应釜中100~250℃和自生压力下处理,再将处理所得产物回收后,再经稀土离子盐交换,所说的烷基化反应的条件为温度30-200℃、压力为0.5-6.0MPa、进料空速为10-3000mL/g.h、烷烯比为1.0-1000。
2.按照权利要求1的方法,其中,所说的分子筛选自FAU结构沸石、BETA结构沸石、MFI结构沸石、CHA结构沸石、丝光沸石、ZSM-11沸石、ZSM-22沸石和ZSM-48沸石中的一种或多种。
3.按照权利要求1的方法,其中,所说的分子筛、选自水、醇、酯中的一种或多种的物质以及有机碱的重量投料比例为1:2~10:0.5~3。
4.按照权利要求1或3的方法,其中,所说的分子筛为经水热晶化合成得到、经过铵交换已经将其中的钠离子以氧化钠计≤0.2重量%,焙烧脱除其中的有机模板剂的分子筛。
5.按照权利要求1的方法,其中所说的醇选自包括饱和一元醇、不饱和一元醇、饱和二元醇、不饱和二元醇、饱和三元醇和不饱和三元醇中的一种,所说的酯选自饱和有机酸酯、不饱和有机酸酯、饱和无机酸酯和不饱和无机酸酯中的一种。
6.按照权利要求1或5的方法,其中,所说的醇为乙醇或甲醇,所说的酯为甲酸甲酯。
7.按照权利要求1的方法,其中,所说的有机碱为分子中含有氨基的有机碱性化合物。
8.按照权利要求1和7的方法,其中,所说的有机碱选自脂肪胺类、醇胺类、季铵碱类、含氮杂环有机碱或芳胺化合物。
9.按照权利要求1的方法,其中,所说的有机碱为二乙胺、三乙胺、四乙基氢氧化铵或砒啶。
10.按照权利要求1的方法,其中,所说的有机碱为选自ⅠA、ⅡA族金属的醇盐。
11.按照权利要求10的方法,其中,所说的醇盐为乙醇钠。
12.按照权利要求1的方法,其中,所说的稀土离子盐为含镧和/或铈的可溶性金属盐。
13.按照权利要求1的方法,其中,所说的处理是在密封反应釜中120~200℃和自生压力下处理1小时至8天。
14.按照权利要求1的方法,其中,所说的基质选自耐热无机氧化物中的一种或几种。
15.按照权利要求1的方法,其中,以催化剂总量为基准,所说的基质的含量不超过95重量%,所说的基质为氧化铝、氧化硅、氧化硅-氧化铝中的一种或几种。
CN201310038433.1A 2013-01-31 2013-01-31 一种烷基化反应的方法 Active CN103964994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310038433.1A CN103964994B (zh) 2013-01-31 2013-01-31 一种烷基化反应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310038433.1A CN103964994B (zh) 2013-01-31 2013-01-31 一种烷基化反应的方法

Publications (2)

Publication Number Publication Date
CN103964994A true CN103964994A (zh) 2014-08-06
CN103964994B CN103964994B (zh) 2015-10-28

Family

ID=51235056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310038433.1A Active CN103964994B (zh) 2013-01-31 2013-01-31 一种烷基化反应的方法

Country Status (1)

Country Link
CN (1) CN103964994B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020151646A1 (zh) 2019-01-25 2020-07-30 中国石油化工股份有限公司 固体酸催化剂、其制备和应用
CN112808299A (zh) * 2019-11-18 2021-05-18 中国石油化工股份有限公司 一种固体酸烷基化催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840613A (en) * 1971-12-29 1974-10-08 Exxon Research Engineering Co Paraffin alkylation with olefin using highly active crystalline zeolite catalyst
US4447554A (en) * 1980-05-29 1984-05-08 Phillips Petroleum Company Hydroalkylation catalyst and methods for producing and employing same
CN1201717A (zh) * 1997-06-06 1998-12-16 中国石油化工总公司 苯和乙烯制乙苯的烷基化催化剂
CN102652121A (zh) * 2009-12-16 2012-08-29 环球油品公司 使用稀土交换催化剂的清洁剂烷基化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3840613A (en) * 1971-12-29 1974-10-08 Exxon Research Engineering Co Paraffin alkylation with olefin using highly active crystalline zeolite catalyst
US4447554A (en) * 1980-05-29 1984-05-08 Phillips Petroleum Company Hydroalkylation catalyst and methods for producing and employing same
CN1201717A (zh) * 1997-06-06 1998-12-16 中国石油化工总公司 苯和乙烯制乙苯的烷基化催化剂
CN102652121A (zh) * 2009-12-16 2012-08-29 环球油品公司 使用稀土交换催化剂的清洁剂烷基化

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020151646A1 (zh) 2019-01-25 2020-07-30 中国石油化工股份有限公司 固体酸催化剂、其制备和应用
US11951461B2 (en) 2019-01-25 2024-04-09 China Petroleum & Chemical Corporation Solid acid catalyst, preparation therefor and use thereof
CN112808299A (zh) * 2019-11-18 2021-05-18 中国石油化工股份有限公司 一种固体酸烷基化催化剂及其制备方法
CN112808299B (zh) * 2019-11-18 2022-05-03 中国石油化工股份有限公司 一种固体酸烷基化催化剂及其制备方法

Also Published As

Publication number Publication date
CN103964994B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN103962177A (zh) 一种含分子筛的催化剂的制备方法
CN106622359B (zh) 一种ssz-39/zsm-5复合分子筛及其合成方法和应用
CN101285001B (zh) 一种催化裂化催化剂
US11111152B2 (en) Preparation method for modified molecular sieve and modified molecular sieve-containing catalytic cracking catalyst
CN107029781B (zh) 铁和铈改性β分子筛选择性还原催化剂及制备方法与应用
JP6232058B2 (ja) 修飾されたy型ゼオライトを含有する接触分解の触媒およびその調製方法
US11084024B2 (en) Method for modifying molecular sieve and a catalytic cracking catalyst containing the molecular sieve
CN101767028B (zh) 一种流化催化裂化催化剂的制备方法
CN106140296A (zh) 一种催化裂化废催化剂再利用的方法
RU2624443C2 (ru) Катализатор для каталитического крекинга углеводородов
CN100537029C (zh) 一种催化裂化催化剂
CN104556120A (zh) 一种金属改性y型分子筛的制备方法
CN103964459A (zh) 一种分子筛的改性方法
RU2632913C2 (ru) Модифицированные фосфором катализаторы крекинга с повышенной активностью и гидротермической стабильностью
CN104043477A (zh) 一种zsm-5/mcm-48复合分子筛及其制备方法和应用
CN103785460B (zh) 一种催化裂解催化剂及其制备方法
CN107362824B (zh) 获自无有机模板合成法的含铁和铜的沸石β
CN108452825A (zh) 一种镁改性高硅超稳y型分子筛及其制备方法
CN106140277B (zh) 一种改性β沸石及其制备方法
CN101670295B (zh) 一种裂化催化剂的制备方法
CN110193376A (zh) 一种石油烃类催化裂化催化剂
CN106140255B (zh) 一种改性y型分子筛及其制备和应用
CN103785459B (zh) 一种催化裂解催化剂及其制备方法
CN103055917A (zh) 一种催化裂化催化剂的制备方法
CN103964994B (zh) 一种烷基化反应的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant