CN103941105B - 时序分析装置及时序分析方法 - Google Patents

时序分析装置及时序分析方法 Download PDF

Info

Publication number
CN103941105B
CN103941105B CN201310018025.XA CN201310018025A CN103941105B CN 103941105 B CN103941105 B CN 103941105B CN 201310018025 A CN201310018025 A CN 201310018025A CN 103941105 B CN103941105 B CN 103941105B
Authority
CN
China
Prior art keywords
time
series analysis
input
output terminal
basic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310018025.XA
Other languages
English (en)
Other versions
CN103941105A (zh
Inventor
沈游城
许益豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRI TEST RESEARCH Inc
Original Assignee
TRI TEST RESEARCH Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRI TEST RESEARCH Inc filed Critical TRI TEST RESEARCH Inc
Priority to CN201310018025.XA priority Critical patent/CN103941105B/zh
Publication of CN103941105A publication Critical patent/CN103941105A/zh
Application granted granted Critical
Publication of CN103941105B publication Critical patent/CN103941105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种时序分析装置及时序分析方法,所述时序分析装置,应用于可编程序逻辑阵列系统中,包含:复数个第一及第二基本输入输出端、通道多工器、复数个高速输入输出端、取样模块以及时序分析模块。第一基本输入输出端自待测元件接收复数个待测信号。通道多工器自第一基本输入输出端接收待测信号,以选择待测信号中的至少一组输出至第二基本输入输出端。高速输入输出端具有较第一及第二基本输入输出端高的逻辑电平解析速度。取样模块通过高速输入输出端接收自第二基本输入输出端输出的该组待测信号进行取样,以产生取样结果。时序分析模块根据取样结果进行时序分析及量测。

Description

时序分析装置及时序分析方法
技术领域
本发明是有关于一种时序分析技术,且特别是有关于一种时序分析装置及时序分析方法。
背景技术
在自动测试设备(automatic test equipment;ATE)的系统中,时序的量测为相当重要的一环。例如待测物的信号的波宽、波形上升及下降时间、相位偏差与频率,都是常见的量测目标。量测信号的时序资讯,将可对未正确输出的信号进行调校,以使待测物的功能不致因信号时序的错误而受到影响。
然而,以往的技术,往往使用一长串串联的延迟元件将待测的信号进行延迟,并依据延迟的结果来进行量测。在使用如可编程序逻辑阵列的系统实现量测时,常常由于大量延迟元件造成绕线面积过大,在将量测结果送至分析模块时,不但单一通道中各延迟元件至分析模块的距离不同造成误差,不同通道间的绕线方式不同也会有所影响,大幅降低量测的精确度。
于部分现有的技术,则是采用可编程序逻辑阵列的高速IO介面取样,虽能达到良好的量测结果,但是取样通道数量有所限制。对于普遍的自动测试设备系统来说,大量的信号量测输入通道数是必须的。
因此,如何设计一个新的时序分析装置及时序分析方法,以避免上述的误差,提升量测的精确度,乃为业界亟待解决的问题。
发明内容
因此,本发明的一态样是在提供一种时序分析装置,应用于可编程序逻辑阵列(programmable logic array)系统中,包含:复数个第一基本输入输出(I/O)端、复数个第二基本输入输出端、通道多工器、复数个高速输入输出端、取样模块以及时序分析模块。第一基本输入输出端用以自待测元件接收复数个待测信号。通道多工器用以自第一基本输入输出端接收待测信号,以选择待测信号中的至少一组输出至第二基本输入输出端。高速输入输出端具有较第一及第二基本输入输出端高的逻辑电平解析速度,用以连接第二基本输入输出端。取样模块用以通过高速输入输出端接收自第二基本输入输出端输出的该组待测信号进行取样,以产生取样结果。时序分析模块用以根据取样结果进行时序分析及量测。
依据本发明一实施例,其中第一及第二基本输入输出端的逻辑电平解析速度至多为200兆赫(MHz)。
依据本发明另一实施例,其中高速输入输出端的逻辑电平解析速度至少为1吉赫(GHz)。
依据本发明又一实施例,时序分析装置更包含校正模块,用以储存时序校正表,时序分析模块根据时序校正表对待测信号的取样结果进行时序校正后进行时序分析及量测。其中时序校正表记录任意两个第一基本输入输出端与通道多工器间以及任意两个第二基本输入输出端与通道多工器间的路径延迟差距。
依据本发明再一实施例,时序分析装置更包含:复数个第一时序校正模块以及复数个第二时序校正模块。第一时序校正模块分别连接于第一基本输入输出端其中之一以及通道多工器间。第二时序校正模块分别连接于第二基本输入输出端其中之一以及通道多工器间,其中第一时序校正模块以及第二时序校正模块根据时序校正资讯对待测信号进行时序校正。其中时序校正资讯为任意两个第一基本输入输出端与通道多工器间以及任意两个第二基本输入输出端与通道多工器间的路径延迟差距。第一时序校正模块及第二时序校正模块分别为延迟单元。
依据本发明更具有的一实施例,其中取样模块为高速序列转低速平行取样模块。
本发明的另一态样是在提供一种时序分析方法,应用于可编程序逻辑阵列系统的时序分析装置中,时序分析方法包含:由复数个第一基本输入输出端自待测元件接收复数个待测信号;由通道多工器自第一基本输入输出端接收待测信号,以选择待测信号中的至少一组输出至复数个第二基本输入输出端;通过复数个高速输入输出端接收自第二基本输入输出端输出的该组待测信号进行取样,以产生取样结果,其中高速输入输出端具有较第一及第二基本输入输出端高的逻辑电平解析速度;以及根据取样结果进行时序分析及量测。
依据本发明一实施例,时序分析方法更包含根据时序校正表对待测信号的取样结果进行时序校正后进行时序分析及量测。时序校正表记录任意两个第一基本输入输出端与通道多工器间以及任意两个第二基本输入输出端与通道多工器间的路径延迟差距。
依据本发明另一实施例,时序分析方法更包含使分别连接于第一基本输入输出端其中之一以及通道多工器间的复数个第一时序校正模块,以及分别连接于第二基本输入输出端其中之一以及通道多工器间的复数个第二时序校正模块根据时序校正资讯对待测信号进行时序校正。其中时序校正资讯为任意两个第一基本输入输出端与通道多工器间以及任意两个第二基本输入输出端与通道多工器间的路径延迟差距。
应用本发明的优点是在于借由时序分析装置的设计,在仅具有限的高速输入输出端口的可编程序逻辑阵列系统中,实现多通道的信号分析与量测,并可获得高精确度的量测结果,而轻易地达到上述的目的。
附图说明
为让本发明的上述和其他目的、特征、优点与实施例能更明显易懂,附图说明如下:
图1为本发明一实施例中,一种时序分析装置的方块图;
图2为本发明一实施例中,待测信号的波型图;
图3为本发明另一实施例中,待测信号及相关量测信号的波型图;
图4为本发明另一实施例中,时序分析装置的方块图;
图5为本发明一实施例中,一种时序分析方法的流程图。
具体实施方式
请参照图1。图1为本发明一实施例中,一种时序分析装置1的方块图。时序分析装置1可应用于可编程序逻辑阵列(programmable logic array)系统中,并包含:复数个第一基本输入输出端IO-IN、复数个第二基本输入输出端IO-OUT、通道多工器10、复数个高速输入输出端GTX-IN、取样模块12以及时序分析模块14。
第一基本输入输出端IO-IN与第二基本输入输出端IO-OUT于本实施例中,均可为可编程序逻辑阵列中的基本输入输出端口,具有至多为200兆赫(MHz)的逻辑电平解析速度。于本实施例中,第一基本输入输出端IO-IN实际上做为输入端,自待测元件2接收复数个待测信号Test1、Test2、…、Test8。需注意的是,于图1中所绘示的第一基本输入输出端IO-IN的数目为八个,然而于其他实施例中,时序分析装置1所包含的第一基本输入输出端IO-IN数目并不为本实施例的数目所限。
通道多工器10用以自第一基本输入输出端IO-IN接收待测信号Test1、Test2、…、Test8,并选择这些待测信号中的至少一组输出至第二基本输入输出端IO-OUT。于本实施例中,第二基本输入输出端IO-OUT实际上做为输出端,以自通道多工器10输出一组待测信号Test1及Test2。需注意的是,于第1图中所绘示的第二基本输入输出端IO-OUT的数目为两个,然而于其他实施例中,时序分析装置1所包含的第二基本输入输出端IO-OUT数目并不为本实施例的数目所限。
高速输入输出端GTX-IN具有较第一及第二基本输入输出端IO-IN、IO-OUT高的逻辑电平解析速度。于一实施例中,高速输入输出端GTX-IN至少具有第一及第二基本输入输出端IO-IN、IO-OUT五倍以上的逻辑电平解析速度。高速输入输出端GTX-IN可为例如但不限于符合高速外设部件互连(peripheral component interconnectexpress;PCI-E)总线或是通用串行总线(universal serial bus;USB)3.0规格的输入输出端口,可达到至少1吉赫(GHz)的逻辑电平解析速度。高速输入输出端GTX-IN连接于第二基本输入输出端IO-OUT。
取样模块12通过高速输入输出端GTX-IN接收自第二基本输入输出端IO-OUT输出的该组待测信号Test1及Test2进行取样,以产生取样结果11。于一实施例中,取样模块12为高速序列转低速平行取样模块。其等效取样率将不会改变,且低速的平行埠将有利于后续数位化时间量测的处理。举例来说,如果待测信号Test1可达到10GHz,则取样模块12可为一个10GHz降频100倍至100MHz的缩小取样模块,并将原本为1比特序列式的信号转换为100比特平行式的信号输出。
由于通过高速输入输出端GTX-IN进行待测信号Test1及Test2的取样,因此其取样结果11的精确度将较通过一般基本输入输出端的取样为高。时序分析模块14将可根据取样结果11,进行时序分析及量测。
请参照图2。图2为本发明一实施例中,待测信号的波型图。举例来说,如取样结果11为如图2所示,于开始量测至终止量测的20纳秒(ns;nanoseconds)中,产生100个取样值,其中有49个为1,则可以得知此波型的波宽的量测值为49×(20n/100)=49×0.2n。
因此,借由设定开始及终止量测的时间间隔,以及在此时间间隔的取样值,时序分析模块14可进行精确的时序量测及分析。
请参照图3。图3为本发明另一实施例中,待测信号及相关量测信号的波型图。于本实施例中,如欲量测待测信号A的上升时间(rise time),则可借由将同一待测信号传送至两个通道后,分别输入两个比较器(未绘示)进行比较。其中一个比较器的参考电压可设为此待测信号最大电压值的90%,而另一个比较器的参考电压则可设为此待测信号最大电压值的10%。举例来说,如待测信号最大电压值为5伏特,则其中一个比较器的参考电压可设为4.5伏特,另一个比较器的参考电压则可设为0.5伏特。经过比较后,比较器将产生如图3所示的比较信号B及C。接着,借由类似图2中计数的方式,计数比较信号B及C中的0或1,时序分析模块14将可计算两个比较信号B及C间的差距,对待测信号的上升时间进行测量与分析。
以上仅以波宽与波型上升时间为例进行说明。于其他不同实施例中,时序分析模块14可进行其他例如,但不限于波型下降时间(falltime)、频率及相位偏差(skew)等的量测与分析。
请再参考图1。在该组待测信号Test1及Test2测量完毕后,通道多工器10可再选择其他组待测信号,例如Test3及Test4进行量测及分析。因此,本实施例中的通道多工器10将可在高速输入输出端GTX-IN的数目受限的情形下,动态地选择不同的通道中的待测信号,以轮流进行量测。
需注意的是,于其他实施例中,时序分析装置1的高速输入输出端GTX-IN的数目可依实际状况进行调整。举例来说,如高速输入输出端GTX-IN的数目为八个,则可连接至八个对应的第二基本输入输出端IO-OUT所输出的待测信号,以使时序分析模块14在经过取样模块12的取样后,同时进行更多待测信号的量测及分析。
现有技术中以数级延迟元件串接进行量测方式时,绕线面积与长度将对精确度造成影响。并且,在实现多个通道时,现有技术将因为绕线问题而难以在各通道间达成相同的信号传输长度。这些效应将在量测结果造成差分非线性与积分非线性的误差。借由本发明的时序分析装置,可避免为实现大数量的延迟元件所必需的繁杂绕线。并且,通常具有5GHz至28GHz的逻辑电平解析速度的高速输入输出端,可以使量测结果达到200皮秒(ps;picoseconds)至35皮秒的精确度。再者,由于可编程序逻辑阵列系统中,高速输入输出端GTX-IN的数目往往受限,借由通道多工器的设置,将可动态地选择不同的通道中的待测信号,实现多通道的信号量测。
然而,各个第一基本输入输出端IO-IN与通道多工器10间的信号路径距离,可能因为绕线长度、接脚板的路径长度等因素而不尽相同。并且,通道多工器10与各第二基本输入输出端IO-OUT间的信号路径距离亦不尽相同。因此,在进行如前述图3中,利用两个通道的信号量测时,将由于两者间的路径延迟差距,产生不匹配的状况而造成误差。
因此,于本实施例中,时序分析装置1可更包含校正模块16。于本实施例中,校正模块16储存时序校正表(未绘示)。在实际进行量测前,时序分析装置1可借由在任意两个第一基本输入输出端IO-IN至通道多工器10间,以及通道多工器10与任意两个第二基本输入输出端IO-OUT间的通道传送相同的待测信号,以得知二个通道间在取样模块12取样后的差异,并记录于时序校正表中。
在记录完所有通道间的时序误差后,时序分析装置1即可在实际量测时,将取样模块12的取样结果进行时序的校正。举例来说,如在校正过程中发现两个通道间传送同样由低态转高态的信号时,第二个通道的转态时间较第一个通道晚了0.3ns,则在实际量测时,时序分析装置1将可依照时序校正表把第一个通道的取样结果延迟0.3ns,以补偿通道间的不匹配。
请参照图4。图4为本发明另一实施例中,时序分析装置4的方块图。时序分析装置4与图1中绘示的时序分析装置1大同小异,因此对于相同的元件不再赘述。于本实施例中,时序分析装置4包含复数个第一时序校正模块De-skew1以及复数个第二时序校正模块De-skew2。
第一时序校正模块De-skew1分别连接于第一基本输入输出端IO-IN其中之一以及通道多工器10间。第二时序校正模块De-skew2分别连接于第二基本输入输出端IO-OUT其中之一以及通道多工器10间。于本实施例中,第一时序校正模块De-skew1及第二时序校正模块De-skew2分别为一个延迟元件。
类似地,时序分析装置1可借由在任意两个第一基本输入输出端IO-IN至通道多工器10间,以及通道多工器10与任意两个第二基本输入输出端IO-OUT间的通道传送相同的待测信号,以得知时序校正资讯,意即任意两个通道间在取样模块12取样后的差异。在得知所有通道间的时序误差后,时序分析装置1可借由程式化第一时序校正模块De-skew1及第二时序校正模块De-skew2,以将所有通道的时序误差进行补偿,以使所有的通道都具有相同的信号传输时间。
举例来说,如在校正过程中发现两个通道间传送同样由低态转高态的信号时,第二个通道的转态时间较第一个通道晚了0.3ns,则借由微调第一时序校正模块De-skew1及/或第二时序校正模块De-skew2,将第一个通道的信号延迟,则可以使两个通道间的取样结果的时序相同。因此,借由此方式,时序分析装置1可以不需要再经过对取样结果的校正,而直接对取样结果进行量测与分析。
因此,借由本发明的时序分析装置1的设计,在仅具有限的高速输入输出端口的可编程序逻辑阵列系统中,实现多通道的信号分析与量测。并且,借由信号于通道间的校正机制,取样结果将可为精确,而使量测结果的精确度进一步提升。
请参照图5。图5为本发明一实施例中,一种时序分析方法500的流程图。时序分析方法500可应用于如图1所示的时序分析装置中。时序分析方法500包含下列步骤(应了解到,在本实施方式中所提及的步骤,除特别叙明其顺序者外,均可依实际需要调整其前后顺序,甚至可同时或部分同时执行)。
于步骤501,由第一基本输入输出端IO-IN自待测元件2接收复数个待测信号。
于步骤502,由通道多工器10自第一基本输入输出端IO-IN接收待测信号,以选择待测信号中的至少一组输出至复数个第二基本输入输出端IO-OUT。
于步骤503,通过复数个高速输入输出端GTX-IN接收自第二基本输入输出端IO-OUT输出的该组待测信号进行取样,以产生取样结果,其中高速输入输出端具有较第一及第二基本输入输出端高的逻辑电平解析速度。
于步骤504,根据取样结果进行时序分析及量测。
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当以本发明的权利要求的保护范围为准。

Claims (14)

1.一种时序分析装置,应用于可编程序逻辑阵列系统中,包含:
复数个第一基本输入输出(I/O)端,用以自待测元件接收复数个待测信号;
复数个第二基本输入输出端;
通道多工器,用以自这些第一基本输入输出端接收这些待测信号,以选择这些待测信号中至少一组输出至这些第二基本输入输出端;
复数个高速输入输出端,具有较这些第一及第二基本输入输出端高的逻辑电平解析速度,用以连接这些第二基本输入输出端;
取样模块,用以通过这些高速输入输出端接收自这些第二基本输入输出端输出的该组待测信号进行取样,以产生取样结果;以及
时序分析模块,用以根据该取样结果进行时序分析及量测。
2.如权利要求1所述的时序分析装置,其中这些第一及第二基本输入输出端的逻辑电平解析速度至多为200兆赫。
3.如权利要求1所述的时序分析装置,其中这些高速输入输出端的逻辑电平解析速度至少为1吉赫。
4.如权利要求1所述的时序分析装置,其中还包含一校正模块,用以储存时序校正表,该时序分析模块根据该时序校正表对这些待测信号的该取样结果进行时序校正后进行该时序分析及量测。
5.如权利要求4所述的时序分析装置,其中该时序校正表记录任意两个所述第一基本输入输出端与该通道多工器间以及任意两个所述第二基本输入输出端与该通道多工器间的路径延迟差距。
6.如权利要求1所述的时序分析装置,其中还包含:
复数个第一时序校正模块,分别连接于这些第一基本输入输出端其中之一以及该通道多工器间;以及
复数个第二时序校正模块,分别连接于这些第二基本输入输出端其中之一以及该通道多工器间,其中这些第一时序校正模块以及这些第二时序校正模块根据时序校正资讯对这些待测信号进行时序校正。
7.如权利要求6所述的时序分析装置,其中该时序校正资讯为任意两个所述第一基本输入输出端与该通道多工器间以及任意两个所述第二基本输入输出端与该通道多工器间的路径延迟差距。
8.如权利要求6所述的时序分析装置,其中这些第一时序校正模块及这些第二时序校正模块分别为延迟单元。
9.如权利要求1所述的时序分析装置,其中该取样模块为高速序列转低速平行取样模块。
10.一种时序分析方法,应用于可编程序逻辑阵列系统的时序分析装置中,该时序分析方法包含:
由复数个第一基本输入输出端自待测元件接收复数个待测信号;
由通道多工器自这些第一基本输入输出端接收这些待测信号,以选择这些待测信号中的至少一组输出至复数个第二基本输入输出端;
通过复数个高速输入输出端接收自这些第二基本输入输出端输出的该组待测信号进行取样,以产生取样结果,其中这些高速输入输出端具有较这些第一及第二基本输入输出端高的逻辑电平解析速度;以及
根据该取样结果进行时序分析及量测。
11.如权利要求10所述的时序分析方法,其中还包含根据时序校正表对这些待测信号的该取样结果进行的时序校正后进行该时序分析及量测。
12.如权利要求11所述的时序分析方法,其中该时序校正表记录任意两个所述第一基本输入输出端与该通道多工器间以及任意两个所述第二基本输入输出端与该通道多工器间的路径延迟差距。
13.如权利要求10所述的时序分析方法,其中还包含使分别连接于这些第一基本输入输出端其中之一以及该通道多工器间的复数个第一时序校正模块,以及分别连接于这些第二基本输入输出端其中之一以及该通道多工器间的复数个第二时序校正模块,根据时序校正资讯对这些待测信号进行时序校正。
14.如权利要求13所述的时序分析方法,其中该时序校正资讯为任意两个所述第一基本输入输出端与该通道多工器间以及任意两个所述第二基本输入输出端与该通道多工器间的路径延迟差距。
CN201310018025.XA 2013-01-17 2013-01-17 时序分析装置及时序分析方法 Active CN103941105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310018025.XA CN103941105B (zh) 2013-01-17 2013-01-17 时序分析装置及时序分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310018025.XA CN103941105B (zh) 2013-01-17 2013-01-17 时序分析装置及时序分析方法

Publications (2)

Publication Number Publication Date
CN103941105A CN103941105A (zh) 2014-07-23
CN103941105B true CN103941105B (zh) 2016-08-17

Family

ID=51188854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310018025.XA Active CN103941105B (zh) 2013-01-17 2013-01-17 时序分析装置及时序分析方法

Country Status (1)

Country Link
CN (1) CN103941105B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105808806B (zh) * 2014-12-31 2019-05-31 瑞昱半导体股份有限公司 集成电路的时序分析方法及集成电路的时序分析装置
TWI742918B (zh) * 2020-11-11 2021-10-11 久元電子股份有限公司 多通道群之時序校準裝置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6819117B2 (en) * 2002-01-30 2004-11-16 Credence Systems Corporation PICA system timing measurement & calibration
TW561328B (en) * 2002-03-06 2003-11-11 Via Tech Inc Static-state timing analysis method of multi-clocks
CN1229733C (zh) * 2002-09-04 2005-11-30 清华同方股份有限公司 一种pc时序分析仪
JP2004317230A (ja) * 2003-04-15 2004-11-11 Toack Corp データ格納装置
US7908574B2 (en) * 2007-05-09 2011-03-15 Synopsys, Inc. Techniques for use with automated circuit design and simulations
CN101783665B (zh) * 2009-12-31 2012-11-21 广东正业科技股份有限公司 一种可编程步进延时时基和采样系统
US8555124B2 (en) * 2010-06-07 2013-10-08 Arm Limited Apparatus and method for detecting an approaching error condition

Also Published As

Publication number Publication date
CN103941105A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
US6931338B2 (en) System for providing a calibrated path for multi-signal cables in testing of integrated circuits
US7574632B2 (en) Strobe technique for time stamping a digital signal
US6263463B1 (en) Timing adjustment circuit for semiconductor test system
US7573957B2 (en) Strobe technique for recovering a clock in a digital signal
KR101239743B1 (ko) 디지털 신호를 타임 스탬핑하기 위한 스트로브 기술
WO2007005109A2 (en) Jitter compensation and generation in testing communication devices
US9015541B2 (en) Device and method for performing timing analysis
US20050222789A1 (en) Automatic test system
CN100422756C (zh) 半导体试验装置
KR101265915B1 (ko) 데이터 수신 회로와 이를 이용한 시험장치 및 스트로브 신호의 타이밍 조절 회로와 그 방법
WO2005026759A1 (ja) キャリブレーション用比較回路
US7296195B2 (en) Bit synchronization for high-speed serial device testing
CN103941105B (zh) 时序分析装置及时序分析方法
CN104536282A (zh) 时间数字转换器、时间测量装置及其测量方法
EP2041991B1 (de) Verfahren und system zur ermittlung der abhängigkeit zwischen geräteparametern eines mobilfunkgeräts und signalgrössen
TWI826083B (zh) 時序校準方法和系統
US6594797B1 (en) Methods and circuits for precise edge placement of test signals
CN112511163A (zh) 基于正确数据边界的ad输入fpga源同步参数自动计算方法
CN110188477B (zh) 一种高速adc数据传输的位同步方法
CN104714137A (zh) 一种基于fpga的秒信号延迟时间测量系统和方法
CN204347455U (zh) 时间数字转换器及时间测量装置
TW201616146A (zh) 邏輯分析儀的校正方法
CN109471354B (zh) 一种用于精密时间间隔测量的死区补偿装置及方法
CN110572249B (zh) 一种用于高速tiadc的同步自动校准方法
CN216595393U (zh) 时间延迟测试装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant