CN103904297B - 用于交指型共挤出的结构 - Google Patents

用于交指型共挤出的结构 Download PDF

Info

Publication number
CN103904297B
CN103904297B CN201310673712.5A CN201310673712A CN103904297B CN 103904297 B CN103904297 B CN 103904297B CN 201310673712 A CN201310673712 A CN 201310673712A CN 103904297 B CN103904297 B CN 103904297B
Authority
CN
China
Prior art keywords
structure according
section
interdigitated
print head
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310673712.5A
Other languages
English (en)
Other versions
CN103904297A (zh
Inventor
C·L·科布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/727,937 external-priority patent/US9899669B2/en
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of CN103904297A publication Critical patent/CN103904297A/zh
Application granted granted Critical
Publication of CN103904297B publication Critical patent/CN103904297B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种电极结构,其具有至少第一材料和第二材料的交指型层,所述第二材料具有高于或类似于所述第一材料的电导率,并比所述第一材料更离子导电,所述两种材料的横截面为非矩形的。

Description

用于交指型共挤出的结构
背景技术
存在其中电池、燃料电池、电气互连、超电容器等受益于不同材料的紧密间隔的交指型条的许多应用。这些材料可使用如美国专利公布2012/0156364中所述的共挤出印刷头(具有美国专利7,799,371中所示的类似的但替代的印刷头)共挤出。由此而言,被共挤出意指当材料流动时,材料不混合。然而,所得结构在横截面形式下具有矩形几何形状,且在垂直于交指型几何形状的方向上具有直线均匀的印刷。
发明内容
然而,建模已显示非矩形横截面几何形状在电容和能量密度方面具有性能提高增益。通常,电极得自狭缝式涂布过程或薄膜和半导体制造技术。这些方法仍未达到大规模制备结构化电极的成本有效性。
附图说明
图1显示了一个现有技术交指型结构。
图2-3显示了交指型结构的实施例。
图4显示了交指型结构的一个现有技术实施例。
图5-6显示了交指型结构的实施例。
图7显示了电池结构的一个实施例。
图8和9显示了用于现有技术和锂结构的目前实施例的材料利用率的标图。
图10显示了现有技术与锂结构的目前实施例之间的放电性能的标图。
图11和12显示了挤出材料的波状图案的实施例。
具体实施方式
图1-6显示了使用共挤出印刷头(如美国专利7,799,371中所示)而形成的结构的各种实施例。图1显示了电极结构10的一个现有技术实施例。结构具有以较宽部分与第二材料14相互交叉的第一材料12。材料12由紧密堆积的活性电极材料组成,材料14由高度多孔的材料组成以用于提高离子电导率或电导率。材料14可具有第一材料的更高或相同的电导率,且更有可能具有更高的离子电导率。
图4显示了类似的现有技术方案,不同的是区域34得自已被去除的牺牲材料。仅有致密区域(如32)保留。在电池电极的实施例中,这将允许电解质填充区域。
图2-3显示了紧密堆积的区域18和24,以及具有非矩形横截面的多孔区域20和26。通过控制过程条件,如压力调节、流体流量和流体流变学,可获得结构16和22。对于流体流变学,两个材料的粘度应该以类似的密度匹配。然而,由于导电材料的浓度,密度可能不同,但粘度的匹配仍然重要。
区域18和24的非矩形横截面允许更好地控制电极结构16和22上的浓度梯度。这些结构具有暴露于多孔区域的紧密堆积区域的更大的表面积。在电池电极上的更大的浓度梯度导致更大的欧姆电压降,这影响电池的能量密度和功率密度。通过控制浓度梯度,可避免大的梯度并增加电池的效率。非矩形横截面可具有尖角或圆角。
图5和6显示了类似的结构36和42,它们具有紧密堆积材料的非矩形区域38和44以及诸如40和46的非矩形空间。在这些结构中,空间将填充电解质材料,从而将紧密堆积材料的更大表面积暴露于电解质。
图7显示了电池模型的简化方块图,所述电池模型用于确定非矩形电极横截面相比于矩形横截面实施例的性能改进。结构50具有集电器边界52。在该实施例中,阳极54由厚度在50微米范围内的锂箔组成。分离器56将阳极52与阴极结构58分开。在该实施例中,阴极结构58由紧密堆积材料和高度多孔的材料的交替区域组成。尽管图7的方块图将这些区域显示为矩形,它们实际上具有图2和3的形状。在该实施例中,紧密堆积的区域由70%浓度的活性材料的氧化钴锂(LCO)组成,高度多孔的区域由40%浓度的LCO组成。
材料可为具有任何范围的活性材料浓度的任何类型的电池材料,但通常高度多孔的区域具有比致密区域更少的活性材料。此外,材料可用于不同于电池的其他结构中。可使用的材料的例子包括氧化钴锂(LCO)、氧化锰钴镍锂(NCM)、或两者的混合物。其他材料可包括氧化铝钴镍锂(NCA)、氧化锰锂(LMO)、磷酸铁镍(LFeP)。阳极材料可为钛酸锂(LTA)。
图8和9分别显示了在‘1C’放电之后图1和图2的电极结构的材料利用率的标图,其中施加的电流密度为12.9mA/cm2。‘C’速率放电为电池相对于其最大电容放电的速率的量度。‘1C’速率为电池在1小时内放出其全部电容的电流。结构的多孔区域与致密区域之间的质量和体积守恒,仅有的区别为横截面的几何形状。在1C速率下,图2的结构具有比图1的结构大大约10%的活性材料利用率。
下表中的电容、能量和功率数显示了结构之间的相对性能改进而不是氧化钴锂可实现的绝对性能改进。图10结合下表显示了使用非矩形结构获得的能量、功率和电容增益。在图10中的图中,上方的线为图2的结构,下方的线为图1的结构。标图显示,相比于图1的结构,图2的结构具有更长的运行时间和更低的电压降。这是由于活性材料利用率的增加和阴极结构中更低的浓度梯度。
如前所述,这些增益不是来自结构的更大体积或更大质量,而仅仅来自几何形状的改变。
到目前为止,讨论集中于相对于电池电极结构的横截面的几何形状改变。然而,如前所述,过程参数的控制可实现作为蚀刻掩模和互连的由印刷头形成的非矩形结构。在此情况中,图5和6所示的结构将构成去除牺牲材料时留下的材料。取决于材料在所得结构中的目的,所述材料可为导电的或聚合物。例如,对于电路互连,材料为导电的(金属或导电聚合物),其在去除牺牲材料之后用作触点。
美国专利公布2012/0156364中所述的印刷头具有所谓的‘清扫’流路,其中流路的边缘和转角为成角度的和/或倾斜的,以减少材料可能积聚之处的哑点。所述积聚的材料可达到临界质量并随后冲入流路,或者其可导致流路收缩。在任一情况中,通过清扫流路,沉积于表面上的所得材料的均匀性以直的单片图案保持。然而,通过使用‘未清扫’的流路,或者通过使用压差或机械运动将材料流脉冲至印刷头中,可在表面上形成材料的更无规、起伏或‘波状’的流动图案。
图11显示了这种无规材料图案的一个例子。所得沉积物由两种不同的材料62和64的波状线条组成。如前所述,可去除材料中的一者,其充当牺牲材料。通过去除而留下的空穴可由不同的材料填充。或者,剩余材料可形成互连和接触垫,或者可形成用于下方材料的蚀刻掩模。
图12显示了材料图案的简化形式。流动方向定义为其中材料从印刷头流动的方向。印刷头将从最接近观察者的图案的边缘行进,并远离观察者拉回。与膜正交的方向为膜的俯视图。堆叠方向指通过在多个平行路径上运行印刷头,该图案侧向‘堆叠’以通过在所示方向上将较小的图案侧向堆叠在一起而形成大得多的图案的能力。
以此方式,可通过形成具有非矩形横截面的电极结构而形成用于电池的更有效、更高性能的电极结构。非矩形结构可通过控制过程参数而由具有清扫流路的已有印刷头形成,或者可由类似于已有印刷头、但具有‘未清扫’路径的印刷头形成。类似地,可用作互连或无规蚀刻掩模的无规结构可使用已有印刷头或使用具有未清扫流路的印刷头通过过程控制而形成。

Claims (8)

1.一种电极结构,其包括:
至少第一材料和第二材料的交指型层,所述第二材料具有高于或类似于所述第一材料的电导率,并比所述第一材料更离子导电,所述两种材料的横截面为非矩形的,其中相比于所述第一材料,所述第二材料具有更高的孔隙率。
2.根据权利要求1所述的结构,其中所述第二材料包括电解质。
3.根据权利要求1所述的结构,其中所述第一材料为阴极材料或阳极材料中的一者。
4.根据权利要求1所述的结构,其中所述非矩形横截面具有尖角。
5.根据权利要求1所述的结构,其中所述非矩形横截面具有圆角。
6.根据权利要求1所述的结构,其中所述第二材料为牺牲材料。
7.根据权利要求1所述的结构,其中所述交指型层包括波状或起伏图案中的一者。
8.根据权利要求1所述的结构,其中所述交指型层在印刷方向上包括直的单片图案。
CN201310673712.5A 2012-12-27 2013-12-11 用于交指型共挤出的结构 Active CN103904297B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/727,937 US9899669B2 (en) 2012-12-27 2012-12-27 Structures for interdigitated finger co-extrusion
US13/727937 2012-12-27

Publications (2)

Publication Number Publication Date
CN103904297A CN103904297A (zh) 2014-07-02
CN103904297B true CN103904297B (zh) 2018-06-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646834A (zh) * 2010-12-17 2012-08-22 帕洛阿尔托研究中心公司 交指型电极结构及其形成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646834A (zh) * 2010-12-17 2012-08-22 帕洛阿尔托研究中心公司 交指型电极结构及其形成方法

Similar Documents

Publication Publication Date Title
US9899669B2 (en) Structures for interdigitated finger co-extrusion
JP6210868B2 (ja) 共押し出し印刷により製造した高性能で高出力、高エネルギーの電池電極
Cobb et al. Modeling mass and density distribution effects on the performance of co-extruded electrodes for high energy density lithium-ion batteries
JP6336748B2 (ja) 多層バッテリ構造用の共押し出し印字ヘッド
CN103972468B (zh) 三维共挤出的电池电极
JP2021002532A5 (zh)
US11211614B2 (en) Lead/acid batteries
JP2013016800A (ja) リチウム板、電極のリチウム化方法及びエネルギー貯蔵装置
Iglesias et al. Stacking of capacitive cells for electrical energy production by salinity exchange
JP2005243442A (ja) 燃料電池
CN103904297B (zh) 用于交指型共挤出的结构
CN103233259B (zh) Ctp版材的氧化处理工艺
KR101746876B1 (ko) 전극판, 이를 포함하는 이차전지 및 전극판의 제조방법
US9985294B2 (en) High energy density and high rate Li battery
JP2013507727A (ja) 改良された内部抵抗を有する薄型電池
US20210135207A1 (en) Structures for interdigitated finger co-extrusion
JP7318955B2 (ja) 可撓性エネルギー蓄積装置
US20160217939A1 (en) Method of manufacturing electrode and method of manufacturing capacitor including electrode formed thereby
EP3525266B1 (en) Battery electrode structure for interdigitated finger co-extrusion
CN207637898U (zh) 一种锂电池极片
JPH02194518A (ja) 固体電解コンデンサの製造方法
CN203367418U (zh) 一种微孔基材
JP6805570B2 (ja) 蓄電池の製造方法及び蓄電池
JP2004056040A (ja) 固体電解コンデンサにおけるコンデンサ素子及びこのコンデンサ素子の製造方法並びにこのコンデンサ素子を用いた固体電解コンデンサ
JP5845706B2 (ja) 二次電池とその製造方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant