CN103959441A - 生长用于红外光检测器的异质结构的方法 - Google Patents

生长用于红外光检测器的异质结构的方法 Download PDF

Info

Publication number
CN103959441A
CN103959441A CN201280047193.5A CN201280047193A CN103959441A CN 103959441 A CN103959441 A CN 103959441A CN 201280047193 A CN201280047193 A CN 201280047193A CN 103959441 A CN103959441 A CN 103959441A
Authority
CN
China
Prior art keywords
quantum well
quantum
fed
quantum wells
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280047193.5A
Other languages
English (en)
Other versions
CN103959441B (zh
Inventor
D·M·科拉索维特斯基
V·P·查尔里
N·I·卡特赛弗茨
A·L·达丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SVETLANA ROST JOINT STOCK Co
Original Assignee
SVETLANA ROST JOINT STOCK Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SVETLANA ROST JOINT STOCK Co filed Critical SVETLANA ROST JOINT STOCK Co
Publication of CN103959441A publication Critical patent/CN103959441A/zh
Application granted granted Critical
Publication of CN103959441B publication Critical patent/CN103959441B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Light Receiving Elements (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明涉及用于通过分子束外延(MBE)生长具有多个量子阱的半导体异质结构的技术,所述技术可用于制造基于灵敏性在深红外范围(8-12μm)内的光接收矩阵的设备。该方法采用分子束外延、通过在真空中加热衬底并交替地将试剂流馈送到量子阱以及量子势垒中并且还将掺杂剂(Si)馈送到量子阱中,来生长包括衬底以及覆盖的半导体层(即接触层以及形成包含多个量子阱以及量子势垒的活性区的层)的红外光检测器异质结构,其中试剂Ga和As被馈送到量子阱中并且Al、Ga以及As被馈送到量子势垒中,附加地Al被馈送到量子阱中,馈送量在量子阱中提供0.02-0.10摩尔分数。在形成活性区的层的生长过程中,衬底温度被保持在700-750℃范围内,并且量子阱的掺杂度被保持在(2-5)x1017cm-3的范围内。这减少了晶体缺陷的数量,从而提高了灵敏性(信噪比)以及检测率(光检测器的最小可检测信号)。

Description

生长用于红外光检测器的异质结构的方法
技术领域
本发明涉及用于通过分子束外延(MBE)生长具有多个量子阱的半导体异质结构的技术,该技术可用于制造基于在深红外范围(8-12μm)上具灵敏性的光接收矩阵的设备。通过在载流子在由交替的量子阱(具有较小带隙宽度的材料)和量子势垒(具有较大带隙宽度的材料)对所组成的异质结构的活性区分区之间间接跃迁过程中吸收能量,可以在低温(低于77°K)下提供所述光谱范围上的光敏性。在生长这样的异质结构的过程中,必须解决几个互相关联的问题:
-在单个量子阱中的吸收绝对值相对较低,因此在异质结构活性区内使用了数十(从20至50)对量子阱和量子势垒,这些量子阱和量子势垒的化学成分和厚度必须尽可能保持精确,以确保所需的光谱灵敏性。
-为了提高吸收效率,量子阱经常被调制掺杂(例如,用施主杂质——Si)直到达到高浓度(特别地,使用所谓的德尔塔掺杂),然而必须考虑表面偏析(segregation)的影响,这会导致不均匀的杂质浓度,在高生长温度下最为突出。
-为了确保活性区中所保持的层成分和厚度的精确以及其间异质边界的尖锐,优选地是降低生长温度,然而这将导致在层材料中形成的晶体缺陷(移位以及深杂质,主要是氧)的数量增多,这会构成复合中心(DX中心),降低量子阱中的吸收效率。
-增加量子阱中掺杂剂的浓度会提高活性区的灵敏性,然而它也会导致光检测器的“暗电流”增加,结果需要降低工作温度。
背景技术
在一种用于生长红外光检测器异质结构的已知方法中,该异质结构包括衬底以及上面覆盖的半导体层,即接触层以及形成包含50个GaAs量子阱以及AlGaAs量子势垒的活性区的层。该量子阱被Si掺杂,掺杂度为3.3x1018cm-3。衬底温度被保持在690℃,见D.K.Sengupta等人发表在Journalof Electronic Materials(美国)的1998年第27卷、第7期、858859页的“GaAs-on-Si衬底上n型GaAs/AlGaAs量子阱红外光检测器的生长和特性(Growth and Characterization of n-Type GaAs/AlGaAs Quantum WellInfrared Photodetector on GaAs-on-Si Substrate)”(附复印件)。由于GaAs在温度690℃下的热不稳定性,所述方法不能确保异质边界的尖锐。此外,在高掺杂度并在该温度下,由于Si原子的表面偏析,不能确保量子阱的掺杂均匀性。这导致光检测器光谱灵敏性的降低以及暗电流的增加。
在另一种用于生长红外光检测器异质结构的已知方法中,该异质结构包括衬底以及覆盖的半导体层,半导体层形成包含多个硅掺杂量子阱以及多个量子势垒的活性区。所述方法采用MBE,通过在真空中在580℃加热衬底来实施,其中试剂Ga及As被馈送到量子阱中,并且Al、Ga及As被馈送到量子势垒中。量子阱的Si掺杂度为1×1018cm-3,见K.L.Tsai等人发表在Journal of Applied Physics的1994年7月1日第76卷第1期274-277页上的“氧对GaAs/AlGaAs量子阱红外光检测器性能的影响(Influence ofoxygen on the performance of GaAs/AlGaAs quantum well infraredphotodetectors)”(附复印件)。
该技术方案已被视为本发明的原型。在该方法中过程温度相对于上述类似方法被降低,以防止GaAs的热不稳定性并确保异质边界的尖锐,然而过程的低温导致了晶体缺陷(移位以及深杂质,例如氧)的数量增加,构成复合中心(DX中心),复合中心降低量子阱中的吸收效率并且相应地,降低红外检测器的灵敏性以及检测率。
发明内容
本发明的一个目的是减少晶体缺陷的数量并从而提高灵敏性(信噪比)以及检测率(光检测器的最小可检测信号)。
根据本发明,一种方法采用分子束外延通过在真空中加热衬底并交替将试剂流馈送到量子阱以及量子势垒中以及将掺杂剂(Si)馈送到量子阱中,来生长包括衬底以及覆盖的半导体层(即接触层以及形成包含多个量子阱和量子势垒的活性区层)的红外光检测器异质结构,其中试剂Ga和As被馈送到量子阱中并且Al、Ga以及As被馈送到量子势垒中,此外Al被馈送到量子阱中,馈送量在量子阱中提供0.02-0.10摩尔分数。在这些形成活性区的层的生长过程中,衬底温度被保持在700-750℃范围内,并且量子阱的掺杂度被保持在(2-5)x1017cm-3的范围内。
该申请尚未找到任何包含关于与本发明相同技术方案的数据的信息源,这可以推断本发明符合“新颖性”(N)标准。
本发明特征的实施为要求保护的方法提供了重要的新特性:确保异质边界的尖锐,而且同时降低晶体缺陷的数量。将Al馈送到量子阱中,馈送量在量子阱中提供0.02-0.10摩尔分数,这提高了量子阱材料的热稳定性,并且防止即使在相对高温(700-750℃)下异质边界尖锐的降低,在该温度下晶体缺陷的数量大幅下降。由于在700℃以上的温度下可忽略杂质(氧原子)的吸收的事实,选择700℃作为下限,而由于不提供任何额外效果,将温度提高到750℃以上并不理想。另外由于掺杂度被降到(2-5)×1017cm-3(它实际上比原型中少一个数量级),Si原子的表面偏析也被减少,这降低了杂质浓度的不均匀性。
由于当过程温度被提高到700-750℃时,缺陷数量减少并且相应地,异质结构活性区灵敏性提高,这补偿了掺杂度所造成的灵敏性降低,因此将掺杂度减少到上述值成为可能。
根据申请人的看法,上述本发明的新特性可以推断出本发明符合“创造性”(IS)标准。
附图说明
参考示出MBE装置图的附图,以示例的方式进一步解释本发明。
优选实施例
用于生长异质结构的晶体衬底2被放置在真空室1中。具有液氮的低温板3被用于在过程中维持高真空。对衬底2的操控和加热依靠操控器4完成。原子束形式的III族金属(Al、Ga)及掺杂剂(Si、Mg)源试剂从蒸发器5被馈送到衬底2,并且As(砷)通过具有裂解器的源6来馈送。
首先衬底2被加热至580-600℃的温度,以依靠其热分解去除原生氧化物。之后来自源6的As流以及来自蒸发器5的Ga和Si原子流被同时馈送到衬底2的已加热表面,以按所需的厚度和载流子浓度生长下接触层。之后在短时间段内同时完成下述动作:衬底的温度被加热到700-750℃范围内的温度,Si原子流被切断并且Al原子流被馈送到衬底以生长第一势垒层。得到所需的势垒层厚度后,Al原子流被切断以使铝的摩尔分数在0.02-0.10的范围内并且Si原子流被打开,提供在(2-5)×1017cm-3范围内的量子阱掺杂度。在该模式下生长所需的量子阱厚度,此时装置被切换回势垒层生长模式。该“量子阱/势垒”对的生长循环被重复所需次数,之后Al原子流被关闭,并且生长GaAs上接触层。
从而,根据本发明方法生长的红外光检测器异质结构在势垒层中具有明显降低的深复合中心浓度,并且在确保异质边界的尖锐时,相应地,具有高入射辐射转换效率。
工业实用性
本方法可以依靠已知设备和材料实施。根据申请人的看法,这可以推断出本发明符合“工业实用性”(IA)标准。

Claims (1)

1.一种用于生长红外光检测器异质结构的方法,所述异质结构包括衬底以及覆盖的半导体层,即接触层以及形成包含多个量子阱以及量子势垒的活性区的层,所述方法采用分子束外延,并通过在真空中加热衬底并交替地将试剂流馈送到量子阱以及量子势垒中以及将掺杂剂(Si)馈送到量子阱中来生长所述异质结构,其中试剂Ga和As被馈送到量子阱中并且Al、Ga以及As被馈送到量子势垒中,其特征在于,附加地将Al馈送到量子阱中,馈送量在量子阱中提供0.02-0.10摩尔分数,在形成活性区的层的生长过程中,衬底温度被保持在700-750℃范围内,并且量子阱的掺杂度被保持在(2-5)x1017cm-3的范围内。
CN201280047193.5A 2011-07-28 2012-07-27 生长用于红外光检测器的异质结构的方法 Expired - Fee Related CN103959441B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2011131881 2011-07-28
RU2011131881/28A RU2469432C1 (ru) 2011-07-28 2011-07-28 Способ выращивания гетероструктуры для инфракрасного фотодетектора
PCT/RU2012/000621 WO2013015722A1 (ru) 2011-07-28 2012-07-27 Способ выращивания гетероструктуры для инфракрасного фотодетектора

Publications (2)

Publication Number Publication Date
CN103959441A true CN103959441A (zh) 2014-07-30
CN103959441B CN103959441B (zh) 2016-10-05

Family

ID=47601357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280047193.5A Expired - Fee Related CN103959441B (zh) 2011-07-28 2012-07-27 生长用于红外光检测器的异质结构的方法

Country Status (4)

Country Link
CN (1) CN103959441B (zh)
IL (1) IL230699A (zh)
RU (1) RU2469432C1 (zh)
WO (1) WO2013015722A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302524A (zh) * 1997-05-08 2001-07-04 艾利森公司 具有用于检测电声换能器振动膜位移的光探测器的电声换能器及其方法
US6559471B2 (en) * 2000-12-08 2003-05-06 Motorola, Inc. Quantum well infrared photodetector and method for fabricating same
US7399988B2 (en) * 2006-05-10 2008-07-15 Fujitsu Limited Photodetecting device and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2089656C1 (ru) * 1993-12-23 1997-09-10 Ольга Викторовна Гончарова Способ получения фоточувствительных резистивных и оптически нелинейных тонкопленочных гетероструктур на основе полупроводниковых и диэлектрических материалов
RU2065644C1 (ru) * 1994-06-14 1996-08-20 Институт физики полупроводников СО РАН Способ изготовления фотоприемного элемента на основе многослойных гетероструктур ga as/al ga as

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302524A (zh) * 1997-05-08 2001-07-04 艾利森公司 具有用于检测电声换能器振动膜位移的光探测器的电声换能器及其方法
US6559471B2 (en) * 2000-12-08 2003-05-06 Motorola, Inc. Quantum well infrared photodetector and method for fabricating same
US7399988B2 (en) * 2006-05-10 2008-07-15 Fujitsu Limited Photodetecting device and method of manufacturing the same

Also Published As

Publication number Publication date
IL230699A0 (en) 2014-03-31
IL230699A (en) 2017-09-28
CN103959441B (zh) 2016-10-05
WO2013015722A1 (ru) 2013-01-31
RU2469432C1 (ru) 2012-12-10

Similar Documents

Publication Publication Date Title
Xie et al. Recent progress in solar‐blind deep‐ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors
Qin et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism
Lee et al. High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films
Alaie et al. Recent advances in ultraviolet photodetectors
Persson et al. Strong Valence-Band Offset Bowing of ZnO 1-x S x Enhances p-Type Nitrogen Doping<? format?> of ZnO-like Alloys
Munoz et al. III nitrides and UV detection
Ma et al. High-performance solar blind ultraviolet photodetector based on single crystal orientation Mg-alloyed Ga2O3 film grown by a nonequilibrium MOCVD scheme
JP2004119525A (ja) 酸化物半導体pn接合デバイス
Chen et al. Ta-doped Ga2O3 epitaxial films on porous p-GaN substrates: structure and self-powered solar-blind photodetectors
Zhang et al. Pt/ZnGa2O4/p-Si back-to-back heterojunction for deep UV sensitive photovoltaic photodetection with ultralow dark current and high spectral selectivity
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
Li et al. Band gap engineering in β-Ga2O3 for a high-performance X-ray detector
Han et al. Self-powered Au/MgZnO/nanolayered Ga-Doped ZnO/In metal–insulator–semiconductor UV detector with high internal gain at deep UV light under low voltage
Chen et al. Polycrystalline Ga2O3 nanostructure-based thin films for fast-response solar-blind photodetectors
Khan et al. Ultra-violet photo-response characteristics of p-Si/i-SiO2/n-ZnO heterojunctions based on hydrothermal ZnO nanorods
US7855098B2 (en) Method of forming, modifying, or repairing a semiconductor device using field-controlled diffusion
Hwang et al. Enhancement of UV response and suppression of visible response of p-Si/n-ZnO heterojunction photodiodes via NiO and MgO insertion layers
Cavalcoli et al. Electronic transitions in low dimensional semiconductor structures measured by surface photovoltage spectroscopy
US7045378B2 (en) Forming a photodiode to include a superlattice exclusion layer
Yakuphanoglu et al. A new type photodiode: p-Si/GaN pn junction in series with GaN/Ag Schottky diode
Ünal Investigation Of Some Optical And Electrical Properties Of InSe Thin Film, a Window Layer for Photovoltaic Cell Growth on Glass/GaSe Substrate by M-CBD Method
CN103474503A (zh) 一种基于二维晶格的紫外单波长msm光电探测器
Wu et al. Interfacial Engineering of SnS/Ga2O3 Heterojunction by SnO for a High‐Performance Self‐Powered Solar‐Blind UV Photodetector
Amiruddin et al. High‐speed photoresponse properties of ultraviolet (UV) photodiodes using vertically aligned Al: ZnO nanowires
Liu et al. Self-Powered Flexible Ultraviolet Photodetectors Based on CuI/a-ZTO Heterojunction Processed at Room Temperature

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161005

Termination date: 20200727

CF01 Termination of patent right due to non-payment of annual fee