CN103906787B - 用于环状酯和碳酸酯的永活性开环聚合的基于酚根络合物的催化剂体系 - Google Patents

用于环状酯和碳酸酯的永活性开环聚合的基于酚根络合物的催化剂体系 Download PDF

Info

Publication number
CN103906787B
CN103906787B CN201280052407.8A CN201280052407A CN103906787B CN 103906787 B CN103906787 B CN 103906787B CN 201280052407 A CN201280052407 A CN 201280052407A CN 103906787 B CN103906787 B CN 103906787B
Authority
CN
China
Prior art keywords
alcohol
cyclic
metal
block
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280052407.8A
Other languages
English (en)
Other versions
CN103906787A (zh
Inventor
V.波伊里尔
J-F.卡彭蒂尔
M.斯拉温斯基
Y.萨拉金
M.赫洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Total Petrochemicals Research Feluy SA
Centre National de la Recherche Scientifique CNRS
Original Assignee
Total Petrochemicals Research Feluy SA
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Petrochemicals Research Feluy SA, Centre National de la Recherche Scientifique CNRS filed Critical Total Petrochemicals Research Feluy SA
Publication of CN103906787A publication Critical patent/CN103906787A/zh
Application granted granted Critical
Publication of CN103906787B publication Critical patent/CN103906787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides or epoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/42Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/38General preparatory processes using other monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明公开了用于环状酯和环状碳酸酯的永活性开环(共)聚合的基于酚根负载的金属络合物的新型催化体系。

Description

用于环状酯和碳酸酯的永活性开环聚合的基于酚根络合物的催化剂体系
技术领域
本发明公开了用于环状酯和环状碳酸酯的永活性(不死的,immortal)开环聚合的基于酚根(phenolate)负载的金属络合物的新型催化体系。
背景技术
环状酯的开环聚合(ROP)是产生能生物降解的脂族聚酯的最便利的方式,如例如Uhrich等(K.E.Uhrich,S.M.Cannizzaro,R.S.Langer,K.M.Shakesheff,Chem.Rev.,1999,99,3181–3198)的综述论文、或Ikada和Tsuji(Y.Ikada,H.Tsuji,Macromol.Rapid.Commun.,2000,21,117–132)或Langer(R.Langer,Acc.Chem.Res.,2000,33,94–101)或Okada(M.Okada,Prog.Polym.Sci.,2002,27,87–133)所深入详细地描述的。
最初,重点放在ε-己内酯(CL)和乙交酯(GL)的(共)聚合以产生适合于在生物医学领域中的应用的聚合物上,如例如Vert(M.Vert,Biomacromolecules2005,6,538–546)、或Albertsson和Varma(A.-C.Albertsson,I.K.Varma,Biomacromolecules2003,4,1466–1486)或Sudesh等(K.Sudesh,H.Abe,Y.DoiProg.Polym.Sci.2000,25,1503-1555)或Nair和Laurence(L.S.Nair,C.T.Laurence,Prog.Polym.Sci.2007,32,762–798)所公开的。
然而,最近许多研究团体已经将他们的注意力转向由乳酸得到的环状二酯的聚合并且更特别地L-丙交酯(L-LA=S,S-丙交酯)的聚合,如例如Mecking(S.Mecking,Angew.Chem.Int.Ed.,2004,43,1078–1085)或Dechy-Cabaret等(O.Dechy-Cabaret,B.Martin-Vaca,D.Bourissou,Chem.Rev.,2004,104,6147–6176)中所描述的。L-LA是生物可再生资源,其可由含糖植物例如糖-根(sugar-root)、土豆和谷物的发酵得到。对于L-LA、丙交酯的其它立体异构体(例如,内消旋-LA和外消旋-LA,L-和D-LA的50:50混合物)以及其它环状单体的ROP,在工业上通常使用基于锡的催化剂体系(典型地基于2-乙基-己酸锡(II)(通常称为“辛酸锡”,之后缩写为Sn(oct)2))。Sn(oct)2作为用于丙交酯的ROP的催化剂的普及性很大程度上归因于其低成本、其耐用性(robustness)(既对杂质的敏感性很小,又能够在高达180℃的温度下将熔融丙交酯聚合为高分子量材料)以及其多用性(versatility)。另一方面,这些催化体系是总体上缓慢的、控制性相当差且可呈现出与重的锡元素有关的问题,如例如Drumright等(R.E.Drumright,P.R.Gruber,D.E.Henton,Adv.Mater.,2000,12,1841–1846)或Okada(M.Okada,Prog.Polym.Sci.,2002,27,87–133)所讨论的。
最近,已经开发出几种明确定义的金属引发剂用于LA的各种异构体即外消旋-、L-、D-和内消旋-LA的受控、活性ROP,如例如O'Keefe等(B.J.O’Keefe,M.A.Hillmyer,W.B.Tolman,J.Chem.Soc.,DaltonTrans.,2001,2215–2224)、或Lou等(Lou,C.Detrembleur,R.,Macromol.Rapid.Commun.,2003,24,161–172)、或Nakano等(K.Nakano,N.Kosaka,T.Hiyama,K..Nozaki,J.Chem.Soc.,DaltonTrans.,2003,4039–4050)、或Dechy-Cabaret等(O.Dechy-Cabaret,B.Martin-Vaca,D.Bourissou,Chem.Rev.,2004,104,6147–6176)、或Wu等(Wu,T.-LYu,C.-T.Chen,C.-C.Lin,Coord.Chem.Rev.,2006,250,602–626)、或Amgoune等(Amgoune,C.M.Thomas,J.-F.Carpentier,PureAppl.Chem.2007,79,2013-2030)所公开的。
它们主要基于:
-无毒的锌(M.Cheng,A.B.Attygalle,E.B.Lobkovsky,G.W.Coates,J.Am.Chem.Soc.,1999,121,11583–11584;B.M.Chamberlain,M.Cheng,D.R.Moore,T.M.Ovitt,E.B.Lobkovsky,G.W.Coates,J.Am.Chem.Soc.,2001,123,3229–3238;C.K.Williams,L.E.Breyfogle,S.K.Choi,W.Nam,V.G.YoungJr.,M.A.Hillmyer,W.B.Tolman,J.Am.Chem.Soc.,2003,125,11350–11359;G.Labourdette,D.J.Lee,B.O.Patrick,M.B.Ezhova,P.Mehrkhodavandi,Organometallics,2009,28,1309–1319;Z.Zheng,G.Zhao,R.Fablet,M.Bouyahyi,C.M.Thomas,T.Roisnel,O.CasagrandeJr.,J.-F.Carpentier,NewJ.Chem.,2008,32,2279-2291),
-铝(N.Spassky,M.Wisniewski,C.Pluta,A.LeBorgne,Macromol.Chem.Phys.,1996,197,2627–2637;T.M.Ovitt,G.W.Coates,J.Am.Chem.Soc.,1999,121,4072–4073;M.Ovitt,G.W.Coates,J.Am.Chem.Soc.,2002,124,1316–1326;N.Nomura,R.Ishii,Y.Yamamoto,T.Kondo,Chem.Eur.J.,2007,13,4433–4451;H.Zhu,E.Y.-X.Chen,Organometallics,2007,26,5395–5405),或者
-第3族金属和镧系元素(C.-X.Cai,A.Amgoune,C.W.Lehmann,J.-F.Carpentier,Chem.Commun.,2004,330–331;A.Amgoune,C.M.Thomas,T.Roisnel,J.-F.Carpentier,Chem.Eur.J.,2006,12,169–179;A.Amgoune,C.M.Thomas,S.Ilinca,T.Roisnel,J.-F.Carpentier,Angew.Chem.Int.Ed.,2006,45,2782–2784)。
这些单中心络合物的一些对于β-丁内酯(BBL)的ROP也是有效的,产生聚(3-羟基丁酸酯),几种藻类和细菌产生了作为其全同立构异构体的天然存在的高度结晶的热塑性树脂,一些催化体系导致间同立构的聚合物,如Amgoume等(Amgoune,C.M.Thomas,S.Ilinca,T.Roisnel,J.-F.Carpentier,Angew.Chem.Int.Ed.,2006,45,2782–2784)、或Rieth等(L.R.Rieth,D.R.Moore,E.B.Lobkovsky,G.W.Coates,J.Am.Chem.Soc.,2002,124,15239–15248)、或Ajellal等(N.Ajellal,D.M.Lyubov,M.A.Sinenkov,G.K.Fukin,A.V.Cherkasov,C.M.Thomas,J.-F.Carpentier,A.A.Trifonov,Chem.Eur.J.,2008,14,5440–5448)或Ajellal等(N.Ajellal,M.Bouyahyi,,A.Amgoune,C.M.Thomas,A.Bondon,I.Pillin,Y.Grohens,J.-F.Carpentier,Macromolecules,2009,42,987–993)所讨论的。
在过去数年中,三亚甲基碳酸酯(TMC)的ROP也已经开始吸引相当多的注意力,如在S.MatsumuraAdv.Polym.Sci.2005,194,95–132中、或Hellaye等(M.LeHellaye,N.Fortin,J.Guilloteau,A.Soum,S.Lecommandoux,S.M.GuillaumeBiomacromolecules,2008,9,1924–1933)中或Darensbourg等(D.J.Darensbourg,W.Choi,P.Ganguly,C.P.RichersMacromolecules,2006,39,4374–4379)中或Helou等(M.Helou,O.Miserque,J.-M.Brusson,J.-F.Carpentier,S.M.Guillaume,Chem.Eur.J.,2008,14,8772–8775)中或欧洲专利申请No.08290187.7中所公开的。TMC可为由甘油得到的生物资源的单体,甘油本身是甘油三酸酯的降解副产物。与LA不同,TMC不是由以其它方式用于食物链中的资源的开发得到的,如Zhou等(C.-H.Zhou,J.N.Beltramini,Y.-X.Fan,G.Q.LuChem.Soc.Rev.2008,37,527–549)或Behr等(A.Behr,J.Eilting,K.Irawadi,J.Leschinski,F.LindnerGreenChem.2008,10,13–30)所讨论的。
除了基于金属的催化体系之外,还必须提到Kamber等(N.E.Kamber,W.Jeong,R.M.Waymouth,R.C.Pratt,B.G.G.Lohmeijer,J.L.Hedrick,Chem.Rev.,2007,107,5813-5840)和Bourissou等(D.Bourissou,S.Moebs-Sanchez,B.Martín-Vaca,C.R.Chimie,2007,10,775–794)的报道,他们开创了用于上述杂环单体的受控ROP的有机催化剂的开发。
在这些单体的ROP方面,已经实现了显著的进步,最特别地是关于催化剂生产率。在工业上,这些体系必须能够每个活性中心使几千当量的单体聚合以产生数百个聚合物链。在ROP领域中可靠地实现这样的目标的一种方式是由于加入链转移剂而在所谓的“永活性”活性聚合过程期间实施链转移,如例如在欧洲专利申请No.08290187.7中或Asano等(S.Asano,T.Aida,S.Inoue,J.Chem.Soc.,Chem.Commum.,1985,1148–1149)中或Aida等(T.Aida,Y.Maekawa,S.Asano,S.Inoue,Macromolecules,1988,21,1195–1202)中或Aida和Inoue(T.Aida,S.Inoue,Acc.Chem.Res.,1996,29,39-48)中或Martin等(E.Martin,P.Dubois,R.,Macromolecules,2000,33,1530–1535)中或Amgoume等(A.Amgoune,C.M.Thomas,J.-F.Carpentier,Macromol.Rapid.Commun.,2007,28,693–697)中所描述的。例如,欧洲专利申请No.08290187.7公开了二元体系(BDI)ZnN(SiMe3)2/Bn-OH(其中BDI=(2,6-iPr2-C6H3)N=C(Me)–CH=C(Me)–N(2,6-iPr2-C6H3)并且Bn-=C6H5CH2-)能够以大的效率用于TMC的ROP,容许在50当量苯甲醇的存在下最高达50000当量TMC的受控聚合。该方法使用20~100ppm的金属催化剂,因而使最终聚合物中的金属残留物最少化。另外,虽然该金属催化剂基于锌(所谓的“生物金属”),但是负载活性金属中心的BDI配体含有可与潜在的毒性问题有关的芳族胺部分。
因此仍然需要开发用于环状(二)酯的ROP的更具活性和生产率的催化剂体系,其理想地基于无毒的金属并且不从与催化剂中的金属结合的辅助配体释放有毒化合物。
然而,对于这些催化体系的改进留有大的空间。
附图说明
图1表示金属络合物Sn(O-2,6-二tBuPh)2的固态结构。
图2表示金属络合物[LO3]SnN(SiMe3)2的固态结构。
图3表示金属络合物[LO3]SnN(SiMe3)2在不同温度下的1HNMR谱图(500MHz,甲苯-d8)。
图4表示金属络合物[Ln3O]SnOSiPh3的固态结构。
图5表示金属络合物[LO3]SnOSiPh31HNMR谱图(500MHz,甲苯-d8)。
图6表示对于催化剂Sn(Oct)2和Sn(OAr)2以及对于6000/1/14.8的[LA]0/[Sn]0/[辛醇]0比率,转化率(以百分数表示)随时间(以分钟表示)的变化。
图7表示对于催化剂Sn(Oct)2和Sn(OAr)2以及对于72000/1/178的([LA]0/[Sn]0/[辛醇]0比率,转化率(以百分数表示)随时间(以分钟表示)的变化。
图8表示用催化体系Sn(O-2,6-tBu-Ph)2/iPrOH二元体系、以1000:1:20的比率使用[L-丙交酯]/[Sn]/[iPrOH]、以87%的转化率获得的聚(L-丙交酯)的1HNMR谱图(400MHz,CDCl3,298K)(*13C卫星峰)。
图9表示以1000:1:20的[L-丙交酯]/Sn(O-2,6-tBu-Ph)2/[iPrOH]比率和87%的转化率制备的聚(L-丙交酯)样品的MALDI-TOF质谱(主要群组(population):Na+,次要群组:K+)。对于基质上(on-matrix)化合物所观察到的分子量与使用(H)(C4H8O4)n(O-iPr).Na+式(其中n表示聚合度)计算的那些相差小于1Da。
发明内容
本发明的一个目的是制备新型的基于酚根的金属络合物。
本发明的另一目的将所述金属络合物用在用于环状(二)酯和环状碳酸酯的受控永活性ROP的催化体系中。
本发明的进一步目的是制备酯和碳酸酯的(多)嵌段共聚物。
前述目的已经如独立权利要求中所描述的那样实现。优选实施方式描述于从属权利要求中。
具体实施方式
因此,本发明公开了用于环状碳酸酯和环状酯的永活性开环均聚或者两步、顺序开环嵌段共聚的催化体系,所述催化体系包括:
a)式M(OAr)nXm的金属络合物,其中M为选自Sn、Zn、Al的金属,OAr为取代或未取代的酚根配体,其中X为:选自甲基、乙基、正丁基、或苯基的具有1-6个碳原子的烃基(烷基,alkyl),或选自N(SiMe3)2、NMe2、NEt2、NiPr2的氨基,或选自OEt、OiPr、OtBut、OCH2Ph或OSiPh3的烃氧基(烷氧基,alkoxidegroup),和其中n至少为1且n+m为金属M的化合价;
b)外部亲核试剂例如醇ROH或伯胺RNH2,其中R为包含脂族和/或芳族部分的具有1-20个碳原子的线型或支化的烃基,并且所述外部亲核试剂相对于所述金属络合物过量使用。
金属M优选地选自Sn或Zn、更优选Sn。
优选地,m等于0。
OAr为酚根型配体。相应的起始酚前配体(pro-ligand)具有下式:
其中
-R1、R2和R3相同或不同并且为氢或具有1-20个碳原子的烃基,所述烃基优选地选自甲基、乙基、异丙基、叔丁基、新戊基、枯基、三苯甲基或者选自苯基、2,4,6-三甲基苯基、2,6-二异丙基苯基,或者
其中
-R1和/或R3基团还含有包括N、O、S、P元素的官能性配位部分。特别地,R1和/或R3或(CH2)mN(CH2CH2OCH3)2或(CH2)mN-吗啉类型的,其中m为1、2或3且n≥1,和R2为具有最高达10个碳原子的烃基。
这些前配体可按照本领域中已知的任何方法制备。用于制备所述前配体和金属络合物的本方法是Schanmuga等(S.ShanmugaSundaraRaj,M.N.Ponnuswamy,G.Shanmugam,M.Kandaswamy,J.Crystallogr.Spectrosc.Res.,1993,23,607-610)或Teipel等(S.Teipel,K.Griesar,W.Haase,B.Krebs,Inorg.Chem.,1994,33,456-464)所描述的方法的改进。可在至多48小时内实现配体的完全合成和金属络合物的进一步合成,以得到多克规模的分析纯化合物。作为对比,(BDI)ZnN(SiMe3)2(其为用于LA、BBL或TMC的ROP的非常高效的基于锌的引发剂)的合成需要整整两个星期和苛刻的条件。
所述前配体然后用于制备周期表第2和12族的二价金属的络合物。优选的金属为Zn和Sn。所述络合物是通过使所述前配体与前体M(X)2反应而制备的,其中X为具有1-6个碳原子的烃基例如甲基、乙基、正丁基、苯基,或者氨基例如N(SiMe3)2、NMe2、NEt2、NiPr2,或者烃氧基例如OEt、OiPr、OtBu、OCH2Ph、OSiPh3
本酚根配体为稳定化用配体,在独自的情况下为非活性的,这与充当环状酯或碳酸酯的开环聚合的引发剂的醇化物(alkoxide)配体相反。
在根据本发明的一个实施方式中,R1(称作[LO3])或者为CH2N-吗啉(称作[LO2])。
优选地,R2和R3相同且为叔丁基。
在根据本发明的另一实施方式中,R1和R3相同且为叔丁基,且R2为氢或甲基、优选氢。已经出乎意料地观察到,基于所述配体的所述金属络合物在环状酯或环状碳酸酯的开环均聚或共聚中是非常有活性的(活泼的)。
在所述醇或所述胺中,优选地,R为伯或仲烷基残基或为苄型基团,更优选地,其为异丙基(iPr)或苄基(Bn)。其也可为多元醇例如二元醇、三元醇或更高官能度的多元醇,典型地选自1,3-丙二醇或三羟甲基丙烷,其可得自生物质例如甘油或任何其它基于糖的醇例如赤藓醇或环糊精。所有的醇或胺可单独或组合使用。
更优选地,所述醇选自异丙醇、仲丁醇或苯甲醇。
在相对于金属为1-1,000当量、优选5-200当量的醇、胺或多元醇的存在下,这些金属络合物是用于丙交酯、环状酯和5-7元环状碳酸酯的受控永活性ROP的非常有活性和生产率的催化前体。聚合可以在有机溶剂中的溶液或者以不存在溶剂的熔体在20℃-250℃、优选50℃-180℃的温度下进行。典型地,在每金属中心最高达数百当量的醇的存在下,可实现至少50000且最高达500000当量、优选50000-100000当量的单体的转化。
优选地,所述环状酯选自L-丙交酯(L-LA)、外消旋-丙交酯(外消旋-LA)、ε-己内酯或δ-戊内酯。
优选的环状碳酸酯选自TMC和其取代衍生物。非限制性实例示于以下:
由此制备的聚合物典型地显示出范围为1.1-5.0、更典型地1.1-2.5的单模态(unimodal)分子量分布。
数均分子量Mn可通过单体与醇的比率或单体与胺的比率调节并且范围为1000-100000g/mol、更典型地10000-50000g/mol。此外,实验分子量(通过尺寸排阻色谱法(SEC)测定)与由单体与醇(胺)的比率和单体转化率计算的分子量良好地吻合。
根据本发明的另一实施方式公开了以顺序、两步方法制备包括聚酯嵌段和聚碳酸酯嵌段的嵌段共聚物的方法,包括如下步骤:
a)将所述金属络合物、过量的醇以及第一环状单体注入到反应器中;
b)保持在第一聚合条件下以形成以OH基团为末端的第一聚合物嵌段;
c)将第二环状单体注入到同一反应器中;
d)保持在第二聚合条件下以形成连接至第一嵌段的第二聚合物嵌段。
实施例
无水SnCl2(Acros,98%)和LiNMe2(Aldrich,95%)如所收到那样的使用。Sn(NMe2)2如例如Schaeffer和Zuckerman(Schaeffer,C.D和Zuckerman,J.J.,J.Am.Chem.Soc.,96,7160-7162,1974)、或者Foley和Zeldin(Foley,P.和Zeldin,M.,Inorg.Chem.,14,2264-2267,1975)、或者Wang和Roskamp(Wang,W.B.和RoskampE.J.,J.Am.Chem.Soc.,115,9417-9420,1993)所报道的那样制备。
在BrukerAC-300和AM-400波谱仪上记录119SnNMR谱并且将其相对于SnMe4进行外部校准。
Sn(O-2,6- t Bu-Ph) 2 的合成
通过使2当量的2,6-tBu-苯酚与1当量的氨基前体Sn[N(SiMe3)2]2在二乙基醚中在室温下反应制备络合物Sn(O-2,6-tBu-Ph)2(1)。在室温下用弯指(bentfinger)将0.88g(2.0mmol)的Sn[N(SiMe3)2]2)加入至0.82g2,6-tBu-苯酚(4.0mmol)在30mL二乙基醚中的溶液。将所得混合物在室温下搅拌16小时;观察到黄色沉淀的快速形成。然后通过过滤除去溶剂并且将所得粉末用10mL戊烷洗涤两次,在真空下干燥之后得到0.86g的同配(homoleptic)络合物Sn(O-2,6-tBu-Ph),产率87%。
所得黄色粉末(其不溶于脂族烃并且可部分地溶解于芳族溶剂)的NMR(1H,13C,119Sn)谱在溶液中证实了产物的预期性质(种类,nature)。1HNMR(C6D6,400.13MHz,25℃):δH7.37(4H,d,3JHH=7.8Hz,芳族-H),6.90(2H,t,3JHH=7.8Hz,芳族-H),1.58(36H,brs,C(CH3)3)ppm。13C{1H}NMR(C6D6,75.47MHz,25℃):δC157.9,139.5,125.2,119.1(芳族),34.9(C(CH3)3),30.0(C(CH3)3)ppm。119Sn{1H}NMR(C6D6,149.20MHz,25℃):δSn–216ppm。
其固态结构通过X-射线衍射晶体学测定,并且示于图1中。其揭示了具有88.9°的牢固O-Sn-O角的单体性物质,证明锡中心的电子孤对的影响。尽管不存在螯合,但所述络合物证明在溶液(C6D6)中是完全稳定的,在数天期间未观察到分解。
[LO 3 ] 2 Sn(16)的合成
在室温下将1.43g[LO3]H(3.28mmol)在30mL戊烷中的溶液加入至0.329gSn[NMe2]2(1.59mmol)在30mL戊烷中的溶液。将所得混合物在室温下搅拌3小时;观察到白色沉淀的快速形成。在将该溶液浓缩之后,通过过滤除去溶剂,并且将所得固体用10mL戊烷洗涤两次,在真空下干燥之后得到1.40g同配络合物16,产率89%。元素分析发现:C60.6%,H8.4%,N2.7%。C50H84N2O10Sn要求:C60.5%,H8.5%,N2.8%。1HNMR(C6D6,500.13MHz,25℃):δH=7.64(2H,d,4JHH=2.7Hz,芳族-H),6.94(2H,d,4JHH=2.7Hz,芳族-H),4.80(2H,brs,Ar-CH2-N),3.95-3.70和3.45-3.25(38H,brm,O-CH2,N-CH2-CH2,N-CH2-Ar),3.04(4H,brs,N-CH2-CH2),1.75(9H,s,C(CH3)3),1.46(9H,s,C(CH3)3)ppm。13C{1H}NMR(C6D6,125.76MHz,25℃):δC=159.2,137.5,137.2,127.1,123.7,123.0(芳族),71.0,70.3,70.2,66.4(O-CH2),56.0(Ar-CH2-N),50.2(N-CH2-CH2),35.2(C(CH3)3),33.8(C(CH3)3),31.8(C(CH3)3),30.2(C(CH3)3)ppm。119Sn{1H}NMR(C6D6,149.20MHz,25℃):δSn=–566ppm。
[LO 3 ]SnNMe 2 (17)的合成
在-80℃的温度下在10分钟的时间期间将0.43g[LO3]H(0.98mmol)在15mL戊烷中的溶液加入至0.21gSn[NMe2]2(1.01mmol)在30mL戊烷中的溶液。将所得混合物搅拌2小时的时间并且使温度升高至–30℃;观察到沉淀的形成。然后在室温下在真空下除去挥发物,并将所得固体用3mL戊烷洗涤3次,在真空中干燥,得到被少于5%同配的16污染的络合物17(0.28g,48%)。1HNMR(C6D6,500.13MHz,25℃):δH=7.63(1H,d,4JHH=2.5Hz,芳族-H),6.91(1H,d,4JHH=2.5Hz,芳族-H),4.20-2.50(22H,brm,O-CH2,N-CH2-CH2,N-CH2-Ar),3.26(6H,s,N-CH3),1.77(9H,s,C(CH3)3),1.44(9H,s,C(CH3)3)ppm。13C{1H}NMR(C6D6,125.76MHz,25℃):δC=159.3,139.1,137.5,125.9,124.0,122.6(芳族),71.4,69.9,65.8(O-CH2,N-CH2-CH2),57.3(Ar-CH2-N),40.9(N-CH3),35.2(C(CH3)3),33.9(C(CH3)3),31.9(C(CH3)3),30.2(C(CH3)3)ppm。119Sn{1H}NMR(C6D6,149.20MHz,25℃):δSn=-147ppm。
[LO 3 ]SnN(SiMe 3 ) 2 (18)的合成
在-80℃的温度下在60分钟的时间期间将2.77g[LO3]H(6.32mmol)在30mL二乙基醚中的溶液加入至2.92gSn[N(SiMe3)2]2(6.64mmol)在50mL二乙基醚中的溶液。其从深橙色溶液变成浅黄色溶液。将所得混合物搅拌90分钟的时间,让温度温热至–40℃,并且在真空下除去挥发物。将所得粉末用10mL温度为–20℃的冷戊烷洗涤3次,并且在真空中干燥,得到4.1g作为白色粉末的18,产率91%。通过从冷戊烷溶液重结晶,得到适合于X-射线衍射的单晶。络合物18的固态结构示于图2中并且1HNMR示于图3中。1HNMR(C6D6,500.13MHz,25℃):δH=7.63(1H,d,4JHH=2.6Hz,芳族-H),7.00(1H,d,4JHH=2.6Hz,芳族-H),4.18(1H,brs,Ar-CH2-N),3.88,3.79,3.64,3.64(4H,brs,N-CH2-CH2),3.47-3.17(15H,brm,O-CH2,N-CH2-CH2,Ar-CH2-N),2.88(2H,brs,N-CH2-CH2),1.70(9H,s,C(CH3)3),1.39(9H,s,C(CH3)3),0.50(18H,s,N(Si(CH3)3)2)ppm。13C{1H}NMR(C6D6,125.76MHz,25℃):δC=158.4,140.33,139.13,126.6,124.5,124.3(芳族),71.0,70.2(O-CH2),65.5,65.2(N-CH2-CH2),57.2(Ar-CH2-N),53.1,51.8(N-CH2-CH2),34.9(C(CH3)3),33.9(C(CH3)3),31.7(C(CH3)3),30.3(C(CH3)3),6.5(N(Si(CH3)3)2)ppm。29Si{1H}NMR(C7D8,79.49MHz,25℃):δSi=-0.49ppm。119Sn{1H}NMR(C6D6,149.20MHz,25℃):δSn=–55ppm。
[LO 3 ]SnOSiPh 3 (21)的合成
在-50℃的温度下在20分钟的时间期间将0.63g[LO3]H(1.44mmol)在10mL二乙基醚中的溶液加入至0.64gSn[N(SiMe3)2]2(1.46mmol)在二乙基醚(20mL)中的溶液。将所得混合物在–50℃的温度下再搅拌20分钟,之后滴加0.41gHOSiPh3(1.39mmol)在10mL二乙基醚中的溶液。将所得溶液在–30℃的温度下再搅拌20分钟,然后在真空下除去挥发物。将所得固体用10mL戊烷洗涤3次并且在真空下干燥,得到1.0g作为白色粉末的21,产率88%。通过从戊烷溶液重结晶,得到适合于X-射线衍射的单晶。络合物21的固态结构示于图4中并且其1HNMR示于图5中。元素分析发现:C62.3,H6.8,N1.6%。C43H57NO6SiSn要求:C62.2,H6.9,N1.7%.1HNMR(C6D6,500.13MHz,25℃):δH=8.06(6H,m,芳族-H),7.66(1H,d,4JHH=2.6Hz,芳族-H),7.24(6H,m,芳族-H),7.29(3H,m,芳族-H),6.80(1H,d,4JHH=2.6Hz,芳族-H),4.63(1H,m,Ar-CH2-N),3.91(1H,brm,N-CH2-CH2),3.64(1H,brm,N-CH2-CH2),3.57(1H,brm,N-CH2-CH2),3.27,3.20,3.14-2.92(14H,brm,O-CH2,N-CH2-CH2),2.82(2H,brm,Ar-CH2-N,N-CH2-CH2),2.43,2.09(2H,brs,N-CH2-CH2),1.81(9H,s,C(CH3)3),1.44(9H,s,C(CH3)3)ppm。13C{1H}NMR(C6D6,125.76MHz,25℃):δC=158.9,140.7,138.5,137.0,135.6,128.7,128.0(与C6D6重叠),128.5,124.1,122.0(芳族),70.8,70.6,69.5,69.0(O-CH2),66.2,64.5(N-CH2-CH2),58.9(Ar-CH2-N),53.8,48.6(N-CH2-CH2),35.2(C(CH3)3),33.9(C(CH3)3),31.9(C(CH3)3),30.1(C(CH3)3)ppm。29Si{1H}NMR(C6D6,79.49MHz,25℃):δSi=-22.2ppm。119Sn{1H}NMR(C6D6,149.20MHz,25℃):δSn=–459ppm。
[LO 2 ]SnN(SiMe 3 ) 2 (23)的合成
在-45℃的温度下在15分钟的时间期间将0.25g[LO2]H(0.81mmol)在20mL二乙基醚中的溶液加入至0.37gSn[N(SiMe3)2]2(0.84mmol)在20mL二乙基醚中的溶液。将所得混合物在-45℃的温度下搅拌15分钟的时间,然后在真空下除去挥发物。将粘性的固体用6×5mL戊烷进行精洗(strip),但是无法实现胺的完全除去。通过在–50℃的温度下在戊烷中的浓溶液的经过数星期的沉淀,可获得完全纯净的少量的约30g的23。1HNMR(C6D6,400.13MHz,25℃):δH=7.68(1H,d,4JHH=2.6Hz,芳族-H),6.80(1H,d,4JHH=2.6Hz,芳族-H),4.3-1.8(10H,brm,Ar-CH2-N-CH2-CH2-O),1.68(9H,s,C(CH3)3),1.41(9H,s,C(CH3)3),0.45(18H,s,N(Si(CH3)3)2)ppm。13C{1H}NMR(C6D6,100.62MHz,25℃):δC157.8,139.8,138.8,125.6,124.1,122.3(芳族),64.0(O-CH2),60.1(Ar-CH2-N),52.4(N-CH2-CH2),34.3(C(CH3)3),33.4(C(CH3)3),31.1(C(CH3)3),29.7(C(CH3)3),5.8(N(Si(CH3)3)2)ppm。29Si{1H}NMR(C7D8,79.49MHz,25℃):δSi=0.14ppm。119Sn{1H}NMR(C7D8,149.20MHz,25℃):δSn=–42ppm。
聚合结果
在甲苯中用[L-LA]02.0M或4.0M如表1中所示进行L-丙交酯的开环聚合。
将各种金属预催化剂与过量iPrOH一起使用,如表1中所示。单体的量、聚合温度和时间以及聚合结果也示于表1中。
表1.
a:使用超纯单体进行
b:用工业级单体(湿的)进行
多分散指数由重均分子量Mw与数均分子量Mn的比率Mw/Mn表示。
数均分子量通过尺寸排阻色谱法(SEC)相对于聚苯乙烯标准物测量并且通过0.58的因子修正。其由式Mn=[L-丙交酯]0/[iPrOH]0×单体转化率×ML-丙交酯+MiPrOH计算,其中ML-丙交酯=144g·mol-1且MiPrOH=60g·mol-1
用未经纯化的和经两次纯化的L-LA,使用催化剂体系Sn(Oct)2/辛醇或Sn(O-2,6-tBu-Ph)2/辛醇,制备另外的实施例。未经纯化的L-LA的共聚条件和结果总结于表2中。经两次纯化的L-LA的共聚条件和结果总结于表3中。
表2.
表3.
对于两种催化剂Sn(Oct)2和Sn(OAr)2以及对于6000/1/14.8的[LA]0/[Sn]0/[辛醇]0比率,转化率(以百分数表示)随时间(以分钟表示)的变化示于图6中。对于同样两种催化剂和72000/1/178的[LA]0/[Sn]0/[辛醇]0比率,其示于图7中。
还用催化剂体系Zn(LO3)2/辛醇进行了经两次纯化的L-LA的开环聚合。
Zn(LO 3 ) 2 的合成
在室温下将2.20g[LO3]H(5.02mmol)在50mL甲苯中的溶液加入至0.92gZn[N(SiMe3)2]2(2.39mmol)在40mL甲苯中的溶液。将所得混合物在40℃的温度下搅拌3小时的时间,并且在真空下除去挥发物。向所得的油中加入戊烷,直至白色固体沉淀出来。将固体通过过滤分离并且用10mL戊烷洗涤3次,得到在真空中干燥的2.20gZn(LO3)2,产率98%,其为无色粉末。
实测值:C64.2,H8.8,N2.9%。C50H84N2O10Zn要求:C64.0,H9.0,N3.0%。
1HNMR(C6D6,500.13MHz,25℃):δH=7.57(2H,d,4JHH=2.6Hz,芳族-H),6.94(2H,d,4JHH=2.6Hz,芳族-H),4.3-3.0(44H,brm,大环-H),1.69(18H,s,C(CH3)3),1.45(18H,s,C(CH3)3)ppm。
13C{1H}NMR(C6D6,100.03MHz,25℃):δC=163.9,137.9,134.8,125.9,124.0,119.8(芳族),71.1,70.8,70.5(br),67.0,65.4,61.2,54.3,49.8,35.3(C(CH3)3),33.8(C(CH3)3),31.9(C(CH3)3),30.0(C(CH3)3)ppm。
聚合条件和结果示于表4中。
表4.
在150℃和185℃的温度下观察到黄色溶液和非常差的转化率。看起来,110℃的温度对于进行L-LA的高效且受控的ROP是最合适的。
使用基于这些Sn(OAr)2/iPrOH的催化体系,观察到了受控的永活性ROP过程,因为可清楚地看到,分子量由单体/醇比率决定。相应的多分散指数也非常窄。
所得聚合物的NMR谱法(图8)和MALDI-ToF-MS(图9)分析证实了它们的预期结构,特别是它们的链末端的性质,即使似乎发生定量的酯交换反应(其通过在MALDI-TOF质谱图的两个连串(相邻,consecutive)信号之间的增量(测得其为72Da而不是144Da)检测)也是如此。用该类型的络合物Sn(O-2,6-tBu-Ph)2获得的这些结果特别适合于工业应用,因为它们是非常耐用的、便宜的并且与更复杂的杂配(heteroleptic)络合物例如[LO3]SnNMe2或[LO3]SnN(SiMe3)2一样高效。已经出乎意料地观察到,它们比目前使用的Sn(Oct)2更高效。
必须补充的是,基于酚根配体的本催化剂前体Sn-二(酚根)或[LO3]SnNMe2或[LO3]SnN(SiMe3)2是比Sn(Oct)2好的催化剂前体,这意味着对于等量的Sn前体,聚合反应比用Sn(Oct)2前体快。结果,与用现有技术体系相比,需要更少的前体,从而在最终聚合物中留下更少的残留金属。
使用110℃的聚合温度,约5000当量的大负载的单体被完全转化。必须注意,过高估计的反应时间通常导致比通常的分子量分布大。使用原型Sn(Oct)2的对比研究证实了Sn(O-2,6-tBu-Ph)2关于在60℃下在所有的单体负载和聚合温度下的催化活性的优越性。
三亚甲基碳酸酯和丙交酯的顺序嵌段共聚
用Sn(O-2,6-tBu-Ph)2/BnOH体系(1:10)在具有[TMC]0=2.0M的甲苯溶液中在60℃的温度下进行三亚甲基碳酸酯(相对于Sn为1000当量)的开环聚合3小时。在该时期之后,取样测定用量(aliquot)的反应混合物,并且通过1HNMR和SEC进行分析。这揭示了TMC的96%转化率以及具有Mn=9,800g/mol和Mw/Mn=1.25的BnO-PTMC-OH聚合物的产生。然后,在受控的气氛下在该反应容器中引入L-丙交酯(相对于Sn为1000当量),并且将反应混合物在60℃下再加热3小时的时间。混合物通过1HNMR和SEC进行分析。这揭示了L-LA的90%的转化率以及具有Mn=22,800g/mol和Mw/Mn=1.30的BnO-PTMC-b-PLLA-OH嵌段共聚物的产生。通过在向反应混合物中加入甲醇之后的沉淀分离该嵌段共聚物。

Claims (14)

1.使用包括如下的催化体系使选自环状碳酸酯或环状酯的一种或多种环状单体进行永活性开环均聚、或者顺序两步开环嵌段共聚的方法:
a)式M(OAr)nXm的金属络合物,其中M为Sn,OAr为酚根配体,X为:具有1-6个碳原子的烃基,或氨基,和其中n至少为1且n+m为金属M的化合价;
b)醇ROH或伯胺RNH2,其中R为包含脂族和/或芳族部分的具有1-20个碳原子的线型或支化的烃基,并且所述醇ROH或伯胺RNH2以相对于所述金属络合物大于1的摩尔比率使用;
其中所述酚根配体是由下式的基于酚的前配体制备的:
其中
R1和R3相同并且为叔丁基且R2为氢且其中m=0;或者
R1和/或R3或(CH2)mN(CH2CH2OCH3)2类型的,其中m为1、2或3且n≥1,和R2为具有最高达10个碳原子的烃基。
2.权利要求1的方法,其中X选自甲基、乙基、正丁基、或苯基,或者选自N(SiMe3)2、NMe2、NEt2、NiPr2
3.权利要求1的方法,其中对于环状酯和环状碳酸酯的两步嵌段共聚,R1和/或R3或(CH2)mN(CH2CH2OCH3)2类型的,其中m为1、2或3且n≥1。
4.权利要求3的方法,其中R1为被称为{LO3}的或者为被称为{LO2}的CH2N-吗啉,并且R2和R3相同且为叔丁基,和M为锡(II)。
5.权利要求1的方法,其中对于环状酯和环状碳酸酯的均聚或两步嵌段共聚,R1和R3相同且为叔丁基,和R2为氢,M为锡(II)且n=2,m=0。
6.权利要求1的方法,其中醇ROH或伯胺RNH2选自:其中R为伯或仲烷基残基、或苄型基团的醇ROH或伯胺RNH2;或多元醇;或者其组合。
7.权利要求6的方法,其中所述多元醇选自二元醇、三元醇或更高官能度的多元醇、或者其组合。
8.权利要求6的方法,其中R为iPr或苄基或(CH2)7CH3
9.权利要求1的方法,其中醇/金属的摩尔比率为大于1到1000。
10.权利要求9的方法,其中醇/金属的摩尔比率为5-200。
11.权利要求1的方法,其中单体/金属的摩尔比率为500-500,000。
12.权利要求11的方法,其中单体/金属的摩尔比率为1,000-100,000。
13.用于制备包括聚酯嵌段和聚碳酸酯嵌段的嵌段共聚物的顺序两步方法,其包括如下步骤:
a)将权利要求1中定义的金属络合物、相对于金属M超过1当量的醇、以及第一环状单体注入反应器中;
b)保持在第一聚合条件下以形成以OH基团为末端的第一聚合物嵌段;
c)将第二环状单体注入同一反应器中;
d)保持在第二聚合条件下以形成连接至第一嵌段的第二聚合物嵌段。
14.权利要求13的方法,其中所述聚酯嵌段由选自L-丙交酯(L-LA)、外消旋-丙交酯(外消旋-LA)、ε-己内酯或δ-戊内酯的环状酯单体制备,和所述聚碳酸酯嵌段由选自TMC和其如下的取代衍生物的环状碳酸酯制备:
CN201280052407.8A 2011-09-02 2012-08-31 用于环状酯和碳酸酯的永活性开环聚合的基于酚根络合物的催化剂体系 Active CN103906787B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11290394.3 2011-09-02
EP11290394 2011-09-02
PCT/EP2012/066939 WO2013030324A1 (en) 2011-09-02 2012-08-31 Catalyst systems based on phenolate complexes for immortal ring-opening polymerisation of cyclic esters and carbonates

Publications (2)

Publication Number Publication Date
CN103906787A CN103906787A (zh) 2014-07-02
CN103906787B true CN103906787B (zh) 2016-07-06

Family

ID=46755020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280052407.8A Active CN103906787B (zh) 2011-09-02 2012-08-31 用于环状酯和碳酸酯的永活性开环聚合的基于酚根络合物的催化剂体系

Country Status (9)

Country Link
US (1) US9512267B2 (zh)
EP (1) EP2751162B1 (zh)
JP (1) JP6120856B2 (zh)
KR (1) KR101812474B1 (zh)
CN (1) CN103906787B (zh)
CY (1) CY1119403T1 (zh)
ES (1) ES2641647T3 (zh)
PL (1) PL2751162T3 (zh)
WO (1) WO2013030324A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI601571B (zh) * 2016-12-07 2017-10-11 財團法人工業技術研究院 觸媒及以此觸媒合成環狀碳酸酯的方法
EP3628698A1 (en) * 2018-09-26 2020-04-01 Covidien LP Biodegradable triblock copolymers and implantable medical devices made therefrom
CN110092899B (zh) * 2019-05-23 2021-04-06 大连汇鹏达化工有限公司 一种苯丙氨酸亚锡配合物的用途
WO2022006501A1 (en) 2020-07-03 2022-01-06 Entegris, Inc. Process for preparing organotin compounds

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414029B2 (ja) * 1994-03-04 2003-06-09 ダイセル化学工業株式会社 単分散重合体およびそれらの製造方法
DE19520172A1 (de) 1995-06-01 1996-12-05 Siemens Ag Magnetisierungseinrichtung für ein magnetoresistives Dünnschicht-Sensorelement mit einem Biasschichtteil
EP2096132A1 (en) 2008-02-26 2009-09-02 Total Petrochemicals Research Feluy Monomers issued from renewable resources and process for polymerising them
EP2151457A1 (en) * 2008-07-28 2010-02-10 Total Petrochemicals France Process to make a diblock copolymer having a monovinylaromatic polymer block
EP2307478B1 (en) * 2008-07-31 2013-11-20 Total Research & Technology Feluy Catalytic process for polymerising cyclic carbonates issued from renewable resources.
EP2196486A1 (en) * 2008-12-12 2010-06-16 Total Petrochemicals Research Feluy Process to prepare di- and multiblock copolymers
EP2253637A1 (en) * 2009-04-30 2010-11-24 Total Petrochemicals Research Feluy Catalytic systems for immortal ring-opening polymerisation of cyclic esters and cyclic carbonates
BE1019059A3 (fr) * 2009-12-03 2012-02-07 Futerro Sa Procede de polymerisation en masse du lactide.

Also Published As

Publication number Publication date
ES2641647T3 (es) 2017-11-10
WO2013030324A1 (en) 2013-03-07
CN103906787A (zh) 2014-07-02
US20140228535A1 (en) 2014-08-14
JP6120856B2 (ja) 2017-04-26
JP2014525487A (ja) 2014-09-29
CY1119403T1 (el) 2018-04-04
EP2751162A1 (en) 2014-07-09
US9512267B2 (en) 2016-12-06
PL2751162T3 (pl) 2017-12-29
EP2751162B1 (en) 2017-06-28
KR101812474B1 (ko) 2017-12-27
KR20140071366A (ko) 2014-06-11

Similar Documents

Publication Publication Date Title
CN102459284B (zh) 用于环状酯和环状碳酸酯的永活性开环聚合的催化体系
D'Auria et al. Tailor-made block copolymers of l-, d-and rac-lactides and ε-caprolactone via one-pot sequential ring opening polymerization by pyridylamidozinc (ii) catalysts
Kan et al. Aluminum methyl, alkoxide and α-alkoxy ester complexes supported by 6, 6′-dimethylbiphenyl-bridged salen ligands: synthesis, characterization and catalysis for rac-lactide polymerization
Ebrahimi et al. Highly active chiral zinc catalysts for immortal polymerization of β-butyrolactone form melt processable syndio-rich poly (hydroxybutyrate)
CN103906787B (zh) 用于环状酯和碳酸酯的永活性开环聚合的基于酚根络合物的催化剂体系
US6316590B1 (en) Synthesis of stereospecific and atactic poly(lactic acid)s
US20150005470A1 (en) Organotin compounds, preparation method thereof, and preparation of polylactide resin using the same
Ouyang et al. Synthesis and characterization of dinuclear salan rare-earth metal complexes and their application in the homo-and copolymerization of cyclic esters
Fagerland et al. Modulating the thermal properties of poly (hydroxybutyrate) by the copolymerization of rac-β-butyrolactone with lactide
US20130281681A1 (en) Group 3 Post-Metallocene Complexes Based on Bis(Naphthoxy)Pyridine and Bis(Naphthoxy)ThioPhene Ligands for the Ring-Opening Polymerisation of Polar Cyclic Monomers
Shao et al. Lanthanum complexes stabilized by a pentadentate Schiff-base ligand: Synthesis, characterization, and reactivity in statistical copolymerization of ε-caprolactone and L-lactide
Wei et al. Aluminum complexes with Schiff base bridged bis (indolyl) ligands: synthesis, structure, and catalytic activity for polymerization of rac-lactide
US20150307656A1 (en) Polymerization method
Tian et al. Synthesis of N-methyl-o-phenylenediamine-bridged bis (phenolato) lanthanide alkoxides and their catalytic performance for the (co) polymerization of rac-butyrolactone and L-lactide
Kamavichanurat et al. Controlled and effective ring-opening (co) polymerization of rac-lactide, ε-caprolactone and ε-decalactone by β-pyrimidyl enolate aluminum complexes
US9777023B2 (en) Dinuclear indium catalysts and their use for (Co)polymerization of cyclic esters
US20090149555A1 (en) Method for preparing polyhydroxyalkanoates, polymers thus obtained, compositions comprising them and their uses
Bruckmoser et al. High-Throughput Approach in the Ring-Opening Polymerization of β-Butyrolactone Enables Rapid Evaluation of Yttrium Salan Catalysts
US7169729B2 (en) Use of zinc derivatives as cyclic ester polymerization catalysts
Hornberger et al. Connecting 16-with 4-Membered Rings: Ring-Opening Polymerization of Bio-Based ω-Pentadecalactone with Amino-Alkoxy-Bis (phenolate) Yttrium Initiators and Copolymerization with β-Butyrolactone
KR20110024610A (ko) 폴리락타이드 수지 제조용 유기금속 촉매, 상기 유기금속 촉매를 이용한 폴리락타이드 수지의 제조 방법, 및 이에 의해 제조된 폴리락타이드 수지
CN114751897A (zh) 一种胍基锌配合物催化剂、制备方法及其应用
Jiang et al. Synthesis of Poly (δ-caprolactone) via Bis (phenolate) Rare-Earth Metal Complexes Mediated Ring-Opening Polymerization and Its Chemical Recycling
Han et al. Synthesis and characterization of dinuclear aluminum complexes bearing N, N-Dialkylaniline-amido ligands and its catalytic properties for lactone polymerization
Mamleeva Amino-and imino-supported zinc complexes and their influence on ring opening polymerization and immortal ring opening polymerization of lactide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant