CN103922869A - 一种用于单膜层ltcc内埋腔体结构的制造方法 - Google Patents

一种用于单膜层ltcc内埋腔体结构的制造方法 Download PDF

Info

Publication number
CN103922869A
CN103922869A CN201410125711.1A CN201410125711A CN103922869A CN 103922869 A CN103922869 A CN 103922869A CN 201410125711 A CN201410125711 A CN 201410125711A CN 103922869 A CN103922869 A CN 103922869A
Authority
CN
China
Prior art keywords
layer
lamination
chamber
ltcc
monofilm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410125711.1A
Other languages
English (en)
Other versions
CN103922869B (zh
Inventor
严英占
唐小平
卢会湘
党元兰
赵飞
李攀峰
冯子卉
武云超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN201410125711.1A priority Critical patent/CN103922869B/zh
Publication of CN103922869A publication Critical patent/CN103922869A/zh
Application granted granted Critical
Publication of CN103922869B publication Critical patent/CN103922869B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种用于单膜层LTCC内埋腔体结构的制造方法,属于微机械结构制造领域,主要包括:将叠好的腔基底层和腔壁层进行第一次层压处理,单独对腔膜层对进行层压处理,将第一次层压后的腔基底层和腔壁层与进行层压处理后的腔膜层进行层叠和层压处理,最后应用LTCC共烧炉对进行合体层压处理后层叠基片再进行共烧处理。本发明的优点是在内埋腔的制造阶段不需要牺牲层材料,其利用“不同压力层压后的LTCC单膜层瓷片与多层基板之间在烧结成瓷阶段体现的收缩失配特性”,通过控制单模层在层压阶段所经受的压强,使单膜层的收缩率大于多层基板的收缩率,从而实现平整的单膜层表面。

Description

一种用于单膜层LTCC内埋腔体结构的制造方法
技术领域
本发明属于微机械结构制造领域,特别涉及一种在低温共烧陶瓷(LTCC)基板上实现单膜层内埋腔体结构的制造方法。
技术背景
低温共烧陶瓷(LTCC)技术是上世纪八十年代发展起来的无源元件集成电路技术。多层LTCC基板技术能将部分无源元件集成到基板中,使其具有高速、高频、高密度、高可靠性等优点,有利于系统小型化,在提高电路组装密度的同时提高系统可靠性,因此被广泛应用于微波通信、航空航天和军事电子等领域。
近年来,除了在电子技术领域的广泛应用,LTCC技术也逐渐被应用到传感器、执行器以及微系统等其他应用领域中。这些应用主要得益于LTCC基板良好的电学和机械性能,使得基于LTCC的微系统结构具备高可靠性和高稳定性。更重要的是,应用LTCC技术,使一次性制造三维(3-D)微系统结构成为可能,为实现更便捷的片上微系统制造提供了一种可行方案。其制造的灵活度高、成本低、周期短、标准化制造等优点吸引了众多研究者的目光,成为近年来LTCC技术研究的新热点。
为实现微系统的不同功能,3D-LTCC结构中多包含腔体、通道以及膜层等多种不同结构。这些结构,不仅可以在微波电路应用中实现芯片内埋,还可以在微系统应用中构建复杂功能结构,例如:高功率器件底面的散热流体通道结构、微反应器中的反应腔室、电容传感器中的电容腔以及微燃料器中的燃烧室、LTCC贴片天线等等。
单膜层LTCC内埋腔体是LTCC腔体的一种,其是在LTCC基板内部制造的内埋腔体结构,其最主要的特点是顶层仅仅具有一层LTCC瓷片,即单膜层结构。该腔体结构示意如图1所示,包含腔膜层、腔壁层以及腔基底层三个主要部分。得益于单膜层结构良好的力学敏感性以及内部制造的悬空结构,单膜层LTCC内埋腔体在LTCC三维结构制造以及电容式膜层传感器以及内置腔贴片天线等领域具有广泛应用。
由于单膜层LTCC内埋腔体结构的特殊性,该结构制造集中了腔体制造和膜层制造两个技术难点:一方面,内埋腔体结构在制造中要保持腔体结构不变形;另一方面,单膜层的顶盖平整度在制造中难以保证。而腔体尺寸以及膜层的平整性是影响其在各领域应用的关键。
目前,国际上针对该类腔体制造常用采用的制造流程如图2所示。在此制造流程中,首先依次进行基片材料的下料老化—冲孔—填孔—印刷以及腔体冲制等工序。待每片瓷片制作好之后,借助各层之间的对位标记按照结构顺序依次实现多层瓷片之间的层叠。叠片完成之后,进行温水等静压的层压步骤。层压的目的是为了使基板在均匀压力下紧密结合成一个整体。对于单膜层LTCC内埋腔体来说,其腔体内部有一个空腔“缺陷”,若将内部“空虚”的LTCC多层基板直接放入高压环境中,会破坏腔体乃至整个基板。为解决上述问题,常用下述处理方法:在叠片阶段,首先在单膜层腔体盖叠片前,应用牺牲层材料填入腔体,将带有“腔缺陷”的LTCC基板改进为平整的平面基板。然后实施单膜层腔体盖的叠片操作。接下来进行层压处理。在层压阶段,牺牲层对腔体结构进行保护,避免了腔体结构的变形。常用的牺牲层材料有石墨基材料、矿石材料、有机材料等不同体系。在LTCC基板烧结成瓷阶段,牺牲层材料在高温条件下氧化成气态,通过尚未烧结致密膜层的微通孔排出基板结构,从而实现了单膜层LTCC内埋腔体的制造。
应用“添加牺牲层”的方法虽然可以实现单膜层LTCC内埋腔体的制造,但是在制造实施中却存在以下几个与“高制造复杂度”相关的缺点:
1)牺牲层材料的选择及制备。牺牲层材料首先要具备可塑性,才能实现不同结构腔体的填充。此外,牺牲层材料要在高温下能够完全氧化成气体排出LTCC基板外。
2)带有牺牲层LTCC基板的烧结曲线调节。若能在LTCC基板烧结中实现牺牲层材料的氧化,同时保证单膜层内置腔顶层盖的平整性,需要调节烧结曲线。常用的方法是首先对牺牲层材料最热重分析,得到其在不同温度下的氧化速度。然后,结合其热重分析结果对LTCC基板的烧结曲线进行调整。若牺牲层材料的氧化温度较低(低于LTCC基板烧结中排胶阶段的温度),则会在烧结成瓷阶段中使单膜层失去支撑,易造成塌陷的内置腔。若牺牲层材料的氧化温度过高(高于LTCC基板烧结中开始致密化的温度点),则会在盖层成瓷后牺牲层继续氧化,易导致表面“鼓起”的内置腔,严重时还会在腔内留下较多的牺牲层残余。
3)制作中需要牺牲层材料填充的额外操作,降低制作效率。
4)添加牺牲层材料中容易对LTCC腔体造成破坏。
发明内容
本发明为了解决单膜层内置腔现有制造技术中的步骤复杂、牺牲层材料选择和制备难度大以及烧结曲线需要不断修正等问题,提供了一种“不需要牺牲层”材料辅助的、制造流程简单可行的单膜层内置腔的制造方法。
本发明所采取的技术方案为:
一种用于单膜层LTCC内埋腔体结构的制造方法,所述的单膜层LTCC内埋腔体结构由自下而上的腔底底层、腔壁层和腔膜层组成,其特征在于包括以下步骤:
(1)在腔壁层的对应位置冲制出腔体;
(2)应用叠片工艺对腔基底层和腔壁层进行层叠;
(3)将叠好的腔基底层和腔壁层进行第一次层压处理;
(4)单独对腔膜层对进行层压处理,此次层压的压强低于步骤(3)中的层压压强;
(5)将第一次层压后的腔基底层和腔壁层与进行层压处理后的腔膜层进行层叠;
(6)对步骤(5)制作的层叠基片进行层压处理;
(7)应用LTCC共烧炉对步骤(6)进行合体层压处理后层叠基片再进行共烧处理;
完成对单膜层LTCC内埋腔体结构的制造。
其中,步骤(3)和步骤(4)中的层压处理均采用等静压技术。
其中,步骤(6)中的层压处理均采用等轴压技术或者冷低压技术。
其中,步骤(3)中的层压压强为3000psi至3500psi;步骤(4)中的层压压强为1500psi至2500psi。
其中,步骤(6)中的层压压强与步骤(4)中的层压压强相同。
本发明的优点是:本发明在单膜层内置腔的制造中不需要在腔体内添加牺牲层材料支撑膜层,也不需要针对所应用的LTCC基板对与之相匹配的牺牲层材料进行针对性研究。因此本发明提出的方法相比于目前的常规制作方法操作简单、耗时少、效率高、成本低。此外应用本发明制作LTCC结构的工艺中,烧结曲线不需要重新调整,保证了制造中的一致性。
附图说明
图1为本发明所针对的单膜层内置腔结构示意图;
图2为现有的带腔LTCC基板的制作流程图;
图3为本发明的工艺流程图。
具体实施方式
如图1所示,单膜层LTCC内埋腔体结构由自下而上的腔底底层1、腔壁层2和腔膜层3组成。实例中LTCC基板所使用的材料为8英寸的Ferro-A6M。实例中所制作的单膜层内置腔的腔基底层具有4层结构,腔壁层具有3层结构;3层腔壁结构中的腔体尺寸都为10mm×10mm。
图3给出了本发明中在LTCC基板上制作单膜层内置腔的工艺流程。下面结合附图对本发明的实施范例作进一步的描述。具体工艺如下:
(1)、下料、老化
根据实例中所设计的单膜层内置腔的结构层数,下料8片Ferro瓷片,并对这些瓷片进行相应的老化处理。
(2)、冲孔、填孔
根据单膜层内置腔的内部电气连接属性,制作冲孔文件,并应用冲孔机在对应瓷片的相应位置冲制连接通孔。之后,应用不锈钢钢板做掩模板,在印刷机上实现上述通孔的金属化。浆料选择Ferro填孔浆料。
(3)、线条印刷
根据各层上的金属化结构,应用丝网印刷技术在印刷机上实现各层线条的金属化。浆料选择Ferro银系线条印刷浆料。
(4)在腔壁层的对应位置冲制出腔体
首先,根据设计的腔体尺寸和所在位置制作冲孔文件,然后在冲孔机上实现3层腔壁层上的冲腔操作。
(5)、应用叠片工艺对腔基底层和腔壁层进行层叠
按照所设计的单膜层内置腔的结构,应用叠片工艺技术实现腔基底层以及腔壁层两部分瓷片的层叠,实现“除了膜层盖”之外盲腔的构建。
(6)、将叠好的腔基底层和腔壁层进行第一次层压处理
应用盲腔制造工艺中的层压处理手段,将步骤(5)中叠好的盲腔在“温水等静压层压机”中进行标准层压处理(压强3000psi;温度70℃)。
(7)、单独对腔膜层对进行层压处理,此次层压的压强低于步骤(3)中的层压压强
应用“温水等静压层压机”,对内置腔单膜层的盖层进行层压处理。压强要低于步骤(6)中的标准层压压强,具体压强根据所需要的“低压下层压处理后的单膜层”与“标准层压处理后的LTCC基板”之间的收缩率失配量来决定。在此具体实施方式中,压强设置为2000psi。
(8)、将第一次层压后的腔基底层和腔壁层与进行层压处理后的腔膜层进行层叠
应用叠片工艺技术实现步骤(6)完成的盲腔基板与步骤(7)完成的低压层压处理后的单膜层瓷片之间的对位层叠。
(9)、对步骤(5)制作的层叠基片进行层压处理
应用等轴压设备及等轴压技术,对步骤(8)制作的层叠基片进行等轴压处理,压强为2500psi。该等轴压处理后,单膜层内置腔结构的烧前制造已经完成。此时,由于内置腔没未添加牺牲层材料对膜层进行支撑,腔顶的膜层基片会产生“凹陷”现象。
(10)、应用LTCC共烧炉对步骤(6)进行合体层压处理后层叠基片再进行共烧处理
应用LTCC共烧炉,设置烧结曲线为Ferro-A6M瓷片的标准曲线,对单膜层内置腔进行共烧处理。
步骤(9)中的“膜层塌陷”现象,通过不同层压处理后的烧结收缩适配性产生的“收缩张力”会得到缓解乃至消除。具体来讲,该内埋腔的单膜层在制造中经受了“与标准层压相比较小”的压强,在烧结中将呈现比“经受标准层压处理后的腔壁和腔基底(即上述实例中的普通盲腔)”更大的其收缩率。普通盲腔与单膜层盖层之间的收缩失配将在单膜层盖层上产生收缩张力,进而在制造中将“下限”的单膜层盖层“绷直”。

Claims (5)

1.一种用于单膜层LTCC内埋腔体结构的制造方法,所述的单膜层LTCC内埋腔体结构由自下而上的腔基底层(1)、腔壁层(2)和腔膜层(3)组成,其特征在于包括以下步骤:
(1)在腔壁层的对应位置冲制出腔体;
(2)应用叠片工艺对腔基底层和腔壁层进行层叠;
(3)将叠好的腔基底层和腔壁层进行第一次层压处理;
(4)单独对腔膜层对进行层压处理,此次层压的压强低于步骤(3)中的层压压强;
(5)将第一次层压后的腔基底层和腔壁层与进行层压处理后的腔膜层进行层叠;
(6)对步骤(5)制作的层叠基片进行层压处理;
(7)应用LTCC共烧炉对步骤(6)进行合体层压处理后层叠基片再进行共烧处理;
完成对单膜层LTCC内埋腔体结构的制造。
2.根据权利要求1所述的一种用于单膜层LTCC内埋腔体结构的制造方法,其特征在于:步骤(3)和步骤(4)中的层压处理均采用等静压技术。
3.根据权利要求1所述的一种用于单膜层LTCC内埋腔体结构的制造方法,其特征在于:步骤(6)中的层压处理均采用等轴压技术或者冷低压技术。
4.根据权利要求1所述的一种用于单膜层LTCC内埋腔体结构的制造方法,其特征在于:步骤(3)中的层压压强为3000psi至3500psi;步骤(4)中的层压压强为1500psi至2500psi。
5.根据权利要求1所述的一种用于单膜层LTCC内埋腔体结构的制造方法,其特征在于:步骤(6)中的层压压强与步骤(4)中的层压压强相同。
CN201410125711.1A 2014-03-28 2014-03-28 一种用于单膜层ltcc内埋腔体结构的制造方法 Active CN103922869B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410125711.1A CN103922869B (zh) 2014-03-28 2014-03-28 一种用于单膜层ltcc内埋腔体结构的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410125711.1A CN103922869B (zh) 2014-03-28 2014-03-28 一种用于单膜层ltcc内埋腔体结构的制造方法

Publications (2)

Publication Number Publication Date
CN103922869A true CN103922869A (zh) 2014-07-16
CN103922869B CN103922869B (zh) 2015-09-16

Family

ID=51141298

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410125711.1A Active CN103922869B (zh) 2014-03-28 2014-03-28 一种用于单膜层ltcc内埋腔体结构的制造方法

Country Status (1)

Country Link
CN (1) CN103922869B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057732A (zh) * 2016-08-08 2016-10-26 中国电子科技集团公司第五十四研究所 基于tsv技术和ltcc技术的开关矩阵的制造方法
CN107591336A (zh) * 2017-09-19 2018-01-16 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷基板空腔结构的制备方法
CN108453392A (zh) * 2018-05-23 2018-08-28 中国电子科技集团公司第三十八研究所 一种微波基片腔体激光直接加工成型方法
CN111848145A (zh) * 2020-07-09 2020-10-30 中国电子科技集团公司第四十三研究所 无机瓷粉及其制备方法、ltcc生瓷带
CN112234036A (zh) * 2020-09-11 2021-01-15 西安电子科技大学 一种嵌入式制冷热管的ltcc封装微系统及其制备方法
CN113115515A (zh) * 2021-03-11 2021-07-13 中国电子科技集团公司第五十四研究所 一种带腔ltcc基板表面多层精密薄膜电路的制备方法
CN116041046A (zh) * 2023-01-31 2023-05-02 中国电子科技集团公司第五十四研究所 一种高厚度ltcc基板的叠片方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841312A (zh) * 2010-05-07 2010-09-22 中国电子科技集团公司第九研究所 一种yig谐振子、yig振荡器及其制作方法
CN102724822A (zh) * 2012-06-25 2012-10-10 中国航天科工集团第二研究院二十三所 一种ltcc基板表面平整度控制工艺方法
CN103115704A (zh) * 2013-01-25 2013-05-22 中北大学 高温压力传感器及其制备方法
CN103456646A (zh) * 2013-09-05 2013-12-18 中国电子科技集团公司第十研究所 多层低温共烧陶瓷基板集成液冷循环通道的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841312A (zh) * 2010-05-07 2010-09-22 中国电子科技集团公司第九研究所 一种yig谐振子、yig振荡器及其制作方法
CN102724822A (zh) * 2012-06-25 2012-10-10 中国航天科工集团第二研究院二十三所 一种ltcc基板表面平整度控制工艺方法
CN103115704A (zh) * 2013-01-25 2013-05-22 中北大学 高温压力传感器及其制备方法
CN103456646A (zh) * 2013-09-05 2013-12-18 中国电子科技集团公司第十研究所 多层低温共烧陶瓷基板集成液冷循环通道的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057732A (zh) * 2016-08-08 2016-10-26 中国电子科技集团公司第五十四研究所 基于tsv技术和ltcc技术的开关矩阵的制造方法
CN106057732B (zh) * 2016-08-08 2019-03-15 中国电子科技集团公司第五十四研究所 基于tsv技术和ltcc技术的开关矩阵的制造方法
CN107591336A (zh) * 2017-09-19 2018-01-16 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷基板空腔结构的制备方法
CN107591336B (zh) * 2017-09-19 2019-11-15 中国科学院上海硅酸盐研究所 一种低温共烧陶瓷基板空腔结构的制备方法
CN108453392A (zh) * 2018-05-23 2018-08-28 中国电子科技集团公司第三十八研究所 一种微波基片腔体激光直接加工成型方法
CN111848145A (zh) * 2020-07-09 2020-10-30 中国电子科技集团公司第四十三研究所 无机瓷粉及其制备方法、ltcc生瓷带
CN111848145B (zh) * 2020-07-09 2022-10-21 中国电子科技集团公司第四十三研究所 无机瓷粉及其制备方法、ltcc生瓷带
CN112234036A (zh) * 2020-09-11 2021-01-15 西安电子科技大学 一种嵌入式制冷热管的ltcc封装微系统及其制备方法
CN112234036B (zh) * 2020-09-11 2024-03-26 西安电子科技大学 一种嵌入式制冷热管的ltcc封装微系统及其制备方法
CN113115515A (zh) * 2021-03-11 2021-07-13 中国电子科技集团公司第五十四研究所 一种带腔ltcc基板表面多层精密薄膜电路的制备方法
CN116041046A (zh) * 2023-01-31 2023-05-02 中国电子科技集团公司第五十四研究所 一种高厚度ltcc基板的叠片方法
CN116041046B (zh) * 2023-01-31 2024-03-26 中国电子科技集团公司第五十四研究所 一种高厚度ltcc基板的叠片方法

Also Published As

Publication number Publication date
CN103922869B (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
CN103922869A (zh) 一种用于单膜层ltcc内埋腔体结构的制造方法
EP0929207A3 (en) Multi-layer ceramic substrate and method for producing the same
CN107591336B (zh) 一种低温共烧陶瓷基板空腔结构的制备方法
CN103456646A (zh) 多层低温共烧陶瓷基板集成液冷循环通道的制备方法
KR101113443B1 (ko) 패치 안테나 및 무선통신 모듈
CN113103415B (zh) 一种大尺寸内埋腔体结构ltcc基板的制造方法
CN104582327A (zh) 一种内置被动组件高频ltcc多层电路模块的制作方法
CN115551195A (zh) 一种基于厚薄膜多层电路srd梳状谱发生器及其制备方法
CN101951237B (zh) 一种叠层片式滤波器及其制备方法
JP2012114183A (ja) セラミック多層基板
JP2010199599A (ja) 導電体充填ビアを用いた内蔵キャパシタ
CN102859617A (zh) 用于制作电气多层部件的方法和电气多层部件
CN206602721U (zh) 元器件内置多层基板
CN101378623A (zh) 具有内埋孔穴的多层陶瓷基板及其制造方法
CN107516599B (zh) 一种三维结构陶瓷电容器及其制备方法
CN102163960A (zh) 一种多层片式滤波器及其制备方法
Shan et al. Solvent-assisted low pressure room temperature lamination of low temperature cofirable ceramic green tapes for formation of embedded micro channels
US8451085B1 (en) Co-fired multi-layer stack chip resistor and manufacturing method
KR20110028144A (ko) 무선통신 모듈 및 그 제조방법
CN109119400B (zh) 高载流能力多层陶瓷基板及其制作方法
JP2002305123A (ja) 積層セラミック電子部品の製造方法及び積層インダクタの製造方法
CN105702589A (zh) 一种用于ltcc多层布线曲面基板的制造方法
JP2015046498A (ja) 多層プリント基板およびその製造方法
JP2009111239A (ja) 積層セラミック基板および積層セラミック基板の製造方法
CN102476478A (zh) 一种复合材料及其制备方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant