CN103959483B - 用于制备薄膜型太阳能电池的组合式连续电沉积设备 - Google Patents

用于制备薄膜型太阳能电池的组合式连续电沉积设备 Download PDF

Info

Publication number
CN103959483B
CN103959483B CN201280010707.XA CN201280010707A CN103959483B CN 103959483 B CN103959483 B CN 103959483B CN 201280010707 A CN201280010707 A CN 201280010707A CN 103959483 B CN103959483 B CN 103959483B
Authority
CN
China
Prior art keywords
electroplating pool
mentioned
modular electrical
electrolyte solution
sedimentation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280010707.XA
Other languages
English (en)
Other versions
CN103959483A (zh
Inventor
王家雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103959483A publication Critical patent/CN103959483A/zh
Application granted granted Critical
Publication of CN103959483B publication Critical patent/CN103959483B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0621In horizontal cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0642Anodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • C25D7/126Semiconductors first coated with a seed layer or a conductive layer for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种用于制备薄膜型太阳能电池的组合式连续电沉积设备,在一个模块化电沉积单元中的电镀池的长度可以很容易地被改变以满足在一次卷对卷过程中所要求的不同电流密度。此外,电解质溶液箱体能够被简单地从电镀模块中连接或拆卸并四处移动。利用这些设计,覆有不同金属、金属合金和半导体的多层膜能用这条生产线或设备通过电镀的方法沉积出来并具备容易改变不同材料的电镀次序的灵活性。这套设备在一个连续的卷对卷过程中于柔性导电基板上制备诸如CIGS 和 CdTe 这类的IB‑IIIA‑VIA和IIB‑VIA元素族的薄膜型太阳能电池是尤其有用的。

Description

用于制备薄膜型太阳能电池的组合式连续电沉积设备
有关申请的交叉引用
本发明的优先权是基于2011年3月12日提交的申请号为 13/046710 的美国专利申请。
技术领域
本专利发明是有关一种卷对卷组合式电沉积生产线,它能够被用于沉积多层金属或合金吸收薄膜以用于制备基于IB-IIIA或IIB-VIA元素族多晶化合物的薄膜型太阳能电池。
背景技术
随着温室效应的不断发展,环境污染的严重恶化以及化石燃料的持续耗尽,太阳能电池作为一种领先的绿色能源已经受到了越来越多的关注。尽管晶硅太阳能电池目前仍然统治着太阳能电池的国际市场,薄膜太阳能电池基于其低成本,可弯曲性及规模化工业生产的能力已经展示了其光明的前景。在此薄膜电池的家族中,铜铟镓硒 (CIGS) 太阳能电池具有高达 20% 的最高光电转换率,高于碲化镉 (CdTe) 电池 16% 的转换率。在元素周期表中, 铜铟镓硒吸收膜位于IB-IIIA-VIA族而碲化镉则位于IIB-VIA族,鉴于它们的应用前景,不同的镀膜技术已经被开发来制造这些薄膜太阳能电池。按照制备过程所用的材料和环境,这些技术能够被粗略地划分为干湿两组。干法基本上涉及到真空过程,例如溅射,蒸发以及升华之类的物理气相沉积法 (PVD) 及化学气相沉积法 (CVD)。尽管这些干法已被很好地开发,一些诸如喷雾,印刷及电沉积的湿法也已被发展,这是由于它们的低成本以及其简单的过程。
在这些湿法过程中,喷雾和印刷已被应用于制造薄膜太阳能电池。例如,NanoSolar开发了印刷法来制备铜铟镓硒太阳能电池。此法必须通过复杂的程序来制备纳米微粒并且需应用一些特殊的方法以将铜铟镓硒纳米微粒紧密地浓缩于基体表面。否则,膜会在溶液蒸发以后变成多孔。电沉积方法则是将金属从它们的电解质溶液中镀于某种导电的或甚至于不导电的物体表面,并具有可准确控制的量及高质量的表面形态。这种非真空的程序比之于真空方法有许多优越性。例如,所镀金属的表面形态可通过改进溶液成份而加以优化,而一些基体表面上的微缺陷可被所镀金属填充,因为电镀溶液可完全浸润这些微通道的全部内表面。电镀时,金属阳离子由库仑力所驱动而吸附到基体表面还原成紧密排列的原子而形成高质量的金属膜。此外,电沉积方法能够产生大面积厚度均匀的金属膜,而这对于大多数高真空沉积仍然是一个大问题。当然电化学方法也有其缺点。例如,电沉积材料也许被其还原电位所限制并且由于不同材料之间的相互作用而对一些特殊的基体敏感。更有甚者,氢的释放在阴极电沉积中总是一个问题。可尽管这些不利因素,电镀方法仍被广泛应用于铜铟镓硒薄膜的电沉积。例如,SoloPower已经成功使用电沉积方法沉积CIGS吸收膜。尤其是,诸如铜铟镓硒之类的不同材料能够被共沉积于导电基体的表面形成CIGS薄膜。可尽管许多有关电化学共沉积CIGS膜的研究被发表或专利授权,由于难以控制所镀CIGS膜的成份及均匀性, 这些研究很难被应用于工业制造过程。因此,逐层沉积CIGS膜的电镀程序对于制备CIGS太阳能电池也许更为实用。
铜铟镓硒与碲化镉太阳能电池二者均包含吸收/缓冲薄膜层的堆集以产生有效的光伏异质结。一个包含一高电阻层(该层有一个透射太阳光到吸收/缓冲界面的禁带)和一旨在于减小阻抗损失及提供电接触的低电阻层的金属氧化物窗口被沉积于吸收/缓冲堆集的表面。这种设计显著减少了电荷载流子在窗口层以及/或者在窗口/缓冲界面的重新组合, 因为大多数电荷载流子的产生与分离是坐落在吸收层内部的。一般说来,铜铟镓硒太阳能电池是一个位于元素周期表IB-IIIA-VIA组别的化合物半导体的典型, 而这些化合物半导体由位于IB组 (铜, 银和金), IIIA组 (硼, 铝, 镓, 铟和铊) 和VIA组 (氧, 硫,硒, 碲和钋) 的元素所构成。尤其是, 包含铜, 铟, 镓, 硒和硫的化合物一般被写为CIGS(S), 或 Cu(In,Ga)(S,Se)2或 CuIn1- x Ga x (S y S e1- y )n, 这里 0≤ x ≤1, 0≤ y ≤1 且n大约为2, 并且已经被应用于可产生超过20%光电转换率的太阳能电池的结构中。应注意的是, 尽管CIGS(S) 的化学式常常被写为Cu(In,Ga)(S,Se)2,一个更加精确的此化合物的化学式应为 Cu(In,Ga)(S,Se)n, 此处n典型地是接近2 但也许并非精确为2。进一步要指出的是,在化学式上 “Cu(X,Y)” 的符号意味着X和Y从 (X=0% 和 Y=100%) 到 (X=100% 和 Y=0%)区间的所有化学组成。例如, Cu(In,Ga) 意指从CuIn到CuGa的所有组成。类似地, Cu(In,Ga)(S,Se)2意指具有Ga/(Ga+In) 和Se/(Se+S)的摩尔比从0到1的整个化合物家族, 此处Ga/(Ga+In) 以及 Cu/(Ga+In) 的摩尔比是决定铜铟镓硒太阳能电池组成和转换率非常重要的因素。一般而言,一个好的太阳能电池要求Cu/(Ga+In) 的比率处在0.75 和 0.95之间, 而Ga/(Ga+In) 的比率则在 0.3 和 0.6之间。相较于 CIGS,CdTe太阳能电池的组成要简单得多。 一般说来,镉在CdTe膜中的含量接近 50% 。然而,镉的含量在硫化镉层的沉积以及随后的淬火程序后可能改变。例如, 在靠近 p - n -结界面处所形成的 CdS x T e1- x x 的含量通常不超过 0.06,然而,x 可从0 改变到 1,这导致CdTe (x= 0) 到CdS (x = 1)的化合物构成。
在用逐层方式电沉积 CIGS 吸收膜的过程中,Cu,In,Ga和 Se 可以不同的次序镀于基体上形成众多的堆集,如 Cu/Ga/In/Se, Cu/In/Ga/Se, In/Cu/Ga/Se,Ga/Cu/In/Se,Cu/Se/In/Ga, In/Se/Cu/Ga, Cu/In/Se/Ga等等。不同金属也可被镀不止一次以产生多层堆集的组合, 如 Cu/In/Cu/Se/Ga, Cu/Ga/Cu/In/Se/Ga/In/Cu, Ga/Cu/In/Cu/In/Ga/Se/Cu/Se, 等等。此外,单元素能够和电沉积的合金相混合以形成以下的诸多堆集:Ga-In/Cu/Ga/Se/In/Cu-Ga,Cu-In/Ga/Cu/Se/In/Ga/Se,Cu-Ga/In/Cu/Ga/Cu-Se/In/Se 等等。类似地, CdTe吸收膜能以相似的方式被堆集但其构成更加简单,此鉴于其更少的成份。在电镀以后, 这些混合的堆集必须被淬火到几百度的高温以将这些多层的金属材料转化成均一的p -型 CIGS 或CdTe半导体吸收膜。在此 CIGS半导体吸收膜上,务必镀上一种n -型半导体缓冲层如CdS, ZnS, 或 In2S3。与之相对应,CdTe吸收膜也许只能用CdS缓冲层。随后, 透明导电氧化物 (TCO) 材料, 如ZnO, SnO2, 和 ITO (铟锡氧化物),应该被沉积以形成太阳能电池。
尽管制备CIGS和CdTe膜的电镀溶液与方法已被很好地开发,用于工业制造的电镀工具似乎仍是传统形态。一般来说, 基体的电镀是在电镀溶液中通过一件件或一种溶液到另一种溶液的程序所进行。连续电镀过程也已被开发。例如,Sergey Lopatin和 DavidEaglesham在2008年取得专利名为 “在太阳能电池基板上的卷对卷电镀 (Roll-to-Rollelectroplating on Solar Cell Substrates)”, 而BulentBasol也在同年申请专利名为“用于光伏膜制造的卷对卷电镀(Roll-to-Roll Electroplating for Photovoltaic FilmManufacture)”。此外, 一些太阳能电池设备公司也生产了一些卷对卷电镀生产线。然而,所有这些卷对卷电镀设备基本都限定于某种预先设计好的电镀程序。而正如先前段落所述,最成功的工业规模的电沉积 CIGS 薄膜是基于多层单一元素膜的。尤其是不同金属层的电镀次序可在淬火后产生完全不同的 CIGS 或CdTe吸收层。然而,不同金属要求不同的电沉积条件,特别是在沉积量固定的前提下决定了电镀池长度的不同电流密度。其结果是,这些预先设计好的电沉积设备不容易被改变以适应不同的电沉积次序和不同的溶液。举例说,假如一个原先需要高电流密度镀铜的电沉积单元换了一种要求低电流密度的电解质溶液而要保持原来的沉积厚度及卷板传送速度,唯一的办法是增加电镀池的长度以增加反应时间,但由于每一电镀槽的长度以及相应的连接管道及耦合部件已被完全固定,因此很难在原先设计的基础上加以更改。所以, 一种新的带有移动式电镀液箱体以及可变式电镀池的用于制造多层 CIGS 或CdTe吸收膜的电沉积设备被呈现于此。利用此电沉积工具,电镀液箱体以及电镀池均可被简单组合以改变不同金属的电沉积次序。
发明内容
本发明提供了一种卷对卷的灵活的电镀设备用以沉积多层不同金属于连续传动的导电基板如不锈钢、铝合金或如高分子及塑料等非导电性基板之上。此套设备由一系列组合式电沉积单元所构成,而其电镀池的长度可容易地调整以满足由不同电镀溶液所决定的不同电流密度的要求。此外,可移动的储液箱能够被简单地组合到不同的模块化电沉积单元。其结果是,对于多层不同金属电沉积,不同金属的电镀次序可随意改变。这对于以逐层的方法电镀位于IB-IIIA-VIA 和IIB-VIA族的薄膜型太阳能电池的p -型半导体吸收层是尤其有用的。 在此情形中,改变金属电镀次序可显著影响产品半导体的质量。这台设备也可作为一件通用的工具应用于要求在一个卷对卷的过程中用不同金属或半导体进行逐层电镀的领域。
附图说明
图1是用于在卷对卷过程中电镀设备中的一个模块化电沉积单元示意图。
具体实施方式
本发明提供了一种在卷对卷的过程中电沉积多层元素组IB-IIIA-VIA或元素组IIB-VIA元素的金属或其合金以形成薄膜太阳能电池先导堆集于柔性导电基板上而制备CIGS 或CdTe太阳能电池吸收层的生产设备。尤其是本专利提供了一条可由一系列模块化电沉积单元所组成的生产线,而在每一个模块化单元中的电镀池的长度能够被调节一满足应用电流密度的特殊要求。此外,储液箱是可移动的。由于这些设计,这套生产设备适合于在一个卷对卷的过程中以可变的次序电沉积多层不同金属以及它们的合金。
图1 表明在一条生产线中的一个模块化电沉积单元的实施例,整套设备能够用多个模块单元加以组合。在每两个模块化电沉积单元之间嵌有一个冲洗单元,此冲洗单元包含噴嘴并从上下两面冲洗软板以保证一个洁净表面被带入下一个电镀模块。在冲洗单元中嵌有固定的导电滚筒或电刷用于电流传导。在电沉积的终点, 板材会被进一步冲洗和干燥。
如图1所示的发明实施例,一个模块化电沉积单元包含一个由两块平行安排的垂直侧壁上边缘所构成的顶边102A,一块水平嵌入到上述侧壁底部边缘的基座102B,一块水平嵌入到上述侧壁靠近底部的内表面的底板102C,两块或更多安装于上述基座102B之上的低位滚筒101A用于传送座落于上述底板102C之上的柔性连续性基板100,两对或更多对垂直刻入上述两块垂直侧壁内表面的沟槽103A用于镶嵌可移动的隔离板于上述顶边102A之下,以及一块固定的隔离板103B垂直嵌入靠近上述两块侧壁的右端;还包括引入电解质溶液的媒介,以及排出上述电解质溶液的媒介。柔性基板可以是柔性的导电性基板或柔性非导电性基板。柔性导电性基板可包含选自于如下金属的材料,即不锈钢、铝合金、铜、钼、镍、锌、以及钛。柔性非导电基板也许是高分子、塑料和其它覆有一或更多诸如不同金属或半导体导电层的薄膜。
在实施例的一个方面,模块化电沉积单元进一步包括一个由上述两块垂直侧壁、基座102B和两块分别垂直镶嵌于两块垂直侧壁和基座左右两头终端的前后板壁(未展示在图1中)所组成的外池。
在模块化电沉积单元的另一方面,固定一块或更多隔离板的媒介包括一或更多对垂直的沟槽,两对沟槽固定住两块隔离板:一块固定的103B和另一块可移动的103A,并且存在至少两个顶部滚筒。隔离板、侧壁,和底板102C围成了一个电镀池。此电镀池可将电镀溶液圈在其中,顶部滚筒在电镀池外紧靠隔离板的位置形成了防止电解质溶液流出电镀池的屏障。模块化电沉积单元可进一步包含固定一个或更多网状阳极模块105 在电镀池中的的方式。电镀池可有范围在0.1 和2 米之间的长度和0.1 到2 米之间的宽度。
而在另一方面,将电解质溶液引入到上述电镀池中的媒介包括一根或更多的一端连接到管道106B而另一头封闭的喷液管104、一个或更多的阀门108B、一套或更多的联接耦合接口107B、以及一个或更多的抽液泵109。被泵入电镀池中多余的溶液将通过在底板102C上的槽以及开在固定隔离板两侧的溢出口流入外池并流回到储液箱。电解质溶液回流的路径可包括一根或更多的管道106A、一个或更多的溶液阀108A,以及一套或更多的联接耦合接口107A。模块化电沉积单元可包括一个或更多装有两个或更多轮子的可移动电解质溶液箱。整条生产设备可以包含一个或更多的模块化电沉积单元以及其它组件,例如冲洗单元。这样,模块化电沉积单元适于组合成一条生产设备,例如,通过与其它的部件及单元组合而实现。
在另一个实施例中,一种通过电沉积多层CIGS或CdTe吸收层堆集而制备CIGS或CdTe薄膜太阳能电池的方法被提供于此。此方法包括在卷对卷过程中应用阴极电流于一卷通过包含一个或更多模块化电沉积单元的本电沉积设备的柔性基板以沉积一或更多层的金属、金属合金和/或半导体于此连续性柔性基板之上,并且以可交换的次序通过本电沉积设备电镀不同的元素或其合金,此处上述模块化电沉积单元包含长度可调节的电镀池,其长度范围可从0.1扩展到2米,而其宽度可从0.1到2米,还包含可移动的装有一个或更多轮子的电镀储液箱,以及可快速在一个或更多电镀池和上述可移动电解质溶液箱之间联接与断开的方法。此处,用于电镀的金属、半导体、元素或合金包括选择于元素组IB-IIIA-VIA或元素组IIB-VIA的元素,诸如铜、铟、镓、硒、镉和碲。
如图1所示,一卷可导电的柔性软板100沿箭头所示方向从左到右被传送入一个电镀模块。滚筒101A被安排于下方支撑柔性基板, 软挤水滚筒101B则处于基板上部且正好位于电镀池外以防止电解质溶液流出而又不损坏电镀层。102A和102B分别代表模块化电沉积单元的顶部边缘和基座, 而102C则是电镀池的底板, 它离基板100下方半厘米到几厘米处。103B是形成电镀池右壁的一块固定的右隔离板。103A 代表基板100上方沿电镀模块两侧壁内表面分布的几对沟槽,一块活动式隔离板可以被紧紧嵌入每对槽中以将溶液容纳在103B和此板103A之间的电镀池中。使用者可通过放置这块隔离板于其它几对沟槽之间而调整电镀池的长度来满足所应用电流密度的要求。在电镀池内部, 网状的阳极模块105能够以平行于软板的方式而被固定于其上方。一个较长的电镀池要求更多的阳极模块, 而这些耐化学腐蚀的网状阳极模块是多孔的以允许来自于电镀池中的气体逃逸。电镀池中有一根管104, 它的一端被堵上而在管身上有许多小孔, 而其开放的一端则通过一个快速联接耦合接口107B被连结到管道106B。电解质溶液通过抽液泵109而从溶液箱体110先被传输到管104, 然后再通过管道106A回流到箱体。在管104上的孔的直径, 密度以及分布均需仔细设计以满足电沉积流体动力学的要求。两个阀108A和108B被用来配合抽液泵109以容纳足够多的溶液在电镀池中。一个过滤器 (未被显示于图1) 可被联接于阀108B和泵109之间或其它所在以过滤电镀溶液。溶液箱体110可以通过快速联接耦合接口107A和107B很容易地从此模块化电沉积单元拆开并且通过安装于箱体底部的两个或更多的轮子111移开。
实施例1: 一层铜在高电流密度下被电镀于表层镀有钼的一卷不锈钢卷表面。
一卷表层镀有钼的一英尺宽的不锈钢卷被装载并被以每分钟一米的速度从左到右传送穿过如图1所示的一个电镀模块。一份含有0.1 M Cu2+于 6% H2SO4中的电镀铜水溶液被装入箱体110, 并通过泵109,管道106B和管104而输入顶部的电镀池中, 然后通过管道106A回流到箱体。为在一个高的电流密度下电镀 Cu ,一块隔离板被插入靠近右边壁103B位置的一对沟槽中以搭建一个仅能容纳一片网状阳极模块105的短电镀池。一对软挤水滚筒101B被分别放置于顶部电镀池的左右两边以防止溶液流出电镀池。出于减少气体产生以及保持电镀液中 Cu2+浓度的目的,一块纯铜板被放置于网状阳极之上。这种设置很好地把电镀溶液保持在电镀池中并使铜块很好地沉浸入电镀液中。一道介于 20和40 安培的恒电流被用于此电沉积模块以电镀大约 100 纳米厚的铜于钼的表面。膜看起来很好并由于应用了可溶性阳极而没有太多气泡产生于电镀中。
实施例2: 一层铜在低电流密度下被电镀于表层镀有钼的一卷不锈钢卷表面。
与实施例1中相同的材料和电镀液被应用于此例中。为满足一个低的电镀电流密度的要求,可移动隔离板被放置在一对远离右边固定式隔离板103B的沟槽103A中以增加电镀池的长度。几块网状阳极模块105被接上,在此例中没有铜板被用作可溶性阳极。基板的传送速度与应用恒电流都等同于范例1。然而,因为顶部电镀池长度长于范例1中的几倍,电镀于一个低得多的电流密度下进行。
如上所述, 此电沉积设备已被制造来沉积IB-IIIA-VIA 或IIB-VIA 元素族的太阳能电池吸收层堆集于具有不同宽度的连续性柔性软板之上。它也能被用于其它通过卷对卷过程电沉积多层不同金属或半导体堆集的应用中。

Claims (13)

1.一种电沉积设备,其特征在于:包括:
一个以上可被用于通过卷对卷过程沉积一层以上金属、金属合金和/或半导体于柔性基板之上的模块化电沉积单元,
其中,每个模块化电沉积单元包括一个以上的长度可变的电镀池以满足不同电流密度的要求,其中每个电镀池的长度从0.1到2米,宽度从0.1到2米;
以及,每个模块化电沉积单元包括一个以上的可移动电解质溶液储存箱,
其中,每个储存箱安装有两个以上的轮子;
其中,电镀池处于可移动电解质溶液储存箱的上方;及
其中,所述电镀池与所述可移动电解质溶液储存箱通过快速联接耦合接口联接或断开。
2.根据权利要求1所述的电沉积设备,其特征在于,包括:
一到五十个模块化电沉积单元;
一块以上安装于不同长度的电镀池中的网状阳极模块;
所述金属和半导体选自于元素组IB、IIB、IIA、IIIA、IVA、VA,和VIA;
所述柔性基板是柔性导电性基板或柔性非导电性基板;
所述柔性导电性基板包括一种以上的取自于不锈钢、铝合金、铜、钼、镍、锌和钛中的一种金属;
所述柔性非导电性基板的正表面覆盖有一层以上的导电层。
3.根据权利要求1所述的电沉积设备,其特征在于,所述电沉积设备被用于制造铜铟镓硒(CIGS)或碲化镉(CdTe)薄膜太阳能电池。
4.一种通过电沉积多层CIGS或CdTe吸收层堆集来制备CIGS或CdTe薄膜太阳能电池的方法,其特征在于,包括:
使用权利要求1所述的电沉积设备;
施加阴极电流于被传送通过所述电沉积设备的柔性基板;
以可变的次序通过所述电沉积设备电镀不同的元素或它们的合金,所述电沉积设备中的模块化电沉积单元包括:可调节长度范围从0.1到2米的电镀池、所述电镀池宽度范围在0.1到2米之间选择、一个或更多带有两个或更多轮子的可移动电解质溶液储存箱,和一副或更多的连接所述电镀池与所述可移动电解质溶液储存箱的快速联接耦合接口。
5.一种用于电沉积设备的模块化电沉积单元,其特征在于,包括:
二块或更多平行安排的垂直侧壁;
一块水平镶嵌于上述侧壁底部的基座;
一个水平镶嵌于上述侧壁内表面靠近基座的电镀池底板;
两个以上的安装于上述基座之上用于传输在上述电镀池底板上方的柔性基板的低位滚筒;
两个以上的嵌于上述两侧壁间的顶端软挤水滚筒,它们适于靠自重座落于上述柔性基板之上;
一块以上的活动式隔离板固定在所述两侧壁的内表面上;
电解质溶液通过抽液泵从电解质溶液储存箱抽出,经过传输管进入到电渡池, 然后再从电镀池通过管道回流到电解质溶液储存箱。
6.根据权利要求5所述的模块化电沉积单元,其特征在于,进一步包含两块隔离板,用上述固定一或更多块隔离板的方法所固定,所述隔离板、侧壁,以及底板围成一个电镀池。
7.根据权利要求5所述的模块化电沉积单元,其特征在于,所述固定一块以上的隔离板的方式由一对或更多对的沟槽所构成,进一步包含两块由两对上述沟槽所固定的隔离板和两个顶部软挤水滚筒,在此:
上述隔离板之一是固定的,并且上述另一块隔离板是可移动的且可安插于上述不同对的沟槽以调整电镀池的长度;
上述的隔离板、侧壁,以及底板围出了一个电镀池,此电镀池适合于储存上述的电解质溶液;
上述顶部软挤水滚筒被放置于隔离板之外并紧靠上述的隔离板,在移动的基板和上述电镀池的缝隙中形成了一道屏障以防止电解质溶液由电镀池中流出。
8.根据权利要求7所述的模块化电沉积单元,其特征在于,进一步包括在上述电镀池中固定一块以上的网状阳极模块。
9.根据权利要求8所述的模块化电沉积单元,其特征在于,所述的电镀池具有一个可调节长度从0.1到2米,而宽度为0.1到2米的尺寸。
10.根据权利要求5所述的模块化电沉积单元,其特征在于,所述用于引入电解质溶液的装置包含一条以上的管道、一个以上的阀门、一副以上的联接耦合接口,以及一台以上的抽液泵。
11.根据权利要求5所述的模块化电沉积单元,其特征在于,所述用于排出上述电解质溶液的装置包含一个以上的管道、一个以上的阀门和一副以上的联接耦合接口。
12.根据权利要求11所述的模块化电沉积单元,其特征在于,进一步包含一个以上的带有两个以上的轮子的移动式电解质溶液储存箱。
13.根据权利要求5所述的模块化电沉积单元,其特征在于,所述模块化电沉积单元适合于被组装成一条生产线。
CN201280010707.XA 2011-03-12 2012-02-28 用于制备薄膜型太阳能电池的组合式连续电沉积设备 Expired - Fee Related CN103959483B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/046,710 US20120231574A1 (en) 2011-03-12 2011-03-12 Continuous Electroplating Apparatus with Assembled Modular Sections for Fabrications of Thin Film Solar Cells
US13/046710 2011-03-12
US13/046,710 2011-03-12
PCT/US2012/027032 WO2012125288A2 (en) 2011-03-12 2012-02-28 A continuous electroplating apparatus with modular sections

Publications (2)

Publication Number Publication Date
CN103959483A CN103959483A (zh) 2014-07-30
CN103959483B true CN103959483B (zh) 2016-10-26

Family

ID=46795939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280010707.XA Expired - Fee Related CN103959483B (zh) 2011-03-12 2012-02-28 用于制备薄膜型太阳能电池的组合式连续电沉积设备

Country Status (3)

Country Link
US (1) US20120231574A1 (zh)
CN (1) CN103959483B (zh)
WO (1) WO2012125288A2 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381015B1 (en) 2005-08-12 2019-01-16 Modumetal, Inc. Compositionally modulated composite materials
BR122013014461B1 (pt) 2009-06-08 2020-10-20 Modumetal, Inc revestimento de multicamadas resistente à corrosão em um substrato e método de eletrodeposição para produção de um revestimento de multicamada
US9915475B2 (en) * 2011-04-12 2018-03-13 Jiaxiong Wang Assembled reactor for fabrications of thin film solar cell absorbers through roll-to-roll processes
DE102012221012B4 (de) * 2012-11-16 2023-01-19 Atotech Deutschland Gmbh Vorrichtung und Verfahren zur Behandlung von flachem Behandlungsgut
CN105189826B (zh) 2013-03-15 2019-07-16 莫杜美拓有限公司 通过添加制造工艺制备的制品的电沉积的组合物和纳米层压合金
CN105143521B (zh) 2013-03-15 2020-07-10 莫杜美拓有限公司 用于连续施加纳米叠层金属涂层的方法和装置
US10472727B2 (en) 2013-03-15 2019-11-12 Modumetal, Inc. Method and apparatus for continuously applying nanolaminate metal coatings
WO2014146114A1 (en) 2013-03-15 2014-09-18 Modumetal, Inc. Nanolaminate coatings
CN108486622B (zh) 2013-03-15 2020-10-30 莫杜美拓有限公司 具有高硬度的镍铬纳米层压涂层
KR101438545B1 (ko) * 2013-03-27 2014-09-16 고려대학교 산학협력단 Mo/SUS 유연기판 위에 구리 박막을 제조하는 방법
CN103531659B (zh) * 2013-10-17 2016-01-13 研创应用材料(赣州)股份有限公司 一种制备真空卷对卷镀膜用可挠性基材及薄膜的方法
EP3194642A4 (en) 2014-09-18 2018-07-04 Modumetal, Inc. A method and apparatus for continuously applying nanolaminate metal coatings
AR102068A1 (es) 2014-09-18 2017-02-01 Modumetal Inc Métodos de preparación de artículos por electrodeposición y procesos de fabricación aditiva
CN104377273A (zh) * 2014-11-14 2015-02-25 厦门惟华光能有限公司 钙钛矿薄膜太阳能电池组件的卷对卷生产设备和生产方法
CN105611744A (zh) * 2016-03-04 2016-05-25 广德英菲特电子有限公司 一种用于pcb板生产的镀金设备
US11365488B2 (en) 2016-09-08 2022-06-21 Modumetal, Inc. Processes for providing laminated coatings on workpieces, and articles made therefrom
US20190360116A1 (en) 2016-09-14 2019-11-28 Modumetal, Inc. System for reliable, high throughput, complex electric field generation, and method for producing coatings therefrom
US12076965B2 (en) 2016-11-02 2024-09-03 Modumetal, Inc. Topology optimized high interface packing structures
WO2018175975A1 (en) 2017-03-24 2018-09-27 Modumetal, Inc. Lift plungers with electrodeposited coatings, and systems and methods for producing the same
CA3060619A1 (en) 2017-04-21 2018-10-25 Modumetal, Inc. Tubular articles with electrodeposited coatings, and systems and methods for producing the same
US10240245B2 (en) 2017-06-28 2019-03-26 Honeywell International Inc. Systems, methods, and anodes for enhanced ionic liquid bath plating of turbomachine components and other workpieces
CN107858736A (zh) * 2017-11-08 2018-03-30 东莞丰卓机电设备有限公司 一种布基软材水平化镀生产线
US11519093B2 (en) 2018-04-27 2022-12-06 Modumetal, Inc. Apparatuses, systems, and methods for producing a plurality of articles with nanolaminated coatings using rotation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068755A (en) * 1996-12-06 2000-05-30 Canon Kabushiki Kaisha Process for forming zinc oxide film and processes for producing semiconductor device plate and photo-electricity generating device using the film
US6077411A (en) * 1997-01-16 2000-06-20 Canon Kabushiki Kaisha Apparatus and process for forming zinc oxide film and process for producing photo-electricity generating device using the film
CN101473072A (zh) * 2006-04-18 2009-07-01 巴斯夫欧洲公司 电解涂覆装置和方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767542A (en) * 1971-10-04 1973-10-23 Diamond Shamrock Corp Reduction of electrolytic cell voltage by anode vibration
US3904123A (en) * 1973-07-18 1975-09-09 Sidney Fils Waterproofing apparatus
US4124454A (en) * 1976-10-04 1978-11-07 Shang Wai K Electrolytic treatment of metal sheet
JPH0723555B2 (ja) * 1985-07-29 1995-03-15 川崎製鉄株式会社 金属ストリツプの連続式片面、両面兼用電気めつき装置
DE4229403C2 (de) * 1992-09-03 1995-04-13 Hoellmueller Maschbau H Vorrichtung zum Galvanisieren dünner, ein- oder beidseits mit einer leitfähigen Beschichtung versehener Kunststoffolien
US5312532A (en) * 1993-01-15 1994-05-17 International Business Machines Corporation Multi-compartment eletroplating system
US5670033A (en) * 1993-04-19 1997-09-23 Electrocopper Products Limited Process for making copper metal powder, copper oxides and copper foil
US5346602A (en) * 1993-09-24 1994-09-13 Gold Effects, Inc. Mobile electroplating unit
DE19525360A1 (de) * 1995-07-12 1997-01-16 Metallgesellschaft Ag Anode zur elektrolytischen Gewinnung von Metallen
DE102005031948B3 (de) * 2005-07-08 2006-06-14 Höllmüller Maschinenbau GmbH Vorrichtungen und Verfahren zur elektrolytischen Behandlung von Folien von Rolle zu Rolle
US7786376B2 (en) * 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
MY155485A (en) * 2008-06-18 2015-10-30 Basf Se Process for producing electrodes for solar cells
US20100264035A1 (en) * 2009-04-15 2010-10-21 Solopower, Inc. Reel-to-reel plating of conductive grids for flexible thin film solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068755A (en) * 1996-12-06 2000-05-30 Canon Kabushiki Kaisha Process for forming zinc oxide film and processes for producing semiconductor device plate and photo-electricity generating device using the film
US6077411A (en) * 1997-01-16 2000-06-20 Canon Kabushiki Kaisha Apparatus and process for forming zinc oxide film and process for producing photo-electricity generating device using the film
CN101473072A (zh) * 2006-04-18 2009-07-01 巴斯夫欧洲公司 电解涂覆装置和方法

Also Published As

Publication number Publication date
WO2012125288A2 (en) 2012-09-20
CN103959483A (zh) 2014-07-30
US20120231574A1 (en) 2012-09-13
WO2012125288A3 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
CN103959483B (zh) 用于制备薄膜型太阳能电池的组合式连续电沉积设备
CN101583741B (zh) 用于光电薄膜制造的卷至卷电镀
CN102741458B (zh) 生产铜铟镓硒(cigs)太阳能电池的电化学方法
US7560641B2 (en) Thin film solar cell configuration and fabrication method
Bhattacharya et al. CIGS-based solar cells prepared from electrodeposited precursor films
US20130224901A1 (en) Production Line to Fabricate CIGS Thin Film Solar Cells via Roll-to-Roll Processes
Jeon et al. Formation and characterization of single-step electrodeposited Cu2ZnSnS4 thin films: Effect of complexing agent volume
US20130112564A1 (en) Electroplating Solutions and Methods For Deposition of Group IIIA-VIA Films
CN108649077A (zh) 一种无主栅双面电镀金属化太阳能电池片、制作方法和应用方法
Chandran et al. A short review on the advancements in electroplating of CuInGaSe 2 thin films
Ribeaucourt et al. Synthesis of Cu (In, Ga) Se2 absorber using one-step electrodeposition of Cu–In–Ga precursor
Aksu et al. Recent advances in electroplating based CIGS solar cell fabrication
CN102159753B (zh) 用于光伏结构中的透明导电氧化物薄膜的形成方法
CN103227243A (zh) 制备铜铟镓硒薄膜太阳能电池的卷对卷生产方法
US8409418B2 (en) Enhanced plating chemistries and methods for preparation of group IBIIIAVIA thin film solar cell absorbers
CN103779438B (zh) 一种电化学沉积制备铜铟镓硒预制层的方法
US20130252020A1 (en) Electro-Depositing Metal Layers of Uniform Thickness
Czerniawski et al. Potential pulse atomic layer deposition of Cu2Se
WO2011075561A1 (en) Plating chemistries of group ib /iiia / via thin film solar absorbers
CN102157610A (zh) 缓冲层制造方法和光电转换装置
Li et al. Smooth Cu electrodeposition for Cu (In, Ga) Se2 thin-film solar cells: dendritic clusters elimination by Ag buffer layer
US20120288986A1 (en) Electroplating method for depositing continuous thin layers of indium or gallium rich materials
US20160060785A1 (en) Method to Fabricate Thin Film Solar Cell Absorbers with Roll-to-Roll Electroplating-Spraying Hybrid Apparatus
US20100264035A1 (en) Reel-to-reel plating of conductive grids for flexible thin film solar cells
US20120043215A1 (en) Method and apparatus for electrodepositing large area cadmium telluride thin films for solar module manufacturing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161026

Termination date: 20190228