CN103943717B - 一种采用管式pecvd制备太阳能电池叠层减反射膜的方法 - Google Patents

一种采用管式pecvd制备太阳能电池叠层减反射膜的方法 Download PDF

Info

Publication number
CN103943717B
CN103943717B CN201410100385.9A CN201410100385A CN103943717B CN 103943717 B CN103943717 B CN 103943717B CN 201410100385 A CN201410100385 A CN 201410100385A CN 103943717 B CN103943717 B CN 103943717B
Authority
CN
China
Prior art keywords
siox
sinx
sioxny
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410100385.9A
Other languages
English (en)
Other versions
CN103943717A (zh
Inventor
宋锋兵
闫用用
张惠
何大娟
李积伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JA Solar Technology Yangzhou Co Ltd
Original Assignee
JA Solar Technology Yangzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JA Solar Technology Yangzhou Co Ltd filed Critical JA Solar Technology Yangzhou Co Ltd
Priority to CN201410100385.9A priority Critical patent/CN103943717B/zh
Publication of CN103943717A publication Critical patent/CN103943717A/zh
Application granted granted Critical
Publication of CN103943717B publication Critical patent/CN103943717B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了一种采用PECVD制备太阳能电池叠层减反射膜的方法,包括选取晶体硅片,对晶体硅片进行制绒和扩散工序,还包括在制绒和扩散后的晶体硅片的受光面上采用PECVD依次沉积SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜,以达到提高经后续常规工艺制得的太阳能电池片的光电转换效率以及抗电位诱发衰减PID特性,该方法对硅片损伤小,工艺简洁,便于规模化,且能降低硅片表面界面态,提高钝化效果,降低反射率,有利于改善电池的转换效率和抗PID特性。

Description

一种采用管式PECVD制备太阳能电池叠层减反射膜的方法
技术领域
本发明属于太阳能电池制造领域,具体涉及一种采用管式PECVD制备太阳能电池叠层减反射膜的方法。
背景技术
目前,在太阳能电池大规模生产中常采用在硅片表面沉积减反射膜的方式增加光的利用率,提升电池转换效率。常见的薄膜主要有氮化硅SiNx和氧化硅SiOx,两种薄膜具有不同的特性和制备方法。氮化硅SiNx薄膜多采用PECVD沉积的方式进行制备,具有减反射性能和体钝化效果好、沉积温度低,产能高等特点,但氮化硅膜与硅基体结合界面态高和消光特性也限制了电池转化效率的进一步提升。相比较于SiNx,氧化硅SiOx薄膜具有更低的界面态、更低的折射率,可以提供良好的表面钝化效果,但其制备方法多采用高温热氧化方法进行生长,对硅片损伤较大,且流程复杂成本较高,不利于大规模生产。
另外,常规电池片的抗PID特性通过增加SiNx薄膜的折射率来提高,此方法会带来一定程度的效率损失,而在底层沉积SiOx薄膜,在提高抗PID特性的同时不会导致效率降低。
发明内容
本发明的目的在于提供一种采用管式PECVD制备太阳能电池叠层减反射膜的方法,该方法对硅片损伤小,工艺简洁,便于规模化,且能降低硅片表面界面态,提高钝化效果,降低反射率,有利于改善电池的转换效率和抗PID特性。
本发明的上述目的是通过如下技术方案来实现的:一种采用管式PECVD制备太阳能电池叠层减反射膜的方法,包括选取晶体硅片,对晶体硅片进行制绒和扩散工序,还包括在制绒和扩散后的晶体硅片的受光面上采用管式PECVD依次沉积SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜,以达到提高经后续常规工艺制得的太阳能电池片的光电转换效率以及抗电位诱发衰减PID特性。
本发明综合了SiOx、SiNx、SiOx以及SiOxNy几种薄膜的优势,设计了结构为SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜,这种采用两种以上材质制备的减反射膜即为叠层减反射膜。底层采用薄层SiOx薄膜,可有效减少电池片的表面复合,达到更好的表面钝化;顶层采用SiNOx或SiOxNy薄膜,可以大幅降低电池片受光面的反射率,有效提高电池片的短路电流。
所以,本发明通过采用PECVD的方式在晶体硅片的受光面上从下向上依次沉积制备SiOx薄膜、SiNx薄膜、SiOx薄膜或SiOxNy薄膜,形成SiOx和SiNx或形成SiOxNy和SiNx相结合的叠层(stack layer)减反射膜,该叠层减反射膜由SiOx/SiNx/SiOx或SiOx/SiNx/SiOxNy组成,具体结构见图1,该叠层减反射膜综合了SiOx薄膜、SiNx薄膜以及SiOxNy薄膜等薄膜的特点,首先利用SiOx薄膜降低硅片表面界面态,提高钝化效果,同时有利于改善电池的抗PID特性;然后再沉积SiNx膜和SiOx薄膜或SiOxNy薄膜,进一步降低了反射率,提高了电池的短路电流和转换效率。
另外,本发明采用PECVD的方式沉积SiOx薄膜减少了SiOx薄膜制备过程中对硅片的损伤,并简化了工艺流程,便于规模化生产。
作为本发明的一种优选的技术方案,本发明所述SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜的总膜厚为70~100nm,折射率为1.85~2.15。
本发明所述SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜中底层SiOx薄膜的膜厚优选为5~15nm,折射率优选为1.5~1.8。
一定厚度的SiOx薄膜可有效对电池片表面进行钝化,并提高抗PID特性,膜厚过低无法达到最佳效果,膜厚过高会对电池片效率有影响。折射率由SiOx薄膜本身特性以及沉积特气比例所决定。
本发明所述SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜中中间层薄膜SiNx薄膜的膜厚优选为45~65nm,折射率优选为2.0~2.2。
本发明所述SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜中顶层SiOx或SiOxNy薄膜的膜厚优选为10~40nm,折射率优选为1.5~1.8。
通过顶层SiOx或SiOxNy薄膜和中间层SiNx薄膜厚度上的有效搭配,可以获得最低反射率,从而提高电池片短路电流。
本发明方法通过优化工艺过程中膜厚、折射率等关键参数,可获得最佳的各膜层匹配,电池效率增益可达0.2%~0.5%。
作为本发明的一种更优选的技术方案,当所述SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜中底层SiOx薄膜的膜厚优选为5~15nm,折射率优选为1.5~1.8以及所述SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜中中间层薄膜SiNx薄膜的膜厚优选为45~65nm,折射率优选为2.0~2.2时,本发明所述SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜中顶层SiOx或SiOxNy薄膜的膜厚优选为10~40nm,折射率优选为1.5~1.8。
本发明在制绒和扩散后的晶体硅片的受光面上采用PECVD依次沉积SiOx、SiNx和SiOx叠层膜或SiOx、SiNx和SiOxNy叠层膜的时,其中一些优选的工艺参数如下:
本发明采用管式PECVD镀底层SiOx薄膜时,优选采用SiH4和N2O的混合气体作为气源,二者的体积比优选为1:10~35,沉积温度优选为350~500℃,底层SiOx薄膜的膜厚为5~15nm,折射率为1.5~1.8。
本发明采用PECVD镀中间层SiNx薄膜时,优选采用SiH4和NH3的混合气体作为气源,二者的体积比优选为1:3~10,沉积温度优选为350~500℃,中间层薄膜SiNx薄膜的膜厚为45~65nm,折射率为2.0~2.2。
本发明采用管式PECVD镀顶层SiOx薄膜时,优选采用SiH4和N2O的混合气体作为气源,二者的体积比优选为1:15~35,沉积温度优选为350~500℃;或采用管式PECVD镀顶层SiOxNy薄膜时,优先采用SiH4、N2O和NH3的 混合气体作为气源,二者的体积比优选为1:15~35:15~20,沉积温度优选为350~500℃,其中顶层SiOx或SiOxNy薄膜的膜厚为10~40nm,折射率为1.5~1.8。
本发明具有如下优点:
(1)本发明采用PECVD的方式沉积SiOx薄膜减少了SiOx薄膜制备过程中对硅片的损伤,并简化了工艺流程,便于规模化生产;
(2)本发明中的叠层减反射膜综合了SiOx薄膜、SiNx薄膜以及SiOxNy薄膜等薄膜的优点,首先利用SiOx薄膜降低硅片表面界面态,提高钝化效果,同时有利于改善电池的抗PID特性;然后再沉积SiNx膜和SiOx薄膜或SiOxNy薄膜,进一步降低了反射率,提高了电池的短路电流和转换效率。
附图说明
图1是本发明实施例1中制备的太阳能电池叠层减反射膜的结构示意图,其中:1、p-n结,2、SiOx薄膜;2、SiNx薄膜;3、SiOx薄膜或SiOxNy薄膜。
具体实施方式
实施例1
本实施例提供的采用PECVD制备太阳能电池叠层减反射膜的方法,含以下步骤:
(1)选取156×156mm多晶硅片经常规制绒、扩散、刻蚀、清洗后,装入管式PECVD中;
(2)通入SiH4和N2O混合气体,SiH4和N2O的体积比为1:15,沉积温度为480℃,沉积一层SiOx薄膜,薄膜厚度为15nm左右,折射率为1.5左右;
(3)通入SiH4和NH3混合气体,SiH4和NH3的体积比为1:10,沉积温度480℃沉积一层SiNx薄膜,薄膜厚度为45nm左右,折射率为2.0左右;
(4)通入SiH4、NH3和N2O混合气体,SiH4、N2O和NH3的比例1:15:15,沉积温度480℃,沉积一层SiOxNy薄膜,薄膜厚度为30nm左右,折射率为1.8左右,即获得太阳能电池叠层减反射膜SiOx、SiNx和SiOxNy叠层膜,薄膜厚度90nm左右,折射率1.9左右。
(5)再经后续常规工艺制备获得太阳能电池片,经过检测发现,本发明获得的太阳能电池片的光电转换效率以及抗电位诱发衰减PID特性有所提高,具体数据见下表1。
表1 本实施例获得的太阳能电池的光电转换效率及PID
从表1可以看出:该方法制备的叠层减反射膜工艺效率增益0.2%,主要由于短路增益100毫安;同时PID(电势诱导衰减)功率衰减只有0.96%。
实施例2
本实施例提供的采用PECVD制备太阳能电池叠层减反射膜的方法,含以下步骤:
(1)选取156×156mm多晶硅片经常规制绒、扩散、刻蚀、清洗后,装入管式PECVD中;
(2)通入SiH4和N2O混合气体,SiH4和N2O比例1:11,沉积温度480℃沉积一层SiOx薄膜,薄膜厚度为10nm左右,折射率为1.6左右;
(3)通入SiH4和NH3混合气体,SiH4和NH3比例1:8,沉积温度480℃沉积一层SiNx薄膜,薄膜厚度为50nm左右,折射率为2. 1左右;
(4)通入SiH4和N2O混合气体,SiH4和N2O的比例1:15,沉积温度480℃,沉积一层SiOx薄膜,薄膜厚度为40nm左右,折射率为1.6左右;即获得太阳能电池叠层减反射膜SiOx、SiNx和SiOx叠层膜,薄膜厚度100nm左右,折射率2.0左右。
(5)再经后续常规工艺制备获得太阳能电池片,经过检测发现,本发明获得的太阳能电池片的光电转换效率以及抗电位诱发衰减PID特性有所提高,具体数据见下表2。
表2 本实施例获得的太阳能电池的光电转换效率及PID
从表2可以看出:该方法制备的叠层减反射膜工艺效率增益0.5%,主要由于短路增益250毫安,开路电压增益1.5毫伏;同时PID(电势诱导衰减)功率衰减为1.3%,改善效率明显。
以上列举具体实施例对本发明进行说明,需要指出的是,上述实施例只用于对本发明作进一步说明,不代表本发明的保护范围,其他人根据本发明的提示做出的非本质的修改和调整,仍属于本发明的保护范围。

Claims (6)

1.一种采用管式PECVD制备太阳能电池叠层减反射膜的方法,包括选取晶体硅片,对晶体硅片进行制绒和扩散工序,其特征是:还包括在制绒和扩散后的晶体硅片的受光面上采用管式PECVD依次沉积SiOx、SiNx和SiOxNy叠层膜,以达到提高经后续常规工艺制得的太阳能电池片的光电转换效率以及抗电位诱发衰减PID特性;
采用管式PECVD镀底层SiOx薄膜时,采用SiH4和N2O的混合气体作为气源,二者的体积比为1:10~35,沉积温度350~500℃;
采用管式PECVD镀中间层SiNx薄膜时,采用SiH4和NH3的混合气体作为气源,二者的体积比为1:3~10,沉积温度350~500℃;
采用管式PECVD镀顶层SiOxNy薄膜时,采用SiH4、N2O和NH3的 混合气体作为气源,二者的体积比为1:15~35:15~20,沉积温度为350~500℃。
2.根据权利要求1所述的采用管式PECVD制备太阳能电池叠层减反射膜的方法,其特征是:所述SiOx、SiNx和SiOxNy叠层膜的总膜厚为70~100nm,折射率为1.85~2.15。
3.根据权利要求2所述的采用管式PECVD制备太阳能电池叠层减反射膜的方法,其特征是:所述SiOx、SiNx和SiOxNy叠层膜中底层SiOx薄膜的膜厚为5~15nm,折射率为1.5~1.8。
4.根据权利要求2或3所述的采用管式PECVD制备太阳能电池叠层减反射膜的方法,其特征是:所述SiOx、SiNx和SiOxNy叠层膜中中间层薄膜SiNx薄膜的膜厚为45~65nm,折射率为2.0~2.2。
5.根据权利要2所述的采用管式PECVD制备太阳能电池叠层减反射膜的方法,其特征是:所述SiOx、SiNx和SiOxNy叠层膜中顶层SiOxNy薄膜的膜厚为10~40nm,折射率为1.5~1.8。
6.根据权利要4所述的采用管式PECVD制备太阳能电池叠层减反射膜的方法,其特征是:所述SiOx、SiNx和SiOxNy叠层膜中顶层SiOxNy薄膜的膜厚为10~40nm,折射率为1.5~1.8。
CN201410100385.9A 2014-03-19 2014-03-19 一种采用管式pecvd制备太阳能电池叠层减反射膜的方法 Active CN103943717B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410100385.9A CN103943717B (zh) 2014-03-19 2014-03-19 一种采用管式pecvd制备太阳能电池叠层减反射膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410100385.9A CN103943717B (zh) 2014-03-19 2014-03-19 一种采用管式pecvd制备太阳能电池叠层减反射膜的方法

Publications (2)

Publication Number Publication Date
CN103943717A CN103943717A (zh) 2014-07-23
CN103943717B true CN103943717B (zh) 2017-02-01

Family

ID=51191305

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410100385.9A Active CN103943717B (zh) 2014-03-19 2014-03-19 一种采用管式pecvd制备太阳能电池叠层减反射膜的方法

Country Status (1)

Country Link
CN (1) CN103943717B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742173A (zh) * 2019-01-10 2019-05-10 中国科学院上海技术物理研究所 一种量子阱红外圆偏振探测器

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104362188B (zh) * 2014-10-30 2018-02-06 广东爱康太阳能科技有限公司 一种抗电势诱导衰减的太阳能电池及其制备方法
CN104498908B (zh) * 2014-11-19 2017-03-29 横店集团东磁股份有限公司 一种用于制备组件晶硅太阳能电池pecvd镀膜工艺
CN104538486B (zh) * 2014-11-19 2017-01-25 横店集团东磁股份有限公司 一种晶硅电池笑气直接生长氧化硅膜的制备工艺
CN104900722A (zh) * 2014-12-09 2015-09-09 杭州大和热磁电子有限公司 一种具有三层减反射膜的晶体硅太阳能电池及其制备方法
CN104576770A (zh) * 2014-12-31 2015-04-29 江苏顺风光电科技有限公司 一种晶硅高效黑电池的钝化减反射多层膜
CN104576833A (zh) * 2014-12-31 2015-04-29 江苏顺风光电科技有限公司 采用pecvd制备太阳能背钝化电池背钝化膜层的方法
CN106449783A (zh) * 2016-10-28 2017-02-22 无锡尚德太阳能电力有限公司 多晶硅太阳能电池高效多层减反射膜及其制备方法
CN106653923B (zh) * 2016-11-01 2018-03-06 国家电投集团西安太阳能电力有限公司 一种适合薄片化的n型pert双面电池结构及其制备方法
CN106558626A (zh) * 2016-11-25 2017-04-05 罗雷 晶体硅太阳能电池及其制造方法
CN110299420B (zh) * 2019-07-09 2020-06-26 理想晶延半导体设备(上海)有限公司 晶硅太阳能电池的减反射膜沉积方法
CN110600555A (zh) * 2019-08-29 2019-12-20 苏州腾晖光伏技术有限公司 一种减反射膜结构及perc电池
CN112802927B (zh) * 2021-04-14 2021-08-17 浙江陶特容器科技股份有限公司 高纯氧化亚氮在制备太阳能电池片中的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964788B2 (en) * 2006-11-02 2011-06-21 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
KR100984701B1 (ko) * 2008-08-01 2010-10-01 엘지전자 주식회사 태양 전지의 제조 방법
KR20110077731A (ko) * 2009-12-30 2011-07-07 엘지전자 주식회사 태양전지
CN102339871B (zh) * 2011-07-30 2013-08-14 常州天合光能有限公司 适用于rie绒面的三明治结构正面介质膜及其制备方法
CN103000704A (zh) * 2012-10-22 2013-03-27 江苏晨电太阳能光电科技有限公司 一种多晶硅太阳电池减反射膜及其制备方法
CN102983211A (zh) * 2012-10-22 2013-03-20 江苏晨电太阳能光电科技有限公司 一种制备用于多晶硅太阳能电池的三层减反射膜的方法
CN102945890B (zh) * 2012-10-25 2015-06-10 晶澳太阳能有限公司 一种实现晶体硅电池组件电位诱发衰减合格的工艺
CN103094366A (zh) * 2013-01-25 2013-05-08 中山大学 一种太阳电池钝化减反射膜及其制备工艺方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742173A (zh) * 2019-01-10 2019-05-10 中国科学院上海技术物理研究所 一种量子阱红外圆偏振探测器

Also Published As

Publication number Publication date
CN103943717A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
CN103943717B (zh) 一种采用管式pecvd制备太阳能电池叠层减反射膜的方法
CN109216473B (zh) 一种晶硅太阳电池的表界面钝化层及其钝化方法
CN106972066B (zh) 一种perc电池背面钝化膜层以及基于ald工艺的perc电池制备方法
CN105845775A (zh) Perc晶体硅太阳能电池的背面多层镀膜方法
CN102983211A (zh) 一种制备用于多晶硅太阳能电池的三层减反射膜的方法
CN104576770A (zh) 一种晶硅高效黑电池的钝化减反射多层膜
CN102339871B (zh) 适用于rie绒面的三明治结构正面介质膜及其制备方法
CN107154437A (zh) 太阳能电池减反射膜的制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN110473921A (zh) 一种perc电池背钝化结构及制备方法
CN209592050U (zh) 一种具有钝化层结构的太阳电池
CN104916710B (zh) 一种高pid抗性的高效多晶多层钝化减反射膜结构
CN106653871A (zh) 一种perc太阳能电池结构及其制备工艺
CN104752526A (zh) 一种高pid抗性多晶电池的钝化减反射膜及其制备工艺
CN104091839B (zh) 一种用于太阳能电池片的减反射膜的制造方法
CN106653923B (zh) 一种适合薄片化的n型pert双面电池结构及其制备方法
CN104576833A (zh) 采用pecvd制备太阳能背钝化电池背钝化膜层的方法
CN102260857B (zh) 一种晶硅表面镀膜及其制备方法
CN204144271U (zh) 一种具有背面钝化结构的单晶硅太阳能电池
CN204497240U (zh) 一种晶硅高效黑电池的钝化减反射多层膜
CN103633159B (zh) 一种太阳能电池减反射膜的制备方法
CN102945890A (zh) 一种实现晶体硅电池组件电位诱发衰减合格的工艺
CN202977429U (zh) 一种太阳能电池及减反射膜
CN110246905A (zh) 一种硅太阳能电池及其制备方法
CN202217668U (zh) 一种晶体硅太阳能电池多层氮化硅减反射膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant