CN103962183A - 一种pnn配体-金属络合物催化剂及其制备方法和应用 - Google Patents

一种pnn配体-金属络合物催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN103962183A
CN103962183A CN201410007219.4A CN201410007219A CN103962183A CN 103962183 A CN103962183 A CN 103962183A CN 201410007219 A CN201410007219 A CN 201410007219A CN 103962183 A CN103962183 A CN 103962183A
Authority
CN
China
Prior art keywords
aryl
pnn
nmr
cdcl
hydroboration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410007219.4A
Other languages
English (en)
Other versions
CN103962183B (zh
Inventor
黄正
张雷
彭东杰
左自青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Chuang (Shanghai) Medical Technology Co.,Ltd.
Original Assignee
Shanghai Institute of Organic Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Organic Chemistry of CAS filed Critical Shanghai Institute of Organic Chemistry of CAS
Priority to CN201610005350.6A priority Critical patent/CN105665025B/zh
Priority to CN201410007219.4A priority patent/CN103962183B/zh
Priority to PCT/CN2014/072159 priority patent/WO2014117752A1/zh
Publication of CN103962183A publication Critical patent/CN103962183A/zh
Application granted granted Critical
Publication of CN103962183B publication Critical patent/CN103962183B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/189Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms containing both nitrogen and phosphorus as complexing atoms, including e.g. phosphino moieties, in one at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • C07F15/025Iron compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种PNN配体-金属络合物催化剂及其制备方法和应用。所述催化剂是具有如下通式的化合物:其中:M为铁或钴,R为C1~C30的烷烃基或C6~C30的芳基;R1、R2、R3、R4、R5、R6、R7独立选自氢原子、卤素原子、C1-C30的烃基、C1-C30的含氧基团、C1-C30的含硫基团、C1-C30的含氮基团、C1-C30的含磷基团、C1-C30的含硅基团或其它惰性功能性基团;X为卤原子或C1~C30的烷烃基。该催化剂的制备是将PNN配体与MX2或Py2MX2进行配位反应。本发明提供的PNN配体-金属络合物对单烯烃的硼氢化反应具有非常好的催化活性。

Description

一种PNN配体-金属络合物催化剂及其制备方法和应用
技术领域
本发明涉及一种PNN配体-金属络合物催化剂及其制备方法和应用,具体说,是涉及一种含给电子的三齿型PNN配体的金属络合物催化剂及其制备方法和其在单烯烃的硼氢化反应中的应用,属于有机化学技术领域。
背景技术
有机硼酸及其衍生物常作为中间体,被广泛用于有机合成中,比如,Suzuki-Miyaura反应就可以将有机硼化合物C(sp3)同卤代烃偶联形成C-C键。有机硼酸衍生物同其它有机金属亲核试剂相比具有独特的稳定性,许多硼酸酯在空气中就可以分离纯化和储存。科学家们已经发展了多种合成有机硼酸酯的方法。其中一种常用的方法是将卤代烃转化为有机锂试剂或格氏试剂,生成的有机金属试剂再和含硼的化合物反应来制备有机硼酸酯,但这种方法由于官能团兼容性差,反应过程中又生成大量无机盐,并没有很高的合成价值。最近,Hartwig等人发展了一种用Rh作为催化剂,烷烃和B2Pin2反应直接生成有机硼酸酯的方法,但反应条件相对苛刻。不久前Liu,Marder和Steel等人又报道了一种相对温和的方法,他们用铜做催化剂,卤代烃和B2Pin2反应生成有机硼酸酯,然而这种方法需要过量的B2Pin2,并且有大量的无机盐产生。
另外,有机硼酸酯可以通过Rh或者Ir催化烯烃硼氢化反应来制备。虽然二烷基硼可以同烯烃能直接加成,但二烷氧基硼烷在没有催化剂条件下,反应非常缓慢。金属催化的硼氢化可以在很温和的条件下发生,并具有很高的原子经济性,是一种有效的合成手段。比如,威尔金森催化剂已经被广泛用于多种烯烃的硼氢化反应,但常常伴随多种副反应,比如烯烃脱氢硼化反应,氢化反应等。另一个不足之处是在芳基乙烯硼氢化过程中,特别是用频那醇硼烷作为硼试剂时,区域选择性较差。其次,威尔金森催化剂的纯度对反应活性有很大影响,操作需要特别仔细。再者,在许多反应里,为了获得好的转化率,需要加入较多的Rh和Ir这类昂贵的催化剂。
由于贵金属储量少,价格昂贵,以及出于环境方面的考虑,近些年来,科学家们试图用地球上储量丰富、价格低廉的基本金属替代贵金属用于有机催化反应。在过去的十年里,金属的络合物已经在均相催化领域受到广泛关注。最近,Ritter等人报道了亚胺吡啶配体的铁的络合物对1,3-二烯的硼氢化反应具有较好的活性(J.Am.Chem.Soc.2009,131,12915)。但含给电子的三齿型PNN配体的金属络合物及其作为催化剂在更为常见的单烯烃的硼氢化反应中的应用到目前为止尚未见任何报道。
发明内容
本发明的目的是提供一种PNN配体-金属络合物催化剂及其制备方法和应用,为催化剂领域增添一种价格低廉、环境友好、100%的原子有效性、温和的反应条件、简单的分离方法、良好的官能团兼容性及对单烯烃的硼氢化反应具有优良活性的金属络合物催化剂。
本发明所述的PNN配体-金属络合物催化剂,是具有如下通式的化合物:
通式中:R为C1~C30的烷烃基或C6~C30的芳基;R1、R2、R3、R4、R5、R6、R7独立选自氢原子、卤素原子、C1-C30的烃基、C1-C30的含氧基团、C1-C30的含硫基团、C1-C30的含氮基团、C1-C30的含磷基团、C1-C30的含硅基团或其它惰性功能性基团,上述基团彼此间相同或不同,其中相邻基团彼此成键成环或不成键成环;X为卤原子或C1~C30的烷基;M为钴或铁。
作为一种优选方案,通式中的R选自乙基、异丙基、叔丁基或苯基;通式中的X选自Cl、Br、I、甲基、苯基、叔丁基或三甲基硅甲基。
一种制备上述PNN配体-金属络合物催化剂的方法,是将PNN配体与MX2或Py2MX2进行配位反应,反应通式如下所示:
当X为卤原子时:
当X为C1~C30的烷烃基时:
作为一种优选方案,所述配位反应包括如下操作:
a)配制MX2或Py2MX2的有机溶液及PNN配体的有机溶液;
b)控制在20~30℃下,将PNN配体的有机溶液逐滴加入MX2或Py2MX2的有机溶液中;
c)滴毕,在室温下搅拌反应;
d)反应结束,进行纯化后处理。
作为进一步优选方案,所述的有机溶液为四氢呋喃溶液、乙醚溶液、叔丁基醚溶液、正己烷溶液、正戊烷溶液或甲苯溶液。
作为进一步优选方案,MX2或Py2MX2的有机溶液的摩尔浓度为0.01摩尔/升~0.1摩尔/升;PNN配体的有机溶液的摩尔浓度为0.1摩尔/升~1.0摩尔/升;PNN配体与MX2或Py2MX2的摩尔比为1:1~2:1。
一种所述的PNN配体-金属络合物催化剂的应用,是用作单烯烃的硼氢化反应的催化剂。
作为一种优选方案,所述的单烯烃的硼氢化反应是指只发生α位双键的硼氢化反应。
作为进一步优选方案,所述的硼氢化反应是指具有α位双键的烯烃在以所述的PNN配体-金属络合物作为催化剂、以频那醇硼烷(HBPin)作为硼试剂、在NaBHEt3存在下,发生α位双键的硼氢化反应。
作为更进一步优选方案,所述的硼氢化反应包括如下操作:
①使PNN配体-金属络合物、具有α位双键的烯烃、频那醇硼烷(HBPin)和NaHBEt3在室温下搅拌反应10~30分钟;
②将反应体系暴露在空气中淬灭,然后进行纯化后处理。
当PNN配体-金属络合物为PNN配体-钴络合物时,上述硼氢化反应的条件优选为:
具有α位双键的烯烃与频那醇硼烷的摩尔比为1:1,所述的PNN配体-钴络合物与频那醇硼烷的摩尔比为0.00005:1~0.01:1,NaHBEt3与所述的PNN配体-钴络合物的摩尔比为2:1;所述的硼氢化反应在无溶剂下进行或者在四氢呋喃、甲苯、正己烷或乙醚中进行。
当PNN配体-金属络合物为PNN配体-铁络合物时,上述硼氢化反应的条件优选为:
具有α位双键的烯烃与频那醇硼烷的摩尔比为2:1,所述的PNN配体-铁络合物与频那醇硼烷的摩尔比为0.0025:1~0.05:1,NaHBEt3与所述的PNN配体-铁络合物的摩尔比为3:1;所述的硼氢化反应在四氢呋喃、甲苯或乙腈中进行。
所述的具有α位双键的烯烃可以如下通式:表示,通式中的R8表示任何的烷基或带各种有机官能团的烷基,所述官能团包括硅烷、醚、缩酮、胺、酰胺、酯、酮等;通式中的Ar表示芳基或带烷基、烷氧基、酯基、卤原子等取代基的芳基。
本发明的一个突出效果,是应用本发明所述的PNN配体-金属络合物催化剂进行单烯烃硼氢化反应所得硼氢化产物不需要分离,可以直接和氯代芳烃实现偶联反应。
所述的偶联反应是指氯代芳烃类化合物与上述硼氢化产物,用Pd(OAc)2和Ruphos作为催化剂、以叔丁醇钾作为碱实现交叉偶联反应;包括如下操作:
在空气中,将Pd(OAc)2,KOtBu和Ruphos配体加入封管中,抽换氩气三次,接着将甲苯、水、氯代芳烃和上述硼氢化反应直接得到的硼氢化产物通过注射器加入封管中,然后在80℃下搅拌24h;将反应液用硅藻土过滤,并用乙酸乙酯洗涤,旋干溶剂得粗产物;将粗产物进一步柱层析分离,即得偶联产物。
作为优选方案,所述的硼氢化产物与氯代芳烃的摩尔比为1:1,Pd(OAc)2与所述的硼氢化产物摩尔比为0.02:1,Ruphos与所述的硼氢化产物摩尔比为0.04:1;KOtBu与所述的硼氢化产物摩尔比为3:1。
与现有技术相比,本发明还具有如下显著效果:
1、本发明提供的PNN配体-金属络合物的制备方法简单,原料价廉易得,对环境友好,反应条件温和,收率较高,后处理简单,易于规模化。
2、本发明提供的PNN配体-金属络合物对单烯烃的硼氢化反应具有100%的原子有效性和良好的官能团兼容性;
3、本发明提供的PNN配体-金属络合物对单烯烃的硼氢化反应具有优良的催化活性,不仅选择性好,产率高,而且反应条件温和。
具体实施方式
下面结合实施例对本发明作进一步详细、完整地说明。实施例中所用的PNN配体是参照文献J.Am.Chem.Soc.2010,132,16756中所述方法制备而得。
实施例1:制备PNN配体-钴络合物
(tBu-PNN)CoCl2(络合物A):
在手套箱内,将CoCl2(260mg,2.0mmol,1.0equiv)和THF(50mL)加入100mLschlenk管中,再慢慢将tBu-PNN配体(628mg,2.0mmol,1.0equiv)的THF溶液(10mL)逐滴加入上述溶液,反应液颜色逐渐变黑。反应在室温下搅拌24h后,用油泵浓缩反应液至10mL,再加入Et2O,待固体析出,过滤并用乙醚洗涤,抽干溶剂得紫色粉末(826mg,93%)。然后将上述粉末(50mg),溶于CH2Cl2(3mL),在溶液上层加入1mL CH2Cl2和正己烷的混合溶剂(1:1)作为缓冲层,混合溶剂上层再加入大量正己烷,静置数天,待正己烷慢慢扩散到络合物的CH2Cl2溶液中,得紫黑色晶体,用于单晶衍射。
1H NMR(CDCl3,400MHz)δ123.37,86.98,67.83,64.98,43.57,40.69,25.36,-2.97,-4.70;Anal.Calcd for C19H27Cl2CoN2 :C,51.37;H,6.13;N,6.31.Found:C,51.45;H,6.19;N,6.32.
(iPr-PNN)CoCl2(络合物B):
在手套箱内,将CoCl2(260mg,2.0mmol,1.0equiv)和THF(50mL)加入100mLSchlenk管中,再慢慢将iPr-PNN配体(573mg,2.0mmol,1.0equiv)的THF溶液(10mL)逐滴加入上述溶液,反应液颜色逐渐变黑。反应在室温下搅拌24h后,用油泵浓缩反应液至10mL,再加入Et2O,待固体析出,过滤并用乙醚洗涤,抽干溶剂得棕色粉末(622mg,75%)。然后将上述粉末(50mg),溶于CH2Cl2(3mL),在溶液上层加入1mL CH2Cl2和正己烷的混合溶剂(1:1)作为缓冲层,混合溶剂上层再加入大量正己烷,静置数天,待正己烷慢慢扩散到络合物的CH2Cl2溶液中,得黑色晶体,用于单晶衍射。
1H NMR(CDCl3,400MHz)δ120.09,89.45,73.37,62.84,54.67,53.99,34.30,18.31,-6.15,-13.74,-14.16.Anal.Calcd for C17H23Cl2CoN2P+H2O:C,47.02;H,5.80;N,6.45.Found:C,46.96;H,5.59;N,6.41.
(iPr-PNN)CoCH2SiCH3(络合物D):
在手套箱内,将Py2Co(CH2SiCH3)2(392mg,1.0mmol,1.0equiv)和正戊烷(10mL)加入25mL Schlenk管中,再慢慢将iPr-PNN配体(286mg,1.0mmol,1.0equiv)的正戊烷溶液(5mL)逐滴加入上述溶液。反应在室温下搅拌1小时,用硅藻土过滤得黑色溶液,油泵抽干溶剂,加入5ml正戊烷,置于-35℃下重结晶的黑色固体粉末(263mg,51%)。1HNMR(400MHz,C6D6)δ=14.19(s,1H),10.75(s,1H),9.77(s,1H),8.87(t,J=6.8Hz,1H),7.47(d,J=8.4Hz,1H),7.37(d,J=6.2Hz,1H),5.60(d,J=8.0Hz,1H),4.54(d,J=9.5Hz,2H),3.11–2.82(m,2H),1.25(dd,J=12.7Hz,6.9Hz,6H),1.14(dd,J=12.7Hz,6.9Hz,6H),-4.57(s,2H),-11.87(s,9H).
实施例2:实施例1所述络合物B对不同单烯烃的硼氢化反应的催化活性实验
以烯烃1a的硼氢化过程为例:首先在手套箱内,将络合物B(2.1mg),THF(20mL)和NaBEt3H(1M)(10uL)加入50ml锥形瓶中得到紫色的催化剂溶液;接着将烯烃1a(63mg,0.5mmol,1equiv)和HBpin(75uL,0.5mmol,1equiv)加入8mL的反应小瓶中,再取配置好的催化剂溶液1mL加入上述反应小瓶中;反应在室温下搅拌15min后,暴露于空气中淬灭;然后旋蒸除去溶剂,快速柱层析(硅胶高约5cm,石油醚和乙酸乙酯的混合物作洗脱剂)得无色液体3a。3b~3n、4b~4m的制备方法同3a的制备方法。
4,4,5,5-tetramethyl-2-nonyl-1,3,2-dioxaborolane(3a):无色液体(121.0mg,95%);1H NMR(400MHz,CDCl3)δ=1.35-1.43(m,2H,CH3CH2),1.34-1.16(m,12H,CH2),1.24(s,12H,OC(CH3)2),0.87(t,J=6.9Hz,3H,CH3CH2),0.79-0.73(t,J=7.8Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ82.9(OC(CH3)2),32.5(CH2),32.0(CH2),29.7(CH2),29.5(CH2),29.5(CH2),24.9(C(CH3)2),24.1(CH2),22.8(CH2),14.2(CH3).
4,4,5,5-tetramethyl-2-(4-methylpentyl)-1,3,2-dioxaborolane(3b):无色液体(101.0mg,95%);1H NMR(400MHz,CDCl3)δ=1.49(m,1H,CH(CH3)2),1.41-1.31(m,2H,CH2CH(CH3)2),1.20(s,12H,OC(CH3)2),1.16-1.09(m,2H,BCH2CH2),0.82(d,J=6.6Hz,6H,CH(CH3)2),0.70(t,J=7.8Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ82.7(OC(CH3)2),41.8(CH2CH(CH3)2),27.7(CH(CH3)2),24.7(C(CH3)2),22.5(CH2CH(CH3)2),21.7(BCH2CH2).
trimethyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)silane(3c):无色液体(105.0mg,87%);1H NMR(400MHz,CDCl3)δ=1.43-1.34(m,2H,CH2CH2B),1.19(s,12H,OC(CH3)2),0.78(t,J=7.6Hz,2H,BCH2),0.51-0.44(m,2H,SiCH2),-0.09(s,9H,Si(CH3)3).13C NMR(101MHz,CDCl3)δ82.8(OC(CH3)2),24.9(C(CH3)2),20.2(CH2),18.7(CH2),-1.5(Si(CH3)3).
4,4,5,5-tetramethyl-2-(3-phenylpropyl)-1,3,2-dioxaborolane(3d):无色液体(106.0mg,86%);1H NMR(400MHz,CDCl3)δ=7.28-7.21(m,2H,aryl-H),7.19-7.11(m,3H,aryl-H),2.60(t,J=7.8Hz,2H,PhCH2),1.69-1.77(m,2H,CH2CH2B),1.22(s,12H,OC(CH3)2),0.82(t,J=8.0Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ142.7(aryl-C),128.6(aryl-C),128.2(aryl-C),125.6(aryl-C),83.0(OC(CH3)2),38.6(PhCH2),26.2(CH2CH2B),24.9(C(CH3)2).
2-(2-cyclohexylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(3e):无色液体(115.0mg,97%).1H NMR(400MHz,CDCl3)δ=1.61-1.71(m,4H,cyclohexyl-H),1.30-1.03(m,7H,cyclohexyl-H),1.21(s,12H,OC(CH3)2),0.77-0.85(m,2H,CH2CH2B),0.72(t,J=8.2Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ82.9(OC(CH3)2),40.1(CH),33.1(CH2),31.5(CH2),26.9(CH2),26.5(CH2),24.9(C(CH3)2).
2-(2-(cyclohex-3-en-1-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(3f):无色液体(113.0mg,96%);1H NMR(400MHz,CDCl3)δ=5.56-5.63(m,2H,CH=CH),2.12-1.93(m,3H),1.77-1.65(m,1H),1.62-1.51(m,1H),1.46-1.29(m,3H),1.21(s,12H,OC(CH3)2),1.20-1.08(m,1H),0.75(t,J=8.2Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ126.9(CH=CH),126.6(CH=CH),82.8(OC(CH3)2),35.7,31.5,30.6,28.5,25.3,24.7(C(CH3)2).
2-(6-chlorohexyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(3g):无色液体(118.0mg,96%);1H NMR(400MHz,CDCl3)δ=3.48(t,J=6.8Hz,2H,ClCH2),1.78-1.68(m,2H,CH2),1.35-1.43(m,4H,CH2),1.32-1.25(m,2H,CH2),1.21(s,12H,OC(CH3)2),0.74(t,J=7.6Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ83.0(OC(CH3)2),45.2(ClCH2),32.6(CH2),31.6(CH2),26.7(CH2),24.9(C(CH3)2),23.9(CH2).HRMS-EI(m/z):Calcd for[C12H24BO2Cl+],245.1594;found:245.1598.
N,N-diethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-amine(3h):无色液体(105.0mg,87%);1H NMR(400MHz,CDCl3)δ=2.45(q,J=7.2Hz,4H,NCH2CH3),2.37-2.29(m,2H,NCH2CH2),1.54-1.42(m,2H,NCH2CH2),1.17(s,12H,OC(CH3)2),0.94(t,J=7.2Hz,6H,NCH2CH3),0.65(t,J=7.7Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ83.0(OC(CH3)2),54.7(NCH2CH2),46.7(NCH2CH3),24.8(C(CH3)2),20.6(NCH2CH2),11.4(NCH2CH3).HRMS-ESI(m/z):Calcd for[(C13H29BNO2+H)+],241.2322;found:241.2325.
N,N-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentanamide(3i):无色液体(105.0mg,87%);1H NMR(400MHz,CDCl3)δ=2.95(s,3H,NCH3,2.89(s,3H,NCH3),2.27(t,J=7.7Hz,2H,COCH2,1.56-1.64(m,2H,COCH2CH2),1.38-1.46(m,2H,BCH2CH2),1.20(s,12H,OC(CH3)2),0.77(t,J-7.8Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ173.2(CO),82.9(OC(CH3)2),37.2(NCH3),35.3(NCH3),33.3(COCH2),27.7(COCH2CH2),24.8(C(CH3)2),23.9(BCH2CH2).HRMS-ESI(m/z):Calcd for[(C13H27BNO3+H)+],255.2115;found:255.2111.
tert-butyldiphenyl((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)oxy)silane(3j):无色液体(224.0mg,96%);1H NMR(400MHz,CDCl3)δ=7.77-7.71(m,4H,aryl-H),7.49-7.38(m,6H,aryl-H),3.72(t,J=6.5Hz,2H,OCH2),1.66-1.59(m,2H,OCH2CH2),1.52-1.32(m,6H,CH2),1.29(s,12H,OC(CH3)2),1.11(s,9H,SiC(CH3)3),0.83(t,J=7.7Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ135.6(aryl-C),134.2(aryl-C),129.5(aryl-C),127.7(aryl-C),82.9(OC(CH3)2),64.1(OCH2),32.7,32.3,27.0(C(CH3)3),25.7,24.9(C(CH3)2),24.1,19.3.HRMS-ESI(m/z):Calcd for[(C28H47BNO3Si+NH4)+],484.3418;found:484.3416.
2-(3-ethoxypropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(3k):无色液体(77.0mg,72%);1H NMR(400MHz,CDCl3)δ=3.44(q,J=7.0Hz,2H,OCH2CH3),3.35(t,J=6.8Hz,2H,OCH2CH2),1.73-1.60(m,2H,OCH2CH2),1.21(s,12H,OC(CH3)2),1.16(t,J=7.0Hz,3H,OCH2CH3),0.77(t,J=7.8Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ83.0(OC(CH3)2),72.5(OCH2CH2),66.0(OCH2CH3),24.9(C(CH3)2),24.3(OCH2CH2),15.4(OCH2CH3).HRMS-EI(m/z):Calcd for[(C11H23BO3-CH3)+],198.1542;found:198.1538.
2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)cyclohexanone(3l):无色液体(122.0mg,92%);1H NMR(400MHz,CDCl3)δ=2.34-2.26(m,1H),2.15-2.24(m,2H),2.08-1.99(m,1H),1.98-1.89(m,1H),1.80-1.68(m,2H),1.64-1.53(m,2H),1.38-1.25(m,3H),1.18-1.10(m,1H),1.16(s,12H,OC(CH3)2),0.69(m,2H,CH2B).13C NMR(101MHz,CDCl3)δ213.41(CO),82.79(OC(CH3)2),50.47(COCH),41.83(COCH2),33.7,32.0,28.0,24.7(C(CH3)2),24.7,21.5.HRMS-EI(m/z):Calcd for[C15H27BO3+],265.2090;found:265.2094.
7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptan-3-one(3m):无色液体(91.0mg,76%);1H NMR(400MHz,CDCl3)δ=2.35-2.26(m,4H,CH2COCH2),1.43-1.52(m,2H,COCH2CH2),1.34-1.26(m,2H,CH2CH2B),1.13(s,12H,OC(CH3)2),0.93(t,J=7.3Hz,3H,CH3CH2),0.67(t,J=7.8Hz,2H,CH2B).13C NMR(101MHz,CDCl3)δ211.6(CO),82.8(OC(CH3)2),42.2(COCH2CH2),35.6(COCH2CH3),26.4(COCH2CH2),24.7(C(CH3)2),23.6(CH2CH2B),7.7(CH3CH2).HRMS-EI(m/z):Calcd for[C13H25BO3+],239.1933;found:239.1934.
4,4,5,5-tetramethyl-2-(5-methylhex-5-en-1-yl)-1,3,2-dioxaborolane(3n):无色液体(105.0mg,94%);1H NMR(400MHz,CDCl3)δ=4.68-4.61(m,2H,C=CH2),1.98(t,J=6.8Hz,2H,=CCH2),1.68(s,3H,=CCH3),1.35-1.45(m,4H,CH2),1.22(s,12H,OC(CH3)2),0.77(t,J=7.2Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ146.3(C=CH2),109.6(C=CH2),83.0(OC(CH3)2),37.8(=CCH2),30.5,24.9(C(CH3)2),23.8,22.5.HRMS-EI(m/z):Calcd for[C13H25BO2+],223.1984;found:223.1987.
4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane(4a):无色液体(106.0mg,91%);1H NMR(400MHz,CDCl3)δ=7.34-7.24(m,4H,aryl-H),7.23-7.16(m,1H,aryl-H),2.80(t,J=8.0Hz,2H,PhCH2),1.26(s,12H,C(CH3)2),1.20(t,J=8.0Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ144.5(aryl-C),128.3(aryl-C),128.1(aryl-C),125.6(aryl-C),83.2(OC(CH3)2),30.1(PhCH2),24.9(C(CH3)2).
4,4,5,5-tetramethyl-2-(4-methylphenethyl)-1,3,2-dioxaborolane(4b):无色液体(114.0mg,93%);1H NMR(400MHz,CDCl3)δ=7.13(m,4H,aryl-H),2.76(t,J=8.2Hz,2H,PhCH2),2.34(s,3H,PhCH3),1.27(s,12H,C(CH3)2),1.17(t,J=8.2Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ141.4(aryl-C),134.9(aryl-C),128.9(aryl-C),127.9(aryl-C),83.1(OC(CH3)2),29.6(PhCH2),24.9(C(CH3)2),21.05(PhCH3).
4,4,5,5-tetramethyl-2-(3-methylphenethyl)-1,3,2-dioxaborolane(4c):无色液体(119.0mg,97%);1H NMR(400MHz,CDCl3)δ=7.19(t,J=7.5Hz,1H,aryl-H),7.13-6.98(m,3H,aryl-H),2.76(t,J=8.1Hz,2H,PhCH2),2.36(s,3H,PhCH3),1.26(s,12H,C(CH3)2),1.18(t,J=8.1Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ144.3(aryl-C),137.6(aryl-C),128.8(aryl-C),128.1(aryl-C),126.2(aryl-C),125.0(aryl-C),83.0(OC(CH3)2),29.9(PhCH2),24.8(C(CH3)2),21.4(PhCH3).HRMS-EI(m/z):Calcd for[C15H23BO2+],245.1827,found:245.1830.
2-(4-methoxyphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(4d):无色液体(126.0mg,96%);1H NMR(400MHz,CDCl3)δ=7.14(d,J=8.6Hz,2H,aryl-H),6.81(d,J=8.6Hz,2H,aryl-H),3.77(s,3H,OCH3),2.70(t,J=8.0Hz,2H,PhCH2),1.22(s,12H,C(CH3)2),1.12(t,J=8.2Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ157.6(aryl-C),136.6(aryl-C),128.9(aryl-C),113.6(aryl-C),83.1(OC(CH3)2),55.3(OCH3),29.1(PhCH2),24.9(C(CH3)2).
2-(4-(tert-butoxy)phenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(4e):无色液体(142.0mg,93%);1H NMR(400MHz,CDCl3)δ=7.09(d,J=8.3Hz,2H,aryl-H),6.87(d,J=8.3Hz,2H,aryl-H),2.71(t,J=8.0Hz,2H,PhCH2),1.31(s,9H,PhOC(CH3)3),1.19(s,12H,C(CH3)2),1.13(t,J=8.0Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ153.1(aryl-C),139.4(aryl-C),128.4(aryl-C),124.2(aryl-C),83.2(OC(CH3)2),78.1(PhOC(CH3)2),29.4(PhCH2),28.9(PhOC(CH3)3),24.9(C(CH3)2).HRMS-EI(m/z):Calcd for[C18H29BO3+],303.2246;found:303.2249.
2-(4-fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(4f):无色液体(121.0mg,97%);1H NMR(400MHz,CDCl3)δ=7.19-7.12(m,2H,aryl-H),6.96-6.89(m,2H,aryl-H),2.71(t,J=8.2Hz,2H,PhCH2),1.20(s,12H,C(CH3)2),1.11(t,J=8.0Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ161.2(d,J=242.7Hz,aryl-C),140.0(d,J=3.2Hz,aryl-C),129.4(d,J=7.7Hz,aryl-C),114.9(d,J=21.0Hz,aryl-C),83.2(OC(CH3)2),29.3(PhCH2),24.9(C(CH3)2).19F NMR(376MHz,CDCl3)δ-118.4.
2-(3-fluorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(4g):无色液体(111.0mg,89%);1H NMR(400MHz,CDCl3)δ=7.15-7.22(m,1H,aryl-H),6.97(d,J=7.6Hz,1H,aryl-H),6.90-6.94(m,1H,aryl-H),6.80-6.86(m,1H,aryl-H),2.74(t,J=8.1Hz,2H,PhCH2),1.21(s,13H,C(CH3)2),1.13(t,J=8.2Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ162.8(d,J=244.7Hz,aryl-C),147.0(d,J=7.1Hz,aryl-C),129.5(d,J=8.3Hz,aryl-C),123.6(d,J=2.7Hz,aryl-C),114.8(d,J=20.8Hz,aryl-C),112.3(d,J=21.0Hz,aryl-C),83.1(OC(CH3)2),29.7(d,J=1.6Hz,PhCH2),24.7(C(CH3)2).19F NMR(376MHz,CDCl3)δ-114.2.HRMS-EI(m/z):Calcd for[C14H20BO2F+],249.1577;found:249.1576.
2-(4-chlorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(4h):无色液体(120.0mg,90%);1H NMR(400MHz,CDCl3)δ=7.21(d,J=8.4Hz,2H,aryl-H),7.13(d,J=8.4Hz,2H,aryl-H),2.71(t,J=8.2Hz,2H,PhCH2),1.21(s,12H,C(CH3)2),1.11(t,J=8.0Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ142.9(aryl-C),131.3(aryl-C),129.5(aryl-C),128.3(aryl-C),83.3(OC(CH3)2),29.4(PhCH2),24.9(C(CH3)2).
2-(4-bromophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(4i):无色液体(143.0mg,92%);1H NMR(400MHz,CDCl3)δ=7.35(d,J=8.4Hz,2H,aryl-H),7.07(d,J=8.5Hz,2H,aryl-H),2.69(t,J=8.2Hz,2H,PhCH2),1.20(s,12H,C(CH3)2),1.10(t,J=8.0Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ143.3(aryl-C),131.1(aryl-C),129.8(aryl-C),119.1(aryl-C),83.1(OC(CH3)2),29.4(PhCH2),24.8(C(CH3)2).
4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phenyl acetate(4j):无色液体(116.0mg,80%);1H NMR(400MHz,CDCl3)δ=7.20(d,J=8.3Hz,2H,aryl-H),6.95(d,J=8.4Hz,2H,aryl-H),2.73(t,J=8.0Hz,2H,PhCH2),2.25(s,3H,CH3CO),1.20(s,12H,C(CH3)2),1.12(t,J=8.2Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ169.7(CO),148.5(aryl-C),141.9(aryl-C),128.9(aryl-C),121.2(aryl-C),83.1(OC(CH3)2),29.4(PhCH2),24.8(C(CH3)2),21.1(COCH3)).HRMS-ESI(m/z):Calcd for[(C16H23BO4+NH4)+],307.2064;found:307.2067.
2-(2,5-dimethylphenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(4k):无色液体(130.0mg,93%);1H NMR(400MHz,CDCl3)δ=7.08-7.01(m,2H,aryl-H),6.93(d,J=7.6Hz,1H,aryl-H),2.74(t,J=8.0Hz,2H,PhCH2),2.33(s,3H,PhCH3),2.32(s,3H,PhCH3),1.28(s,12H,C(CH3)2),1.14(t,J=8.2Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ142.4(aryl-C),135.1(aryl-C),132.6(aryl-C),130.0(aryl-C),129.1(aryl-C),126.3(aryl-C),83.1(OC(CH3)2),27.3(PhCH2),24.9(C(CH3)2),21.1(PhCH3),18.9(PhCH3).HRMS-EI(m/z):Calcd for[C16H25BO2+],259.1984;found:259.1986.
4,4,5,5-tetramethyl-2-(2-(naphthalen-2-yl)ethyl)-1,3,2-dioxaborolane(4l):无色液体(131.0mg,93%);1H NMR(400MHz,CDCl3)δ=7.83-7.74(m,3H,aryl-H),7.67(s,1H,aryl-H),7.48-7.38(m,3H,aryl-H),2.95(t,J=7.9Hz,2H,PhCH2),1.28(t,J=8.0Hz,2H,BCH2),1.24(s,12H,C(CH3)2).13C NMR(101MHz,CDCl3)δ142.1(aryl-C),133.7(aryl-C),132.0(aryl-C),127.8(aryl-C),127.7(aryl-C),127.5(aryl-C),127.4(aryl-C),125.8(aryl-C),125.8(aryl-C),125.0(aryl-C),83.3(OC(CH3)2),30.3(PhCH2),24.9(C(CH3)2).
9-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-9H-carbazole(4m):白色固体(147.0mg,92%);1H NMR(400MHz,CDCl3)δ=8.12-8.16(m,2H,aryl-H),7.47-7.55(m,4H,aryl-H),7.30-7.23(m,2H,aryl-H),4.50(t,J=8.0Hz,2H,NCH2),1.48(t,J=8.0Hz,2H,BCH2),1.24(s,12H,C(CH3)2).13C NMR(101MHz,CDCl3)δ140.0(aryl-C),125.5(aryl-C),123.0(aryl-C),120.3(aryl-C),118.7(aryl-C),109.1(aryl-C),83.6(OC(CH3)2),38.8(NCH2),24.9(C(CH3)2).
实施例3:在无溶剂条件下进行的烯烃硼氢化反应
在手套箱内,将烯烃2a(5.2g,50mmol)和HBpin(6.4g,50mmol,1equiv),络合物B(1.0mg)和NaBEt3H(1M)(5uL)加入8mL的反应小瓶中。反应在室温下搅拌1h后,暴露于空气中淬灭。快速柱层析(硅胶高约5cm,石油醚和乙酸乙酯的混合物作洗脱剂)得无色液体4a(m=11.5g,产率99%)。
4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane(4a):无色液体(106.0mg,91%);1H NMR(400MHz,CDCl3)δ=7.34-7.24(m,4H,aryl-H),7.23-7.16(m,1H,aryl-H),2.80(t,J=8.0Hz,2H,PhCH2),1.26(s,12H,C(CH3)2),1.20(t,J=8.0Hz,2H,BCH2).13C NMR(101MHz,CDCl3)δ144.5(aryl-C),128.3(aryl-C),128.1(aryl-C),125.6(aryl-C),83.2(OC(CH3)2),30.1(PhCH2),24.9(C(CH3)2).
实施例4:以实施例2所得硼酸酯与氯代芳烃化合物的偶联实验
在空气中,将Pd(OAc)2(2.2mg,0.01mmol),KOtBu(168.0mg,1.5mmol)和Ruphos配体(9.3mg,0.02mmol)加入10mL封管中,抽换氩气三次,接着将甲苯(1.5mL),水(0.15mL),氯苯(56.0mg,0.50mmol),和反应直接得到的硼酸酯4f(125.1mg,0.50mmol,1.0equiv)通过注射器加入封管中,反应在80℃下搅拌24h。然后将反应液用硅藻土过滤,并用乙酸乙酯(5×5mL)洗涤,旋干溶剂得粗产物。将粗产物进一步柱层析分离得白色固体5a(85.8mg,86%).5b~5f的制备方法同5a的制备方法。
1-fluoro-4-phenethylbenzene(5a): 1H NMR(400MHz,CDCl3)δ=7.28(t,J=8.0Hz,2H,aryl-H),7.23-7.13(m,3H,aryl-H),7.13-7.06(m,2H,aryl-H),7.00-6.91(m,2H,aryl-H),2.89(s,4H,Ph-CH2CH2).13C NMR(101MHz,CDCl3)δ=161.4(d,J=243.4Hz,aryl-C),141.5(aryl-C),137.4(d,J=3.2Hz,aryl-C),129.9(d,J=7.7Hz,aryl-C),128.6(aryl-C),128.5(aryl-C),126.1(aryl-C),115.1(d,J=21.0Hz,aryl-C),38.1(PhCH2CH2),37.2(PhCH2).19F NMR(376MHz,CDCl3)δ-117.3ppm.
1-nitro-3-phenethylbenzene(5b):棕色油状物(104.3mg,92%);1H NMR(400MHz,CDCl3)δ=8.00-8.03(m,2H,aryl-H),7.44-7.36(m,2H,aryl-H),7.24-7.29(m,2H,aryl-H),7.17-7.21(m,1H,aryl-H),7.16-7.12(m,2H,aryl-H),3.04-2.97(m,2H),2.96-2.80(m,2H).13C NMR(101MHz,CDCl3)δ148.2,143.6,140.6(aryl-C),134.9(aryl-C),129.2(aryl-C),128.5(aryl-C),128.5(aryl-C),126.3(aryl-C),123.3(aryl-C),121.2(aryl-C),37.4(ArCH2).
2-(3-methylphenethyl)pyridine(5c):淡黄色油状物(72.2mg,72%);1H NMR(400MHz,CDCl3)δ=8.44-8.47(m,2H,aryl-H),7.44(d,J=7.8Hz,1H,aryl-H),7.18(t,J=6.7Hz,2H,aryl-H),7.06-6.93(m,3H,aryl-H),2.94-2.86(m,4H,CH2CH2),2.33(s,3H,PhCH3).13C NMR(101MHz,CDCl3)δ150.0(aryl-C),147.5(aryl-C),140.8(aryl-C),138.0(aryl-C),136.9(aryl-C),135.9(aryl-C),129.3(aryl-C),128.3(aryl-C),126.9(aryl-C),125.4(aryl-C),123.2(aryl-C),37.4,35.0,21.4(PhCH3).HRMS-ESI(m/z):Calcd for[(C14H15N+H)+],198.1277;found:198.1281.
1-methoxy-4-(5-methylhex-5-en-1-yl)benzene(5d):无色油状物(94.9mg,93%);1H NMR(400MHz,CDCl3)δ=7.13(d,J=8.6Hz,2H,aryl-H),6.86(d,J=8.6Hz,2H,aryl-H),4.76-4.69(m,2H,C=CH2),3.81(s,3H,OCH3),2.65-2.57(m,2H,PhCH2),2.08(t,J=7.5Hz,2H,CH2=CCH2),1.74(s,3H,CH2=CCH3),1.58-1.67(m,2H),1.56-1.46(m,2H).13C NMR(101MHz,CDCl3)δ157.6(aryl-C),146.0(CH2=C),134.8(aryl-C),129.3(aryl-C),113.7(aryl-C),109.8(C=CH2),55.2(OCH3),37.7(CH2=CCH2),34.9(PhCH2),31.4(PhCH2CH2),27.2(CH2=CCH2CH2),22.4(CH2=CCH3).HRMS-EI(m/z):Calcdfor[C14H20O+],204.1514;found:204.1513.
1-(2-(cyclohex-3-en-1-yl)ethyl)-3-nitrobenzene(5e):棕色油状物(79.2mg,69%);1H NMR(400MHz,CDCl3)δ=8.01-8.06(m,2H,aryl-H),7.51(d,J=7.6Hz,1H,aryl-H),7.43(t,J=7.8Hz,1H,aryl-H),5.62-5.70(m,2H,CH=CH),2.76(t,J=7.8Hz,2H,PhCH2),2.02-2.20(m,3H),1.83-1.55(m,5H),1.25-1.31(m,1H).13C NMR(101MHz,CDCl3)δ144.9,134.7,129.1,127.1,126.2,123.1,120.9,38.1,33.1,33.0,31.7,28.7,25.1.HRMS-EI(m/z):Calcd for[C14H17NO2+],231.1259;found:231.1260.
(2-(cyclohex-3-en-1-yl)ethyl)benzene(5f):无色油状物(73.1mg,78%);1H NMR(400MHz,CDCl3)δ=7.36-7.29(m,2H,aryl-H),7.27-7.19(m,3H,aryl-H),5.76-5.68(m,2H,CH=CH),2.71(t,J=7.8Hz,2H,PhCH2),2.26-2.18(m,1H),2.15-2.07(m,2H),1.88-1.60(m,5H),1.38-1.29(m,1H).13C NMR(101MHz,CDCl3)δ143.0,128.4,128.3,127.1,126.5,125.6,38.6,33.3,33.2,31.9,28.9,25.3.
综上实验结果可见:采用本发明所述的PNN配体-钴络合物作为催化剂,频那醇作为硼试剂,可使具有α位双键的芳基烯烃只发生端位双键的选择性硼氢化,而且催化活性和选择性均非常显著,反应得到的硼氢化产物不需要分离,可以直接和氯代芳烃实现偶联。
实施例5:制备PNN配体-铁络合物
在手套箱内,将FeCl2(0.381g,3mmol,1equiv)和THF(50mL)加入100mL Schlenk管中,待FeCl2完全溶解后,将PNN配体(1.037mg,3.3mmol,1.1equiv)的THF溶液(10mL)逐滴加入上述溶液,颜色逐渐变成黑色;在室温下搅拌反应24h后,用油泵抽干溶剂;将所得的固体溶于CH2Cl2(10mL)中,再加入乙醚(30mL),红色固体析出,过滤并用乙醚洗涤,得砖红色粉末(0.953g,72%);将上述砖红色粉末(30mg),溶于由CH2Cl2(2mL)和正己烷(2mL)组成的混合溶剂中,然后将溶液置于手套箱内,慢慢挥发数天后,有红色晶体长出,即得本发明所述的PNN配体-铁络合物C。
(tBu-PNNFeCl2(络合物C):
1H NMR(CDCl3,400MHz)δ80.92(s,1H),77.59(s,1H),53.07(s,1H),52.70(s,1H),24.94(s,2H),14.05(s,18H),9.51(s,1H),0.81(s,1H),-14.83(s,1H);
Anal.Calcd for C19H27Cl2FeN2P:C,51.73;H,6.17;N,6.35.Found:C,51.56;H,6.18;N,6.20。
实施例6:以实施例5所得络合物C对不同单烯烃的硼氢化反应的催化活性实验
在手套箱内,将络合物C(0.55mg,0.00125mmol,0.0025equiv)、THF(2mL)、6a(84mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(3.8μL,0.00375mmol,0.0075equiv);在室温下搅拌反应10min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7a(98.6mg,93%)。
1H NMR(CDCl3,400MHz)δ1.47-1.57(m,1H),1.39(m,2H),1.24(s,12H),1.16(m,2H),0.85(d,J=6.4Hz,6H),0.74(t,J=7.8Hz,2H);
13C NMR(CDCl3,100MHz)δ83.0,42.1,27.9,24.9,22,8,21.9;
11B NMR(CDCl3,128MHz):δ34.0.HRMS-EI(m/z):Calcd for[C12H25BO2+],211.1984;found:211.1979。
在手套箱内,将络合物C(0.55mg,0.00125mmol,0.0025equiv)、THF(2mL)、6b(126mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(3.8μL,0.00375mmol,0.0075equiv);在室温下搅拌反应10min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7b(121.2mg,95%)。
1H NMR(CDCl3,400MHz)δ1.31-1.39(m,2H),1.21(m,12H),1.20(s,12H),0.83(t,J=6.6Hz,3H),0.72(t,J=7.8Hz,2H);
13C NMR(CDCl3,100MHz)δ80.11,29.78,29.26,26.90,26.77,26.68,22.12,21.34,20.04,11.44;
11B NMR(CDCl3,128MHz):δ33.9.HRMS-EI(m/z):Calcd for[C15H31BO2+],253.2453;found:253.2451。
在手套箱内,将络合物C(0.55mg,0.00125mmol,0.0025equiv)、THF(2mL)、6c(84mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(3.8μL,0.00375mmol,0.0075equiv);在室温下搅拌反应10min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7c(95.8mg,90%)。
1H NMR(CDCl3,400MHz)δ1.37-1.41(m,2H),1.25(m,6H),1.24(s,12H),0.87(t,J=6.6Hz,3H),0.76(t,J=7.8Hz,2H);
13C NMR(CDCl3,100MHz)δ83.0,32.3,31.8,24.9,24.1,22.7,14.2;
11B NMR(CDCl3,128MHz):δ34.0.HRMS-EI(m/z):Calcd for[C12H25BO2+],211.1984。
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、THF(2mL)、6d(118mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7d(112.2mg,91%)。
1H NMR(CDCl3,400MHz)δ7.23(m,2H),7.11-7.16(m,3H),2.59(t,J=7.8Hz,2H),1.68-1.76(m,2H),1.22(s,12H),0.81(t,J=8Hz,2H);
13C NMR(CDCl3,100MHz)δ142.7,128.6,128.2,125.6,83.0,38.7,26.2,24.9;
11B NMR(CDCl3,128MHz):δ33.9.HRMS-EI(m/z):Calcd for[C12H23BO2+],245.1827;found:245.1829。
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、THF(2mL)、6e(110mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7e(110.8mg,93%)。
1H NMR(CDCl3,400MHz)δ1.61-1.68(m,5H),1.23-1.28(m,2H),1.19(s,12H),1.03-1.16(m,4H),0.79(m,2H),0.70(t,J=8.2Hz,2H);
13C NMR(CDCl3,100MHz)δ83.0,40.2,33.2,31.6,27.0,26.7,25.0;
11B NMR(CDCl3,128MHz):δ34.2.HRMS-EI(m/z):Calcd for[C14H27BO2+],237.2140;found:237.2141。
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、THF(2mL)、6f(84mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7f(66.0mg,62%)。
1H NMR(CDCl3,400MHz)δ1.28(t,J=8.6Hz,2H),1.23(s,12H),0.83(s,9H),0.69(t,J=8.6Hz,2H);
13C NMR(CDCl3,100MHz)δ83.1,38.0,31.0,29.1,25.0;
11B NMR(CDCl3,128MHz):δ33.9.HRMS-EI(m/z):Calcd for[C12H25BO2+],211.1984;found:211.1980。
在手套箱内,将络合物C(0.55mg,0.00125mmol,0.0025equiv)、THF(2mL)、6g(114mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(3.8μL,0.00375mmol,0.0075equiv);在室温下搅拌反应10min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7g(112.5mg,93%)。
1H NMR(CDCl3,400MHz)δ1.35-1.43(m,2H),1.20(s,12H),0.79(t,J=7.6Hz,2H),0.48(t,J=8.4Hz,2H),-0.07(s,9H);
13C NMR(CDCl3,100MHz)δ83.0,25.0,20.3,18.8,-1.4;
11B NMR(CDCl3,128MHz):δ33.8.HRMS-EI(m/z):Calcd for[(C12H27BO2Si-CH3)+],226.1681;found:226.1680。
在手套箱内,将络合物C(2.2mg,0.005mmol,0.01equiv)、THF(2mL)、6h(162mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(15μL,0.015mmol,0.03equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约15cm,石油醚:乙酸乙酯=20:1作为洗脱剂,V/V)得无色液体7h(120.4mg,83%)。
1H NMR(CDCl3,400MHz)δ7.24-7.35(m,5H),4.45(s,2H),3.46(t,J=6.6Hz,2H),1.60-1.67(m,2H),1.45-1.52(m,2H),1.23(s,12H),0.80(t,J=7.8Hz,2H);
13C NMR(CDCl3,100MHz)δ138.7,128.3,127.6,127.5,83.0,72.8,70.3,32.3,24.9,20.7;
11B NMR(CDCl3,128MHz):δ33.9.HRMS-EI(m/z):Calcd for[C17H27BO3+],289.2090;found:289.2091。
在手套箱内,将络合物C(2.2mg,0.005mmol,0.01equiv)、THF(2mL)、6i(142mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(15μL,0.015mmol,0.03equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约15cm,石油醚:乙酸乙酯=20:1作为洗脱剂,V/V)得无色液体7i(110.2mg,82%)。
1H NMR(CDCl3,400MHz)δ3.86-3.90(m,4H),1.58(t,J=7.6Hz,2H),1.34-1.39(m,4H),1.26(s,3H),1.20(s,12H),0.74(t,J=7.2Hz,2H);
13C NMR(CDCl3,100MHz)δ110.2,82.9,64.6,38.9,26.8,24.8,24.2,23.7;
11B NMR(CDCl3,128MHz):δ33.9.HRMS-EI(m/z):Calcd for[(C14H27BO4-CH3)+],254.1804;found:254.1800。
在手套箱内,将络合物C(2.2mg,0.005mmol,0.01equiv)、THF(2mL)、6j(254mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(15μL,0.015mmol,0.03equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约15cm,石油醚:乙酸乙酯=20:1作为洗脱剂,V/V)得无色液体7j(156.3mg,82%)。
1H NMR(CDCl3,400MHz)δ7.76(d,J=8.4Hz,2H),7.32(d,J=8Hz,2H),3.98(t,J=6.6Hz,2H),2.42(s,3H),1.56-1.63(m,2H),1.16-1.36(m,6H),1.21(s,12H),0.69(t,J=7.8Hz,2H);13C NMR(CDCl3,100MHz)δ144.8,133.4,130.0,128.1,83.1,70.9,31.8,28.9,25.3,25.0,23.9,21.8;
11B NMR(CDCl3,128MHz):δ33.9.HRMS-ESI(m/z):Calcd for[C19H31BO5S+],381.2022;found:381.2017。
在手套箱内,将络合物C(2.2mg,0.005mmol,0.01equiv)、THF(2mL)、6k(223mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(15μL,0.015mmol,0.03equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约15cm,石油醚:乙酸乙酯=20:1作为洗脱剂,V/V)得无色液体7k(167.9mg,96%)。
1H NMR(CDCl3,400MHz)δ7.18-7.35(m,7H),6.66-6.77(m,3H),4.59(s,2H),3.41(t,J=8Hz,2H),1.79-1.87(m,2H),1.29(s,12H),0.84(t,J=7.6Hz,2H);
13C NMR(CDCl3,100MHz)δ148.8,139.4,129.3,128.8,126.9,126.7,116.0,112.2,83.4,54.5,53.5,25.1,21.6;
11B NMR(CDCl3,128MHz):δ34.0.HRMS-ESI(m/z):Calcd for[C22H30BNO2+],350.2406;found:350.2405。
在手套箱内,将络合物C(11mg,0.025mmol,0.05equiv)、THF(2mL)、6l(118mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(75μL,0.075mmol,0.15equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7l(88.6mg,72%)。
1H NMR(CDCl3,400MHz)δ7.25-7.30(m,4H),7.14-7.18(m,1H),3.01-3.10(m,1H),1.30(d,J=6.8Hz,3H),1.19(m,2H),1.18(s,12H);
13C NMR(CDCl3,100MHz)δ149.4,128.4,126.8,125.9,83.1,36.0,25.1,25.0,24.9;
11B NMR(CDCl3,128MHz):δ33.5.HRMS-EI(m/z):Calcd for[C15H23BO2+],245.1827;found:245.1825。
在手套箱内,将络合物C(11mg,0.025mmol,0.05equiv)、THF(2mL)、6m(84mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(75μL,0.075mmol,0.15equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7l(85.9mg,81%)。
1H NMR(CDCl3,400MHz)δ1.64-1.73(m,1H),1.11-1.33(m,4H),1.23(s,12H),0.88-0.89(d,J=6.4Hz,3H),0.85(t,J=7.2Hz,3H),0.78-0.82(m,1H),0.59-0.65(m,1H);
13C NMR(CDCl3,100MHz)δ82.9,42.2,29.4,25.0,24.9,22.5,20.5,14.5;
11B NMR(CDCl3,128MHz):δ33.8.HRMS-EI(m/z):Calcd for[C12H25BO2+],211.1982;found:211.1980。
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、THF(2mL)、6n(108mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7n(112.2mg,95%)。
1H NMR(CDCl3,400MHz)δ5.55-5.62(m,2H),1.96-2.07(m,2H),1.53-1.71(m,2H),1.30-1.40(m,3H),1.09-1.19(m,2H),1.19(s,12H),0.74(t,J=8Hz,2H);
13C NMR(CDCl3,100MHz)δ127.0,126.7,82.8,35.8,31.6,30.7,28.5,25.3,24.8;
11B NMR(CDCl3,128MHz):δ33.8.HRMS-EI(m/z):Calcd for[C14H25BO2+],235.1984;found:235.1987。
在手套箱内,将络合物C(11mg,0.025mmol,0.05equiv)、THF(2mL)、6o(136mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(75μL,0.075mmol,0.15equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约15cm,石油醚:乙酸乙酯=10:1作为洗脱剂,V/V)得无色液体7o(100.2mg,76%)。
1H NMR(CDCl3,400MHz)δ5.34(t,J=1.6Hz,1H),1.85-1.98(m,3H),1.63-1.74(m,3H),1.61(s,3H),1.06-1.38(m,2H),1.22(s,12H),0.84-0.89(m,4H),0.58-0.64(m,1H);
13C NMR(CDCl3,100MHz)δ134.0,121.2,83.0,40.7,34.0,33.9,31.1,29.3,28.5,26.9,26.0,25.1,24.9,23.6,19.5,19.2;
11B NMR(CDCl3,128MHz):δ34.3.HRMS-EI(m/z):Calcd for[C16H29BO2+],263.2297;found:263.2298。
在手套箱内,将络合物C(0.55mg,0.00125mmol,0.0025equiv)、THF(2mL)、6p(82mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(3.8μL,0.00375mmol,0.0075equiv);在室温下搅拌反应10min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体7p(94.7mg,90%)。
7p化合物的反式构象的核磁数据:1H NMR(CDCl3,400MHz)δ5.34-5.37(m,2H),1.90-1.95(m,2H),1.59(dd,J=2.2,1Hz,3H),1.38-1.46(m,2H),1.20(s,12H),0.72(t,J=8Hz,2H);13C NMR(CDCl3,100MHz)δ131.4,124.9,82.8,35.2,24.8,24.0,18.0;
11B NMR(CDCl3,128MHz):δ34.0.HRMS-EI(m/z):Calcd for[C12H23BO2+],209.1827;found:209.1831。
由上述实验结果可见:采用本发明所述的PNN配体-铁络合物(0.25~5mol%)作为催化剂,频哪醇作为硼试剂,可使具有α位双键的烯烃选择性地发生反马氏硼氢化,生成的产物烷基硼酸酯,对水和氧气都比较稳定,可以通过快速柱层析进行分离。对于简单的链状烯烃6a-c(2equiv),10分钟就可以完全转化,生成7a-c,分离产率达到90~95%;3-苯基丙烯和环己基乙烯(6d,91%)和(6e,93%)也能获得很好的收率;但对于位阻较大的3,3-二甲基丁烯,硼氢化产物7f的产率相对较低,只有62%;而且所述络合物催化剂还与各种官能团有较好的兼容性,可使硅烷(6g,87%),醚(6h,83%),缩醛(6i,82%),磺酸酯(6j,82%),和胺(6k,96%)都能有较高的产率;更重要的是,对于1,1-二取代的烯烃,比如α-甲基苯乙烯和2-甲基-1-戊烯都能被有效地硼氢化生成7l和7m,产率分别为72和81%;另外,对于4-乙烯基环己烯6n只在端位发生硼氢化反应,分子内的双键并没有变化,生成产物7n,产率为95%;对于(+/-)柠檬烯,同样只有端位的双键被硼氢化,生成7o,产率为76%;而且,对于1,4-己二烯6p(trans/cis=12/1),反应过程中没有发生双键移位,生成7p,产率90%(trans/cis=12/1)。综上所述可知:采用本发明所述的PNN配体-铁络合物(0.25~5mol%)作为催化剂,频哪醇作为硼试剂,可使具有α位双键的烯烃只发生端位双键的选择性硼氢化,而且催化活性和选择性均非常显著。
实施例7:以实施例5所得络合物C对芳基乙烯的硼氢化反应的催化活性实验
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、甲苯(2mL)、乙腈(5μL,10equiv)、8a(104mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体9a(87.3mg,75%)。
1H NMR(CDCl3,400MHz)δ7.20-7.27(m,4H),7.14(t,J=7Hz,1H),2.75(t,J=8.2Hz,2H),1.21(s,12H),1.14(t,J=8.2Hz,2H);
13C NMR(CDCl3,100MHz)δ144.4,128.2,128.0,125.5,83.1,30.0,24.8;
11B NMR(CDCl3,128MHz):δ33.7.HRMS-EI(m/z):Calcd for[C14H21BO2+],231.1671;found:231.1670。
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、甲苯(2mL)、乙腈(5μL,10equiv)、8b(118mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体9b(103.1mg,84%)。
1H NMR(CDCl3,400MHz)δ7.08(m,4H),2.70(t,J=8.4Hz,2H),2.30(s,3H),1.23(s,12H),1.12(t,J=8.4Hz,2H);
13C NMR(CDCl3,100MHz)δ141.4,134.9,128.9,127.9,83.1,29.6,24.9,21.0;
11B NMR(CDCl3,128MHz):δ33.8.HRMS-EI(m/z):Calcd for[C15H23BO2+],245.1827;found:245.1828。
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、甲苯(2mL)、乙腈(5μL,10equiv)、8c(134mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约15cm,石油醚:乙酸乙酯=50:1作为洗脱剂,V/V)得无色液体9c(89.5mg,68%)。
1H NMR(CDCl3,400MHz)δ7.13(d,J=8.4Hz,2H),6.80(t,J=8.4Hz,2H),3.77(s,3H),2.69(t,J=8.2Hz,2H),1.22(s,12H),1.11(t,J=8.2Hz,2H);
13C NMR(CDCl3,100MHz)δ157.8,136.8,129.1,113.8,83.3,55.5,29.3,25.0;
11B NMR(CDCl3,128MHz):δ33.8.HRMS-EI(m/z):Calcd for[C15H23BO3+],261.1777;found:261.1781。
在手套箱内,将络合物C(4.4mg,0.01mmol,0.02equiv)、甲苯(2mL)、乙腈(5μL,10equiv)、8d(122mg,1mmol,2equiv)和HBpin(75μL,0.5mmol,1equiv)加入25mL Schlenk管中,搅拌均匀后,加入NaHBEt3(1M)(30μL,0.03mmol,0.06equiv);在室温下搅拌反应30min后,将体系暴露在空气中淬灭;将所得溶液在真空条件下于50℃浓缩,然后快速柱层析(硅胶高约5cm,纯石油醚作为洗脱剂)得无色液体9d(89.6mg,72%)。
1H NMR(CDCl3,400MHz)δ7.15(m,2H),6.93(m,2H),2.71(t,J=8.2Hz,2H),1.21(s,12H),1.11(t,J=8.2Hz,2H);
13C NMR(CDCl3,100MHz)δ161.4(d,J=966Hz),140.2(d,J=12.4Hz),129.6(d,J=30.4Hz),115.0(d,J=83.2Hz),83.4,29.4,25.0;
19F NMR(CDCl3,376MHz):δ118.4.11B NMR(CDCl3,128MHz):δ33.6.HRMS-EI(m/z):Calcd for[C14H20BO2F+],249.1577;found:249.1580。
综上实验结果可见:采用本发明所述的PNN配体-铁络合物作为催化剂,频哪醇作为硼试剂,可使具有α位双键的芳基烯烃只发生端位双键的选择性硼氢化,而且催化活性和选择性均非常显著。
对比例1:
本对比例比较了PNN配体-铁络合物和其他金属络合物在4-甲基-1-戊烯6a的硼氢化反应中的活性,结果总结在表1中。由表1可以看出尽管Ritter的亚胺吡啶型配体的铁的络合物10作为催化剂前体对1,3-二烯的硼氢化反应有着很好的活性(J.Am.Chem.Soc.2009,131,12915),但络合物10在NaBHEt3(15mol%)存在的情况下对α-烯烃的硼氢化反应的催化效果却很差(见路线1);当反应直接用FeCl2(5mol%)或者将FeCl2(5mol%)和2,2’-联吡啶(5mol%)作为催化剂加入反应中时,也几乎没有产物(见路线2和3);使用(terpy)FeCl211(5mol%)和(iPr-PDI)FeCl212(5mol%)作为催化剂前体,分别以9和61%的收率获得7a(见路线4和5);另外使用贵金属催化剂Rh(PPh3)3(5mol%)和[Ir(COD)Cl]/dppe(5mol%)也分别只有68%和75%的产率(见路线6和7)。但采用本发明提供的PNN配体-铁络合物作为催化剂,用量只需0.25%,反应时间只需10分钟,产率就可以达到99%(见路线9)。
表1:PNN配体铁络合物与其他金属络合物在烯烃硼氢化反应中的比较[a]
[a]反应条件:HBPin(0.5mmol,1equiv),4-甲基-1-戊烯1(1mmol,2equiv),溶剂THF(2mL),反应温度25℃;[b]产率为GC产率,用均三甲苯做内标;[c]表示同时观察到18%的脱氢硼化产物;[d]反应时间10min。
对比例2:
本对比例比较了铁和钴络合物在脂肪族烯烃和芳香族烯烃硼氢化反应中的活性,结果总结在表2中。由表2可以看出,铁络合物(tBu-PNN)FeCl2C在脂肪族α-烯烃的硼氢化反应中具有非常好的活性(路线1),但对于芳基乙烯,用甲苯或THF做溶剂时会有脱氢硼化产物生成(路线2)。我们用1%的络合物A作为催化剂前体,2%的NaBEt3H作为活化剂进行了尝试,对于2a在THF溶液中,常温下反应1小时,生成反马氏加成产物4a,产率高达93%(路线3)。但对于脂肪族烯烃1a,生成的硼氢化产物只有75%(路线4)。当我们采用络合B作为催化剂时,络合物B无论在脂肪族烯烃还是芳香族烯烃的硼氢化中都具有更高的活性。只需要0.05mol%的催化剂前体,反应15min,原料即可完全转化(路线5和6)。络合物B的最低用量可以降低到0.01mol%,反应仍有95%的产物生成(entry7)。在这两个例子中,都没有其他产物通过GC/MS和1H NMR检测到。因此PNN配体-钴络合物的催化体系相比铁的体系具有更高的活性。我们也用络合物D对1a和2a进行了尝试,对于1-壬烯1a,D具有较好的活性(路线8),但对于苯乙烯2a,只生成48%的硼氢化产物,还有52%的脱氢产物形成(路线9)。
表2:PNN配体-铁络合物/钴络合物在烯烃硼氢化反应中的比较[a]
[a]反应条件:HBPin(0.5mmol),5a或6a(0.5mmol),THF(1mL)作为溶剂,反应温度25℃;[b]产率为分离产率除非另有说明;[c]数据来源于ref10;[d]含有52%的脱氢产物,产率为核磁产率,用均三甲苯作内标。
综上实验可见:本发明提供的PNN配体-金属络合物,特别是钴的络合物对单烯烃的硼氢化反应具有优良的催化活性,相对于现有技术具有显著性进步。
最后有必要在此说明的是:上述实施例只用于对本发明的技术方案作进一步详细地说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。

Claims (10)

1.一种PNN配体-金属络合物催化剂,其特征在于,是具有如下通式的化合物:
通式中:R为C1~C30的烷烃基或C6~C30的芳基;R1、R2、R3、R4、R5、R6、R7独立选自氢原子、卤素原子、C1-C30的烃基、C1-C30的含氧基团、C1-C30的含硫基团、C1-C30的含氮基团、C1-C30的含磷基团、C1-C30的含硅基团或其它惰性功能性基团,上述基团彼此间相同或不同,其中相邻基团彼此成键成环或不成键成环;X为卤原子或C1~C30的烷烃基;M为钴或铁。
2.一种制备权利要求1所述的PNN配体-金属络合物催化剂的方法,其特征在于,是将PNN配体与MX2或Py2MX2进行配位反应,反应通式如下所示:
当X为卤原子时:
当X为C1~C30的烷烃基时:
3.如权利要求2所述的方法,其特征在于,所述配位反应包括如下操作:
a)配制MX2或Py2MX2的有机溶液及PNN配体的有机溶液;
b)控制在20~30℃下,将PNN配体的有机溶液逐滴加入MX2或Py2MX2的有机溶液中;
c)滴毕,在室温下搅拌反应;
d)反应结束,进行纯化后处理。
4.如权利要求3所述的方法,其特征在于:所述的有机溶液为四氢呋喃溶液、乙醚溶液、叔丁基醚溶液、正己烷溶液、正戊烷溶液或甲苯溶液。
5.如权利要求3所述的方法,其特征在于:MX2或Py2MX2的有机溶液的摩尔浓度为0.01摩尔/升~0.1摩尔/升;PNN配体的有机溶液的摩尔浓度为0.1摩尔/升~1.0摩尔/升;PNN配体与MX2或Py2MX2的摩尔比为1:1~2:1。
6.一种权利要求1所述的PNN配体-金属络合物催化剂的应用,其特征在于:用作单烯烃的硼氢化反应的催化剂。
7.如权利要求6所述的应用,其特征在于:所述单烯烃的硼氢化反应是指只发生在α位双键的硼氢化反应。
8.如权利要求7所述的应用,其特征在于:所述的硼氢化反应是指具有α位双键的烯烃在以所述的PNN配体-金属络合物作为催化剂、以频那醇硼烷(HBPin)作为硼试剂、在NaBHEt3存在下,发生α位双键的硼氢化反应。
9.如权利要求8所述的应用,其特征在于,所述的硼氢化反应包括如下操作:
①使PNN配体-金属络合物、具有α位双键的烯烃、频那醇硼烷(HBPin)和NaHBEt3在室温下搅拌反应10~30分钟;
②将反应体系暴露在空气中淬灭,然后进行纯化后处理。
10.如权利要求9所述的应用,其特征在于:具有α位双键的烯烃与频那醇硼烷的摩尔比为1:1~2:1;所述的PNN配体-金属络合物与频那醇硼烷的摩尔比为0.00005:1~0.05:1;NaHBEt3与所述的PNN配体-金属络合物的摩尔比为2:1~3:1。
CN201410007219.4A 2013-02-04 2014-01-07 一种pnn配体-金属络合物催化剂及其制备方法和应用 Active CN103962183B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610005350.6A CN105665025B (zh) 2014-01-07 2014-01-07 一种pnn配体‑钴络合物催化剂及其制备方法和应用
CN201410007219.4A CN103962183B (zh) 2013-02-04 2014-01-07 一种pnn配体-金属络合物催化剂及其制备方法和应用
PCT/CN2014/072159 WO2014117752A1 (zh) 2013-02-04 2014-02-17 一种pnn配体-金属络合物催化剂及其制备方法和应用

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310044247.9 2013-02-04
CN2013100442479A CN103071533A (zh) 2013-02-04 2013-02-04 一种pnn配体-铁络合物催化剂及其制备方法和应用
CN2013100442479 2013-02-04
CN201410007219.4A CN103962183B (zh) 2013-02-04 2014-01-07 一种pnn配体-金属络合物催化剂及其制备方法和应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610005350.6A Division CN105665025B (zh) 2014-01-07 2014-01-07 一种pnn配体‑钴络合物催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN103962183A true CN103962183A (zh) 2014-08-06
CN103962183B CN103962183B (zh) 2016-06-29

Family

ID=48148350

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2013100442479A Pending CN103071533A (zh) 2013-02-04 2013-02-04 一种pnn配体-铁络合物催化剂及其制备方法和应用
CN201410007219.4A Active CN103962183B (zh) 2013-02-04 2014-01-07 一种pnn配体-金属络合物催化剂及其制备方法和应用

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2013100442479A Pending CN103071533A (zh) 2013-02-04 2013-02-04 一种pnn配体-铁络合物催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (2) CN103071533A (zh)
WO (1) WO2014117752A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402919A (zh) * 2014-10-22 2015-03-11 浙江大学 一种合成手性频那醇硼酯化合物的方法
CN106432336A (zh) * 2016-09-13 2017-02-22 中国科学院上海有机化学研究所 基于喹啉骨架的pnn配体、其铁络合物及制备方法和应用
CN106478717A (zh) * 2016-09-27 2017-03-08 苏州大学 含三齿nnp配体的稀土金属受阻路易斯酸碱对的合成及其应用
CN110483560A (zh) * 2019-08-06 2019-11-22 河北科技大学 一种脂肪族烯烃硼氢化反应合成烷基硼酸酯的铁催化体系及其应用方法
CN110563752A (zh) * 2019-08-06 2019-12-13 河北科技大学 铁催化烯烃马氏选择性硼氢化合成二级或三级烷基硼酸酯的方法
CN111943967A (zh) * 2020-08-14 2020-11-17 温州大学 一种合成烯基硼酸酯类化合物的方法
CN114085242A (zh) * 2021-12-08 2022-02-25 南京林业大学 一种铁催化烷基内炔化合物的合成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103071533A (zh) * 2013-02-04 2013-05-01 中国科学院上海有机化学研究所 一种pnn配体-铁络合物催化剂及其制备方法和应用
CN104725420A (zh) * 2013-12-23 2015-06-24 中国科学院上海有机化学研究所 Pnn配体、pnn配体铁或钴络合物、制备方法及应用
CN105665025B (zh) * 2014-01-07 2018-02-02 中国科学院上海有机化学研究所 一种pnn配体‑钴络合物催化剂及其制备方法和应用
WO2015103703A1 (en) * 2014-01-08 2015-07-16 The Governing Council Of The University Of Toronto Iron(ii) catalysts containing tridentate pnp ligands, their synthesis, and use thereof
CN104804041B (zh) * 2014-01-26 2018-07-13 中国科学院上海有机化学研究所 Ncp配体、其铱络合物、合成方法、中间体及应用
CN110944748B (zh) * 2017-07-17 2022-10-28 美国陶氏有机硅公司 涉及氢化硅烷化和脱氢硅烷化的催化剂和相关方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001199987A (ja) * 2000-01-20 2001-07-24 Japan Science & Technology Corp 環状ポリエーテル化合物の製造方法
CN1329615A (zh) * 1998-11-06 2002-01-02 联邦科学和工业研究组织 硼氢化方法
CN103071533A (zh) * 2013-02-04 2013-05-01 中国科学院上海有机化学研究所 一种pnn配体-铁络合物催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329615A (zh) * 1998-11-06 2002-01-02 联邦科学和工业研究组织 硼氢化方法
JP2001199987A (ja) * 2000-01-20 2001-07-24 Japan Science & Technology Corp 環状ポリエーテル化合物の製造方法
CN103071533A (zh) * 2013-02-04 2013-05-01 中国科学院上海有机化学研究所 一种pnn配体-铁络合物催化剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EKAMBARAM BALARAMAN ET AL.: "Direct Hydrogenation of Amides to Alcohols and Amines under Mild Conditions", 《J.AM.CHEM.SOC》 *
LEI ZHANG ET AL.: "Iron-Catalyzed,Atom-Economical,Chemo- and Regioselective Alkene Hydroboration with Pinacolborane", 《ANGEW.CHEM.INT.ED》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104402919A (zh) * 2014-10-22 2015-03-11 浙江大学 一种合成手性频那醇硼酯化合物的方法
CN106432336A (zh) * 2016-09-13 2017-02-22 中国科学院上海有机化学研究所 基于喹啉骨架的pnn配体、其铁络合物及制备方法和应用
CN106478717A (zh) * 2016-09-27 2017-03-08 苏州大学 含三齿nnp配体的稀土金属受阻路易斯酸碱对的合成及其应用
CN106478717B (zh) * 2016-09-27 2018-05-08 苏州大学 含三齿nnp配体的稀土金属受阻路易斯酸碱对的合成及其应用
CN110483560A (zh) * 2019-08-06 2019-11-22 河北科技大学 一种脂肪族烯烃硼氢化反应合成烷基硼酸酯的铁催化体系及其应用方法
CN110563752A (zh) * 2019-08-06 2019-12-13 河北科技大学 铁催化烯烃马氏选择性硼氢化合成二级或三级烷基硼酸酯的方法
CN110563752B (zh) * 2019-08-06 2022-04-01 河北科技大学 铁催化烯烃马氏选择性硼氢化合成二级或三级烷基硼酸酯的方法
CN111943967A (zh) * 2020-08-14 2020-11-17 温州大学 一种合成烯基硼酸酯类化合物的方法
CN111943967B (zh) * 2020-08-14 2023-03-28 温州大学 一种合成烯基硼酸酯类化合物的方法
CN114085242A (zh) * 2021-12-08 2022-02-25 南京林业大学 一种铁催化烷基内炔化合物的合成方法

Also Published As

Publication number Publication date
WO2014117752A1 (zh) 2014-08-07
CN103071533A (zh) 2013-05-01
CN103962183B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
CN103962183A (zh) 一种pnn配体-金属络合物催化剂及其制备方法和应用
Ueno et al. Copper‐Catalyzed Formal C H Carboxylation of Aromatic Compounds with Carbon Dioxide through Arylaluminum Intermediates
Ballmann et al. Dipyrromethene and β-diketiminate zinc hydride complexes: resemblances and differences
Haberberger et al. Synthesis, Characterization and Catalytic Application of Iron Complexes Modified by Monodentate Phosphane Ligands
Tamura et al. Design and synthesis of chiral 1, 10-phenanthroline ligand, and application in palladium catalyzed asymmetric 1, 4-addition reactions
Ochida et al. Phosphorus Ligands with a Large Cavity: Synthesis of Triethynylphosphines with Bulky End Caps and Application to the Rhodium‐Catalyzed Hydrosilylation of Ketones
CA2792478C (en) A process for the reduction of a tertiary phosphine oxide to the corresponding tertiary phosphine in the presence of a catalyst and use of a tertiary phosphine for reducing a tertiary phosphine oxide in the presence of a catalyst
CN105665025B (zh) 一种pnn配体‑钴络合物催化剂及其制备方法和应用
Yamaguchi et al. Regioselective Preparation of Allylgermanes.
Muniyappan et al. Synthesis, structure and characterization of picolyl and benzyl linked biphenyl nickel NHC complexes and their catalytic activity in Suzuki-Miyaura cross-coupling reactions
Hohn et al. Enantiomerically Pure Vinylcyclopropylboronic Esters
Okazaki et al. Thermal reactions of alkyl (hydrido)(hydrosilyl) iridium (III) complexes: generation of a hydrido (silylene) iridium (I) species via the reductive elimination of alkane and 1, 2-H-shift from the silicon atom to the Ir (I) metal center
Mimeau et al. Easy access to alkylphosphine boranes starting from unactivated alkenes
JP6617264B2 (ja) 単核鉄錯体およびそれを使用した有機合成反応
US20040024237A1 (en) Synthesis of aminoarylboronic esters and substituted anilines from arenes via catalytic C-H activation/borylation/amination and uses thereof
CN110627831A (zh) 二联芳缩醛膦、它们的制备方法及在偶联反应中的用途
Wang et al. Transformation of CO 2 to Methanol with Homogeneous Catalysts
KR100915095B1 (ko) 알파, 베타-알킨 에스터 화합물의 β-보론화 방법
WO2015082592A2 (en) Method for preparing aminoarylborane compounds or derivatives thereof
De et al. Rhodium catalyzed tandem Diels-Alder/hydrolysis reactions of 2-boron-substituted 1, 3-dienes
Ghaffari Iridium catalyzed CH borylation: Improved selectivity through catalyst design and the value of spectroscopy under catalytically relevant condition
Hossain Nickel-Catalyzed Hydroboration and Hydrosilylation
CN117715882A (zh) 方法
喜多 et al. Studies on Formation of Carbon-Carbon or Carbon
Thapa Copper-Catalyzed Direct and Tandem Couplings and Mechanistic Studies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210617

Address after: 201318 Room 102, building 1, No. 1199, Lantian Road, Pudong New Area, Shanghai

Patentee after: Du Chuang (Shanghai) Medical Technology Co.,Ltd.

Address before: 200032 No. 345, Lingling Road, Shanghai, Xuhui District

Patentee before: SHANGHAI INSTITUTE OF ORGANIC CHEMISTRY, CHINESE ACADEMY OF SCIENCES

TR01 Transfer of patent right