CN103888688A - Time sequence generating device for driving charge coupled device - Google Patents

Time sequence generating device for driving charge coupled device Download PDF

Info

Publication number
CN103888688A
CN103888688A CN201410106542.7A CN201410106542A CN103888688A CN 103888688 A CN103888688 A CN 103888688A CN 201410106542 A CN201410106542 A CN 201410106542A CN 103888688 A CN103888688 A CN 103888688A
Authority
CN
China
Prior art keywords
module
generator module
charge
signal
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410106542.7A
Other languages
Chinese (zh)
Other versions
CN103888688B (en
Inventor
王明富
何凯
周向东
任国强
马文礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201410106542.7A priority Critical patent/CN103888688B/en
Publication of CN103888688A publication Critical patent/CN103888688A/en
Application granted granted Critical
Publication of CN103888688B publication Critical patent/CN103888688B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本发明是一种用于驱动电荷耦合器件的时序发生装置,包括单片机、有源晶体振荡器和现场可编程逻辑门阵列,其中有源晶体振荡器与现场可编程逻辑门阵列输入端连接,为现场可编程逻辑门阵列提供时钟信号;单片机通过数据总线和地址总线对现场可编程逻辑门阵列内部的参数寄存器阵列依次访问,完成装置初始化,为现场可编程逻辑门阵列提供所有需要现场设定的参数;现场可编程逻辑门阵列的输入端与单片机输出端连接,实现现场可编程逻辑门阵列内部参数寄存器阵列与单片机之间的数据交换,现场可编程逻辑门阵列根据内部参数寄存器阵列的参数生成并输出水平、垂直驱动信号、相关双采样及模数转换驱动信号及图像输出时序信号。

The present invention is a timing generating device for driving a charge-coupled device, comprising a single-chip microcomputer, an active crystal oscillator and a field programmable logic gate array, wherein the active crystal oscillator is connected to the input end of the field programmable logic gate array, for The field programmable logic gate array provides the clock signal; the single-chip microcomputer accesses the parameter register array inside the field programmable logic gate array in turn through the data bus and the address bus, completes the device initialization, and provides all the parameters that need to be set on site for the field programmable logic gate array. Parameters; the input terminal of the field programmable logic gate array is connected with the output terminal of the single-chip microcomputer to realize the data exchange between the internal parameter register array of the field programmable logic gate array and the single-chip computer, and the field programmable logic gate array is generated according to the parameters of the internal parameter register array And output horizontal and vertical driving signals, correlated double sampling and analog-to-digital conversion driving signals and image output timing signals.

Description

一种用于驱动电荷耦合器件的时序发生装置A timing generator for driving a charge-coupled device

技术领域technical field

本发明属于微光成像技术领域,涉及一种通用的电子倍增电荷耦合元件驱动时序发生装置,主要应用于电荷耦合器件相机设计时的时序发生过程。The invention belongs to the technical field of low-light imaging, and relates to a general electronic multiplier charge-coupled element drive sequence generation device, which is mainly used in the sequence generation process of charge-coupled device camera design.

背景技术Background technique

电子倍增电荷耦合器件(Electron Multiplying Charge Couple Device,EMCCD)是近十年来在电荷耦合器件(CCD)领域出现的一项新技术,其在硅片上单独集成了数百级电子倍增寄存器,利用相邻两个栅极所形成的高压电场可在信号电子被读出放大器转换为信号电压之前将信号电子放大1000倍以上,从而抑制由于读出放大器和电路噪声所引入的增益后噪声,获得非常高的灵敏度,特别适合于微光成像。相比于传统带像增强器的CCD,其结构和体积大大简化,在某些重量和体积敏感的应用场合具有较大优势。Electron Multiplying Charge Coupled Device (EMCCD) is a new technology that has emerged in the field of charge-coupled devices (CCD) in the past ten years. The high-voltage electric field formed by the adjacent two gates can amplify the signal electrons by more than 1000 times before the signal electrons are converted into signal voltage by the sense amplifier, thereby suppressing the post-gain noise introduced by the sense amplifier and circuit noise, and obtaining very high Sensitivity, especially suitable for low-light imaging. Compared with the traditional CCD with image intensifier, its structure and volume are greatly simplified, which has great advantages in some weight and volume sensitive applications.

CCD的时序发生器是整个CCD相机的大脑,它控制着电荷包的产生、收集、转移、读出、量化过程,是相机必不可少的核心部分。目前,针对CCD的驱动时序发生装置主要有两种:CCD专用集成时序发生器和采用可编程逻辑门阵列器件自行设计发生器,前者具有集成度高、速度快、功耗低、相位控制精度高等优点,但其能够提供的驱动源路数较少,往往不能满足某些多驱动路数CCD的应用要求,且应用不灵活,不具有通用性,每次设计不同CCD时需要重新选择驱动时序发生器,设计效率低;采用可编程逻辑门阵列器件产生CCD时序信号的方法非常灵活,可根据实际需要产生较多的驱动源路数,具有较好的通用性和可重复利用性,但由于需要自行设计,对设计人员自身要求较高,具有一定的挑战性。The timing generator of CCD is the brain of the whole CCD camera. It controls the process of generation, collection, transfer, readout and quantification of charge packets, and is an essential core part of the camera. At present, there are mainly two kinds of drive timing generators for CCD: dedicated integrated timing generators for CCD and self-designed generators using programmable logic gate array devices. The former has the advantages of high integration, fast speed, low power consumption, and high phase control accuracy. Advantages, but it can provide fewer driving sources, which often cannot meet the application requirements of some multi-driving CCDs, and the application is not flexible and not universal. It is necessary to re-select the driving sequence every time a different CCD is designed. devices, the design efficiency is low; the method of using programmable logic gate array devices to generate CCD timing signals is very flexible, and can generate more driving source channels according to actual needs, and has good versatility and reusability. Self-designed design has high requirements for the designers themselves and is challenging.

电子倍增电荷耦合器件是一种特殊的帧转移型电荷耦合元件,相对普通帧转移型CCD多了几百级的电子倍增寄存器,因此时序控制也更为复杂。以型号为CCD201的电荷耦合器件为例,其水平转移驱动需要6路,垂直转移驱动需要8路,需要至少14路驱动信号,而某些多路输出型电荷耦合器件总路数甚至达到了20路以上,现有专用集成式CCD驱动器根本无法满足应用要求。为达到通用性目的,最好的方法是采用可编程逻辑门阵列设计电荷耦合器件驱动时序的方式来解决电荷耦合器件的时序发生器问题。Electron multiplying charge-coupled device is a special frame-transfer charge-coupled device. Compared with ordinary frame-transfer CCD, there are hundreds more electron multiplying registers, so the timing control is more complicated. Taking the charge-coupled device of model CCD201 as an example, it needs 6 channels for horizontal transfer drive, 8 channels for vertical transfer drive, and at least 14 channels of drive signals, and the total number of channels of some multi-output charge-coupled devices even reaches 20. Above the road, the existing dedicated integrated CCD driver cannot meet the application requirements at all. In order to achieve the purpose of generality, the best method is to solve the problem of the timing generator of the charge-coupled device by using the programmable logic gate array to design the timing sequence of the charge-coupled device.

发明内容Contents of the invention

(一)解决的技术问题(1) Solved technical problems

针对现有电荷耦合器件专用集成式时序发生器无法满足电荷耦合器件对驱动源数量的要求,以及使用不灵活,缺乏通用性的缺点,发明了一种基于现场可编程逻辑门阵列(FPGA)实现的用于驱动电荷耦合元件的时序发生装置。Aiming at the disadvantages that the existing charge-coupled device-specific integrated timing generator cannot meet the requirements of the charge-coupled device on the number of driving sources, as well as its inflexibility and lack of versatility, a field-programmable logic gate array (FPGA)-based implementation was invented. A timing generator for driving a charge-coupled device.

(二)技术方案(2) Technical solutions

本发明提供一种用于驱动电荷耦合器件的时序发生装置,主要包括单片机、有源晶体振荡器和现场可编程逻辑门阵列,其中:有源晶体振荡器与现场可编程逻辑门阵列输入端连接,为现场可编程逻辑门阵列提供时钟信号;单片机通过数据总线和地址总线对现场可编程逻辑门阵列内部的参数寄存器阵列依次访问,完成装置初始化,根据实际应用要求为现场可编程逻辑门阵列提供所有需要现场设定的参数;现场可编程逻辑门阵列的输入端与单片机输出端连接,接收单片机输出的现场可编程逻辑门阵列内部各个模块所需要的参数,并根据内部参数寄存器阵列的参数生成并输出水平驱动信号、垂直驱动信号、相关双采样及模数转换驱动信号及图像输出时序信号。The invention provides a timing generating device for driving a charge-coupled device, which mainly includes a single-chip microcomputer, an active crystal oscillator and a field programmable logic gate array, wherein: the active crystal oscillator is connected to the input end of the field programmable logic gate array , to provide clock signals for the FPGA; the single-chip microcomputer accesses the parameter register array inside the FPGA through the data bus and the address bus in sequence, and completes the initialization of the device. According to the actual application requirements, the FPGA provides All parameters that need to be set on site; the input terminal of the field programmable logic gate array is connected with the output terminal of the single-chip microcomputer, and the parameters required by each module in the field programmable logic gate array output by the single-chip microcomputer are received, and are generated according to the parameters of the internal parameter register array And output horizontal drive signal, vertical drive signal, correlated double sampling and analog-to-digital conversion drive signal and image output timing signal.

(三)有益效果(3) Beneficial effects

本发明旨在解决现有CCD专用集成式时序发生模块无法满足帧转移型电荷耦合元件对驱动源数量的要求,且使用不灵活,缺乏通用性的缺陷,本发明相对于CCD专用集成式时序发生模块来说,具有如下优点:The present invention aims to solve the defects that the existing CCD-specific integrated timing generation module cannot meet the requirements for the number of driving sources of frame-transfer charge-coupled elements, and is inflexible in use and lacks versatility. Compared with CCD-specific integrated timing generation modules, the present invention Modules have the following advantages:

该装置通过单片机来设置FPGA内部时序发生模块的参数寄存模块,可根据具体的电荷耦合器件对象实现对每路驱动源频率、相位、占空比的灵活定制,具有较好的通用性;The device uses a single-chip microcomputer to set the parameter register module of the FPGA internal timing generation module, and can flexibly customize the frequency, phase, and duty cycle of each drive source according to the specific charge-coupled device object, and has good versatility;

该装置可提供30路以上驱动源,具有较好的通用性和可重复利用性,非常适合作为帧转移型电荷耦合元件或其他多驱动路数的大面阵CCD的时序发生模块产生驱动时序信号。可对每路驱动源的频率、相位、占空比灵活控制,且相位调节分辨率可达到1.85ns,最大驱动频率可达到54MHz,可满足当前各类特殊CCD对时序发生模块的应用要求,比如非常适合作为电子倍增电荷耦合器件和其他多驱动路数的大面阵CCD的时序发生模块产生驱动时序信号。The device can provide more than 30 driving sources, has good versatility and reusability, and is very suitable for generating driving timing signals as a timing generation module of a frame-transfer charge-coupled element or other large area array CCDs with multiple driving channels. . It can flexibly control the frequency, phase, and duty cycle of each driving source, and the phase adjustment resolution can reach 1.85ns, and the maximum driving frequency can reach 54MHz, which can meet the current application requirements of various special CCDs for timing generation modules, such as It is very suitable as a timing generation module for electron multiplying charge-coupled devices and other large area array CCDs with multiple driving channels to generate driving timing signals.

采用现场可编程逻辑门阵列(FPGA)来实现,具有非常好的可移植性和可重复利用性。It is realized by field programmable logic gate array (FPGA), which has very good portability and reusability.

附图说明Description of drawings

图1是本发明用于驱动电荷耦合器件的时序发生装置结构组成框图;Fig. 1 is a structural block diagram of a timing generating device for driving a charge-coupled device according to the present invention;

图2是本发明主控制器模块内部的状态机;Fig. 2 is the internal state machine of main controller module of the present invention;

图3是电子倍增电荷耦合器件2×2像元合并(BIN)模式输出原理及时序图。Fig. 3 is an output principle and sequence diagram of the 2×2 pixel binning (BIN) mode of the electron multiplying charge-coupled device.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.

本发明是针对电荷耦合器件(CCD)的实施例,所述电荷耦合器件为面阵电荷耦合器件,本领域技术人员通过本发明下面的实施例,能实现涉及驱动任一面阵电荷耦合器件的时序发生装置,下面仅以驱动CCD相机中电子倍增电荷耦合器件的时序发生装置为例介绍实施例:The present invention is directed at the embodiments of charge-coupled devices (CCD), and the charge-coupled devices are planar charge-coupled devices. Those skilled in the art can realize the timing related to driving any planar charge-coupled device through the following embodiments of the present invention. Generating device, the timing generating device of electron multiplying charge-coupled device in the driving CCD camera is described as an example below:

如图1示出本发明是用于驱动电子倍增电荷耦合器件(EMCCD)的时序发生装置,该装置主要包括单片机(MCU)、有源晶体振荡器和现场可编程逻辑门阵列(FPGA),其中:有源晶体振荡器与现场可编程逻辑门阵列输入端连接,为现场可编程逻辑门阵列提供时钟信号;单片机通过数据总线和地址总线对现场可编程逻辑门阵列内部的参数寄存器阵列依次访问,完成装置初始化,根据实际应用要求为现场可编程逻辑门阵列提供所有需要现场设定的参数;现场可编程逻辑门阵列的输入端与单片机输出端连接,接收单片机输出的现场可编程逻辑门阵列内部各个模块所需要的参数,并根据内部参数寄存器阵列的参数生成并输出用以驱动EMCCD相机中的电子倍增电荷耦合器件的水平驱动信号、垂直驱动信号、相关双采样及模数转换驱动信号及图像输出时序信号。As shown in Fig. 1, the present invention is a timing generator for driving an electron multiplying charge-coupled device (EMCCD), and the device mainly includes a single-chip microcomputer (MCU), an active crystal oscillator and a field programmable logic gate array (FPGA), wherein : The active crystal oscillator is connected with the input end of the field programmable logic gate array to provide a clock signal for the field programmable logic gate array; the single-chip microcomputer sequentially accesses the internal parameter register array of the field programmable logic gate array through the data bus and the address bus, Complete the initialization of the device, and provide all the parameters that need to be set on site for the field programmable logic gate array according to the actual application requirements; The parameters required by each module, and according to the parameters of the internal parameter register array, generate and output the horizontal drive signal, vertical drive signal, correlated double sampling and analog-to-digital conversion drive signal and image used to drive the electron multiplying charge-coupled device in the EMCCD camera output timing signal.

所述现场可编程逻辑门阵列内部包含数据通信接口模块、参数寄存器阵列模块、数字时钟管理器模块、主控制器模块、水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块、图像输出时序发生器模块,其中:通信接口模块的输入端分别与单片机输出端、参数寄存器阵列的数据端、数字时钟管理模块的输出端连接,协助单片机完成对现场可编程逻辑门阵列内部任一寄存器的访问,实现对现场可编程逻辑门阵列输出的每一路驱动信号源的单独配置;数字时钟管理器模块的输入端与有源晶体振荡器的输出端连接,对有源晶体振荡器输入的时钟信号进行倍频、锁相,生成高频时钟信号作为主控制器模块、通信接口模块、水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块的主控时钟信号,控制各个模块之间的时序同步;数字时钟管理器模块的输出端与通信接口模块、主控制器模块、水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块、图像输出时序发生器模块的输入端连接,通信接口模块接收数字时钟管理器模块输出的高频主控时钟信号,对单片机发送过来的数据进行同步译码,并写入参数寄存器阵列内的相应寄存器;主控制器模块、水平驱动信号发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块、图像输出时序发生模块接收数字时钟管理器模块输出的高频主控时钟信号,驱动每一个所述模块产生相应的动作;主控制器模块的输入端与通信接口模块输出端、参数寄存器阵列模块的输出端连接,接收通信接口模块输出的控制信号和参数寄存器阵列输出的参数数据,控制主控制器模块内部状态机的运转,主控制器模块输出用于控制水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块及图像输出时序发生器模块的控制信号;水平驱动发生器模块的输入端与主控制器模块的输出端连接,用于接收水平控制信号,并根据控制信号内容生成并输出水平驱动信号;垂直驱动发生器模块的输入端与主控制器模块的输出端连接,用于接收垂直控制信号,并根据控制信号内容生成并输出垂直驱动信号;相关双采样及模数转换驱动发生器模块的输入端与主控制器模块的输出端连接,用于接收相关双采样及模数转换控制信号,并根据控制信号内容生成并输出相关双采样及模数转换驱动信号;图像输出时序发生器模块的输入端与主控制器模块的输出端连接,用于接收图像时序控制信号,并根据控制信号内容生成并输出图像时序驱动信号。The field programmable logic gate array includes a data communication interface module, a parameter register array module, a digital clock manager module, a main controller module, a horizontal drive generator module, a vertical drive generator module, correlated double sampling and analog-to-digital conversion Drive generator module, image output timing generator module, wherein: the input end of the communication interface module is respectively connected with the output end of the single-chip microcomputer, the data end of the parameter register array, and the output end of the digital clock management module, assisting the single-chip microcomputer to complete the field programmable logic The access to any register inside the gate array realizes the individual configuration of each drive signal source output by the field programmable logic gate array; the input terminal of the digital clock manager module is connected to the output terminal of the active crystal oscillator, and the active The clock signal input by the crystal oscillator is frequency-multiplied and phase-locked to generate a high-frequency clock signal as the main controller module, communication interface module, horizontal drive generator module, vertical drive generator module, correlated double sampling and analog-to-digital conversion drive generation The main control clock signal of the controller module and the image output timing generator module controls the timing synchronization between each module; the output terminal of the digital clock manager module is connected with the communication interface module, the main controller module, the horizontal drive generator module, and the vertical drive The generator module, correlated double sampling and analog-to-digital conversion drive generator module, and the input terminal of the image output timing generator module are connected, and the communication interface module receives the high-frequency main control clock signal output by the digital clock manager module, and sends it to the microcontroller. The data is decoded synchronously and written into the corresponding registers in the parameter register array; main controller module, horizontal drive signal generator module, vertical drive generator module, correlated double sampling and analog-to-digital conversion drive generator module, image output timing The generation module receives the high-frequency main control clock signal output by the digital clock manager module, and drives each of the modules to generate corresponding actions; the input end of the main controller module is connected with the output end of the communication interface module and the output end of the parameter register array module , receive the control signal output by the communication interface module and the parameter data output by the parameter register array, control the operation of the internal state machine of the main controller module, and the output of the main controller module is used to control the horizontal drive generator module, vertical drive generator module, related Double sampling and analog-to-digital conversion drive the control signals of the generator module and the image output timing generator module; the input terminal of the horizontal drive generator module is connected with the output terminal of the main controller module for receiving the horizontal control signal, and according to the control signal The content generates and outputs the horizontal driving signal; the input terminal of the vertical driving generator module is connected with the output terminal of the main controller module, which is used to receive the vertical control signal, and generates and outputs the vertical driving signal according to the content of the control signal; the correlation double sampling and analog The input end of the digital conversion drive generator module is connected with the output end of the main controller module, and is used to receive the relevant double sampling and analog-to-digital conversion control signals, and generate and output the relevant double sampling and analog-to-digital conversion drive signals according to the content of the control signals; The input end of the image output timing generator module is connected with the output end of the main controller module to receive the image timing control signal, and According to the content of the control signal, the image timing driving signal is generated and output.

所述参数寄存器阵列模块包括频率参数寄存器、相位参数寄存器、占空比参数寄存器,在现场可编程逻辑门阵列内部对每一路输出的驱动信号源分别设有频率参数寄存器、相位参数寄存器、占空比参数寄存器,并设有被驱动电子倍增电荷耦合器件的总体参数寄存器包括:总行数参数寄存器、有效行数参数寄存器、总列数参数寄存器、有效列数参数寄存器、曝光时间参数寄存器、同步模式参数寄存器、输出模式参数寄存器,像元合并参数寄存器。The parameter register array module includes a frequency parameter register, a phase parameter register, and a duty cycle parameter register. In the field programmable logic gate array, a frequency parameter register, a phase parameter register, and a duty cycle parameter register are respectively provided for each output driving signal source. Ratio parameter registers, and the overall parameter registers of the driven electron multiplier charge-coupled device include: total row number parameter register, effective row number parameter register, total column number parameter register, effective column number parameter register, exposure time parameter register, synchronous mode Parameter register, output mode parameter register, pixel merge parameter register.

使用单片机对输出的每一路驱动电子倍增电荷耦合器件栅极的驱动信号源进行相应的参数寄存器初始设置,实现对该驱动信号源特性的完整控制。Using a single-chip microcomputer to initially set the corresponding parameter registers for each output drive signal source that drives the gate of the electron multiplying charge-coupled device, so as to realize complete control over the characteristics of the drive signal source.

所述主控制器模块对电子倍增电荷耦合器件成像过程中的快速擦除、曝光、电荷包垂直转移准备、电荷包垂直转移、水平无效电荷清空、电荷包水平转移、电荷包信号放大、电荷包读出的过程设计状态机,控制水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块及图像输出时序发生器模块在电子倍增电荷耦合器件不同工作状态下产生相应的驱动信号。The main controller module performs rapid erasing, exposure, charge packet vertical transfer preparation, charge packet vertical transfer, horizontal invalid charge emptying, charge packet horizontal transfer, charge packet signal amplification, charge packet Readout process design state machine, control horizontal drive generator module, vertical drive generator module, correlated double sampling and analog-to-digital conversion drive generator module and image output timing generator module to generate in different working states of electron multiplying charge-coupled device corresponding drive signal.

所述的水平驱动发生器模块在主控制器模块控制下产生一组电荷包水平转移所需要的关系严格的时序,不发生转移时关闭水平驱动发生器模块,降低后级驱动模块功耗,用于提高整个EMCCD相机电子系统的可靠性;The horizontal drive generator module generates a group of strict time sequences required for the horizontal transfer of charge packets under the control of the main controller module. When the transfer does not occur, the horizontal drive generator module is turned off to reduce the power consumption of the subsequent drive module. To improve the reliability of the entire EMCCD camera electronic system;

所述的垂直驱动发生器模块在主控制器模块控制下产生一组电荷包垂直转移所需要的关系严格的时序,不发生转移时关闭垂直驱动发生器模块,降低后级驱动模块功耗,用于提高整个EMCCD相机电子系统的可靠性;The vertical drive generator module generates a set of strict time sequences required for the vertical transfer of charge packets under the control of the main controller module. When the transfer does not occur, the vertical drive generator module is turned off to reduce the power consumption of the subsequent drive module. To improve the reliability of the entire EMCCD camera electronic system;

所述相关双采样及模数转换驱动发生器模块在主控制器模块控制下完成对电子倍增电荷耦合器件的前端预处理读出放大电路的模拟信号进行相关双采样处理,消除复位噪声,并控制相关双采样及模数转换驱动发生模块将以模拟信号表示的图像转换为数字图像。Under the control of the main controller module, the correlated double sampling and analog-to-digital conversion drive generator module performs correlated double sampling processing on the analog signal of the front-end preprocessing read amplifier circuit of the electron multiplication charge-coupled device, eliminates reset noise, and controls The correlative double sampling and analog-to-digital conversion drive generation module converts the image represented by the analog signal into a digital image.

所述图像输出时序发生器模块配合模数转换后生成的数字图像提供时序信号,以便CameraLink接口电路将数字图像传输到该装置外部。The image output timing generator module cooperates with the digital image generated after analog-to-digital conversion to provide timing signals, so that the CameraLink interface circuit can transmit the digital image to the outside of the device.

EMCCD相机上电后,首先通过FPGA内部的一个全局复位信号对FPGA内部所有模块进行复位,进入一个初始状态,之后单片机通过数据总线和地址总线对FPGA内部的参数寄存器阵列依次访问,针对实际应用的CCD对象的具体特性对所有相关寄存器进行参数设置,完成该时序发生装置的初始化。After the EMCCD camera is powered on, first reset all modules inside the FPGA through a global reset signal inside the FPGA and enter an initial state, and then the single-chip microcomputer accesses the parameter register array inside the FPGA through the data bus and the address bus in sequence. The specific characteristics of the CCD object set parameters for all relevant registers to complete the initialization of the timing generator.

外部有源晶体振荡器为FPGA提供一路27MHz的时钟,进入FPGA后由DCM模块对该时钟信号进行10倍锁相放大,得到一路稳定的270MHz系统主频时钟CLK及其反向时钟CLKN;The external active crystal oscillator provides a 27MHz clock for the FPGA. After entering the FPGA, the DCM module performs a 10-fold phase-locked amplification on the clock signal to obtain a stable 270MHz system main frequency clock CLK and its reverse clock CLKN;

单片机与FPGA的通信接口模块主要是为单片机与FPGA之间的通信提供一个数据通路,完成单片机与内部硬件模块之间的数据交换,实现方式为:在接口通信模块中对单片机的地址信号、数据读写信号进行实时监测,当FPGA检测到单片机地址信号有效时,立即锁存地址总线上的地址数据,之后当再监测到单片机读写信号有效时,再将数据总线上的数据进行锁存,并将被锁存的地址与FPGA内部参数寄存器阵列模块中所有参数寄存器的地址逐一进行比较,将数据直接写入与锁存地址相同的参数寄存器模块,完成对参数寄存器模块的访问;The communication interface module between the single-chip microcomputer and FPGA mainly provides a data path for the communication between the single-chip microcomputer and the FPGA, and completes the data exchange between the single-chip microcomputer and the internal hardware module. The read and write signals are monitored in real time. When the FPGA detects that the address signal of the microcontroller is valid, it immediately latches the address data on the address bus, and then when it detects that the read and write signals of the microcontroller are valid, it latches the data on the data bus. Compare the latched address with the addresses of all parameter registers in the FPGA internal parameter register array module one by one, write the data directly into the parameter register module with the same latch address, and complete the access to the parameter register module;

如图2示出本发明主控制器模块内部的状态机,主控制器模块是整个时序发生模块的核心部分,根据电子倍增电荷耦合器件的工作过程设计了一个状态机,该状态机共有8个状态,如图2所示,主要根据电子倍增电荷耦合器件的工作过程来划分,每一个状态机所历经的时间主要是通过一个公共的递减计数器来计算,在每个状态下当该递减计数器的值从初始值递减为0时,立即进入下一个状态:Figure 2 shows the internal state machine of the main controller module of the present invention, the main controller module is the core part of the whole timing generation module, a state machine is designed according to the working process of the electron multiplication charge-coupled device, and this state machine has 8 The state, as shown in Figure 2, is mainly divided according to the working process of the electron multiplying charge-coupled device. The time elapsed by each state machine is mainly calculated by a common down-counter. In each state, when the down-counter When the value is decremented from the initial value to 0, immediately enter the next state:

1.空闲状态:空闲状态不做任何动作。当状态机接收到现场可编程逻辑门阵列的内部复位信号或上一帧图像转移完毕后立即进入空闲状态,并立即设置下一个状态快速檫除状态的历经时间(即设置公共的递减计数器初始值),等待公共计数器递减为0,一旦为0便发出EMCCD相机的内同步拍摄指令,或在外同步状态下接收外同步拍摄指令,一旦接收到指令,立即进入下一个状态;1. Idle state: The idle state does not perform any action. When the state machine receives the internal reset signal of the field programmable logic gate array or the transfer of the previous frame image, it immediately enters the idle state, and immediately sets the elapsed time of the next state to quickly erase the state (that is, the initial value of the common decrement counter is set ), wait for the public counter to be decremented to 0, once it is 0, send the internal synchronous shooting instruction of the EMCCD camera, or receive the external synchronous shooting instruction under the external synchronous state, once the instruction is received, enter the next state immediately;

2.快速擦除状态:快速擦除是在电子倍增电荷耦合器件进行曝光之前将CCD成像区以及存储区的噪声电荷转移到泻荷沟道,清空所有势阱的无效电荷,避免这些电荷对有效光生电荷产生影响,减小噪声电子。主控制器模块在空闲状态下一旦接收到拍摄指令,立即进入快速檫除状态,首先设置下一状态曝光状态的历经时间,之后便输出8位状态码到水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块,各个模块根据当前状态机状态产生相应的驱动信号;当公共计数器递减为0,便进入下一个状态;2. Fast erasing state: Fast erasing is to transfer the noise charges in the CCD imaging area and storage area to the discharge channel before the exposure of the electron multiplier charge-coupled device, and clear the invalid charges in all potential wells to prevent these charges from effectively Photogenerated charges have an effect, reducing noise electrons. Once the main controller module receives the shooting command in the idle state, it immediately enters the fast erasing state, firstly sets the elapsed time of the next state exposure state, and then outputs an 8-bit state code to the horizontal drive generator module and vertical drive generator module Module, correlated double sampling and analog-to-digital conversion drive generator module and image output timing generator module, each module generates a corresponding drive signal according to the current state machine state; when the common counter is decremented to 0, it enters the next state;

3.曝光状态:曝光状态下电子倍增电荷耦合器件收集由光电效应产生的有效信号电子,并将相邻像素势阱内的电荷包采用势垒隔离开;主控制器模块在快速檫除状态的公共计数器递减为0后立即进入曝光状态,首先设置下一状态转移准备状态的历经时间,之后便输出8位状态码到水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块,各个模块根据当前状态机状态产生相应的驱动信号;当公共计数器递减为0,便进入下一个状态。3. Exposure state: In the exposure state, the electron multiplying charge-coupled device collects the effective signal electrons generated by the photoelectric effect, and isolates the charge packets in the potential well of adjacent pixels with a potential barrier; the main controller module is in the fast erasing state. Enter the exposure state immediately after the public counter decrements to 0, first set the elapsed time of the next state transfer preparation state, and then output the 8-bit state code to the horizontal drive generator module, vertical drive generator module, related double sampling and analog-to-digital conversion The drive generator module and the image output timing generator module, each module generates a corresponding drive signal according to the current state machine state; when the common counter is decremented to 0, it enters the next state.

4.转移准备状态:当曝光结束后,需要等待一段时间,以留出足够的时间使光生电子流入离其最近的势阱内,避免有效电荷没有完全落入势阱而造成的图像模糊和转移效率下降;主控制器模块在曝光状态的公共计数器递减为0后立即进入转移准备状态,首先设置下一状态垂直转移状态的历经时间,之后便输出8位状态码到水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块,各个模块根据当前状态机状态产生相应的驱动信号;当公共计数器递减为0,便进入下一个状态;4. Transfer preparation state: when the exposure is over, you need to wait for a period of time to allow enough time for the photogenerated electrons to flow into the nearest potential well to avoid image blur and transfer caused by the effective charge not completely falling into the potential well Efficiency drops; the main controller module enters the transfer preparation state immediately after the public counter in the exposure state is decremented to 0, first sets the elapsed time of the next state vertical transfer state, and then outputs an 8-bit state code to the horizontal drive generator module, vertical Drive generator module, correlated double sampling and analog-to-digital conversion drive generator module and image output timing generator module, each module generates a corresponding drive signal according to the current state machine state; when the common counter is decremented to 0, it enters the next state;

5.垂直转移状态:该状态下需将光敏区产生的信号电子图像迅速转移到存储区,电子倍增电荷耦合器件的存储区与光敏区规模一致且具有遮光膜,可防止杂散光子对有效电子图像的干扰;主控制器模块在转移准备状态的公共计数器递减为0后立即进入垂直转移状态,首先设置下一状态水平清空状态的历经时间,之后便输出8位状态码到水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块,各个模块根据当前状态机状态产生相应的驱动信号;当公共计数器递减为0,便进入下一个状态;5. Vertical transfer state: In this state, the signal electronic image generated by the photosensitive area needs to be quickly transferred to the storage area. The storage area of the electron multiplying charge-coupled device is the same size as the photosensitive area and has a light-shielding film to prevent stray photons from affecting the effective electrons. Image interference; the main controller module enters the vertical transfer state immediately after the public counter in the transfer preparation state is decremented to 0, first sets the elapsed time of the next state horizontal clear state, and then outputs an 8-bit state code to the horizontal drive generator module , vertical drive generator module, correlated double sampling and analog-to-digital conversion drive generator module, and image output timing generator module. Each module generates a corresponding drive signal according to the current state machine state; when the common counter is decremented to 0, it enters the next state;

6.水平清空状态:水平清空状态将在垂直转移时落入水平转移寄存模块内部的噪声电子转移干净,避免在转移第一行信号电荷时混入有效电荷包内,造成第一行噪声增大的现象;主控制器模块在垂直转移状态的公共计数器递减为0后立即进入水平清空状态,首先设置下一状态行转移状态的历经时间,之后便输出8位状态码到水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块,各个模块根据当前状态机状态产生相应的驱动信号;当公共计数器递减为0,便进入下一个状态;6. Horizontal clearing state: The horizontal clearing state transfers the noise electrons that fall into the horizontal transfer register module during vertical transfer, and avoids being mixed into the effective charge packet when transferring the first row of signal charges, resulting in increased noise in the first row Phenomenon: the main controller module immediately enters the horizontal clearing state after the common counter in the vertical transfer state is decremented to 0, and first sets the elapsed time of the next state line transfer state, and then outputs an 8-bit status code to the horizontal drive generator module, vertical Drive generator module, correlated double sampling and analog-to-digital conversion drive generator module and image output timing generator module, each module generates a corresponding drive signal according to the current state machine state; when the common counter is decremented to 0, it enters the next state;

7.行转移状态:行转移状态将临近水平转移寄存模块的一行电荷包转移到水平转移寄存模块中,以便进行信号电荷包的水平串行转移;主控制器模块在水平清空状态的公共计数器递减为0后立即进入行转移状态,首先设置下一状态水平转移状态的历经时间,之后便输出8位状态码到水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块,各个模块根据当前状态机状态产生相应的驱动信号;当公共计数器递减为0,便进入下一个状态;7. Row transfer state: the row transfer state transfers a row of charge packets adjacent to the horizontal transfer register module to the horizontal transfer register module for horizontal serial transfer of signal charge packets; the common counter of the main controller module in the horizontal clear state is decremented After it is 0, enter the line transfer state immediately, first set the elapsed time of the next state horizontal transfer state, and then output the 8-bit state code to the horizontal drive generator module, vertical drive generator module, related double sampling and analog-to-digital conversion drive generation The generator module and the image output timing generator module, each module generates a corresponding driving signal according to the current state machine state; when the common counter is decremented to 0, it enters the next state;

8.水平转移状态:当完成行转移后,水平转移寄存模块中已存在一行有效的信号电荷,此时需将这些电荷逐个依次转移到电子倍增寄存模块完成信号电荷放大,再转移到读出放大模块中,完成信号电荷到信号电压的转换。主控制器模块在行转移状态的公共计数器递减为0后立即进入水平转移状态,首先判断当前行是否是CCD的最后一行,若是下一状态设置为空闲状态,否则下一状态设置为行转移状态,之后便设置下一状态的历经时间,之后便输出8位状态码到水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块,各个模块根据当前状态机状态产生相应的驱动信号;当公共计数器递减为0,便进入下一个状态;8. Horizontal transfer state: After the row transfer is completed, there is already a row of effective signal charges in the horizontal transfer register module. At this time, these charges need to be transferred one by one to the electron multiplication register module to complete the signal charge amplification, and then transferred to the readout amplifier. In the module, the conversion of signal charge to signal voltage is completed. The main controller module enters the horizontal transfer state immediately after the common counter of the row transfer state is decremented to 0, firstly judges whether the current row is the last row of the CCD, if the next state is set to the idle state, otherwise the next state is set to the row transfer state , then set the elapsed time of the next state, and then output the 8-bit status code to the horizontal drive generator module, vertical drive generator module, correlated double sampling and analog-to-digital conversion drive generator module and image output timing generator module, Each module generates a corresponding drive signal according to the current state machine state; when the common counter is decremented to 0, it enters the next state;

以上8个状态是顺序进行的,一旦进入快速擦除状态,将会顺序经历所有8个状态直到将所有的电荷包全部转移出CCD,每一个状态所历经的时间都是根据各个参数寄存模块值估算出来写入公共计数器的,一旦经历完所在状态的时间,立即进入下一个状态,完成下一步操作。The above 8 states are carried out sequentially. Once entering the fast erasing state, it will go through all 8 states in sequence until all the charge packets are transferred out of the CCD. The time elapsed in each state is based on the value of each parameter register module. It is estimated that it is written into the public counter, and once the time in the current state is over, it immediately enters the next state and completes the next step.

水平驱动发生器模块根据主控制器模块状态机输出的8位状态码来判断电子倍增电荷耦合器件当前所处的状态,进而产生一组以像素为转移单位的水平转移驱动信号:在上述5,6,8状态下,根据每一路驱动信号源自身的参数寄存模块配置来产生方波脉冲信号,以控制信号电荷包的水平转移;在其他状态下,根据实际情况或置高,或拉低,不产生方波脉冲信号,以降低系统功耗;The horizontal drive generator module judges the current state of the electron multiplying charge-coupled device according to the 8-bit state code output by the state machine of the main controller module, and then generates a set of horizontal transfer drive signals with pixels as the transfer unit: in the above 5, In the 6 and 8 states, a square wave pulse signal is generated according to the configuration of the parameter register module of each driving signal source to control the horizontal transfer of the signal charge packet; in other states, according to the actual situation, either set high or pull low, No square wave pulse signal is generated to reduce system power consumption;

垂直驱动发生器模块根据主控制器模块状态机输出的8位状态码来判断电子倍增电荷耦合器件当前所处的状态,产生一组以行为转移单位的垂直转移驱动信号:在上述5,7状态下,根据每一路驱动信号源的参数寄存模块配置来产生方波脉冲信号,以控制信号电荷包的垂直转移;在其他状态下,根据实际情况或置高,或拉低,不产生方波脉冲信号,以降低系统功耗;The vertical drive generator module judges the current state of the electron multiplier charge-coupled device according to the 8-bit state code output by the state machine of the main controller module, and generates a set of vertical transfer drive signals in line transfer units: in the above 5 and 7 states In this state, the square wave pulse signal is generated according to the configuration of the parameter register module of each driving signal source to control the vertical transfer of the signal charge packet; in other states, the square wave pulse is not generated according to the actual situation or set high or low signal to reduce system power consumption;

相关双采样及模数转换驱动发生器模块根据主控制器模块状态机输出的8位状态码来判断电子倍增电荷耦合器件当前所处的状态,产生一组以像素为单位的驱动信号:为后续的CCD预处理电路提供相应的相关双采样脉冲信号和模数转换启动信号,将模拟电压信号转换为数字信号;The relevant double sampling and analog-to-digital conversion drive generator module judges the current state of the electron multiplication charge-coupled device according to the 8-bit status code output by the state machine of the main controller module, and generates a set of drive signals in units of pixels: for the follow-up The CCD preprocessing circuit provides corresponding correlated double-sampling pulse signals and analog-to-digital conversion start signals to convert analog voltage signals into digital signals;

图像输出时序发生器模块根据主控制器模块状态机输出的8位状态码来判断电子倍增电荷耦合器件当前所处的状态,并输出帧有效信号FVAL,行有效信号LVAL,像素有效信号PVALID,为经过模数转换后的数字图像添加相应的数据格式,以便后续的CameraLink接口电路将数字图像传输到EMCCD相机以外。The image output timing generator module judges the current state of the electron multiplying charge-coupled device according to the 8-bit state code output by the state machine of the main controller module, and outputs the frame valid signal FVAL, the line valid signal LVAL, and the pixel valid signal PVALID, as The corresponding data format is added to the digital image after analog-to-digital conversion, so that the subsequent CameraLink interface circuit can transmit the digital image to the outside of the EMCCD camera.

为实现EMCCD相机的2×2像元合并(BIN)模式输出,采用了如图3所示电子倍增电荷耦合器件像元合并模式输出原理及时序图的方法。当像元合并输出模式被激活时,首先读出像元合并寄存模块中的数值2,图3(a)为垂直像素合并示意图,其中a,b为电子倍增电荷耦合器件中倒数第二行相邻两列的电荷包,c,d为电子倍增电荷耦合器件中倒数第一行相邻两列的电荷包,SG为水平求和栅极,箭头表示电荷包的转移方向;图3(b)为水平像素合并示意图,箭头表示电荷包转移方向;图3(c)为2×2像元合并的时序过程,S1,S2为行时钟转移栅极,R1,R2和R3为水平时钟转移栅极,SG为水平求和栅极,RST为复位栅极,分为三个时序阶段:曝光、垂直方向像元合并、水平方向像元合并。在垂直方向像元合并状态下,对应于图3(a)和图3(c)的垂直方向像元合并阶段,首先连续发送两个垂直转移脉冲到行时钟转移栅极S1和S2,将电子倍增电荷耦合器件上倒数两行的像素a,b,c,d合并到对应的水平转移寄存器中形成a+c,b+d两个合并像元,完成垂直方向的像元合并操作;之后再进行水平转移,对应于图3(b)和图3(c)的水平方向像元合并阶段,首先对R1,R2,R3水平驱动栅极发送连续驱动脉冲信号,驱动像元依次进入求和栅极,而求和栅极SG每间隔2个像素时钟发送一次高脉冲进行一次求和操作,复位栅极RST每隔2个像素时钟发送一次高脉冲复位CCD读出放大器,从而完成水平方向的像元合并操作。In order to realize the 2×2 binning (BIN) mode output of the EMCCD camera, the principle and sequence diagram of the binning mode output of the electron multiplier charge-coupled device as shown in Figure 3 are adopted. When the pixel binning output mode is activated, the value 2 in the pixel binning register module is first read out. Figure 3(a) is a schematic diagram of vertical pixel binning, where a and b are the penultimate row phases in the electron multiplier charge-coupled device The charge packets in two adjacent columns, c and d are the charge packets in the penultimate row and two adjacent columns in the electron multiplication charge-coupled device, SG is the horizontal summation gate, and the arrow indicates the transfer direction of the charge packet; Fig. 3(b) It is a schematic diagram of horizontal pixel merging, and the arrow indicates the direction of charge packet transfer; Figure 3(c) is the timing process of 2×2 pixel merging, S1 and S2 are row clock transfer gates, R1, R2 and R3 are horizontal clock transfer gates , SG is the horizontal summation gate, and RST is the reset gate, which is divided into three timing stages: exposure, vertical pixel merging, and horizontal pixel merging. In the state of combining pixels in the vertical direction, corresponding to the phase of combining pixels in the vertical direction in Fig. The pixels a, b, c, and d of the last two rows on the doubled charge-coupled device are merged into the corresponding horizontal transfer register to form two merged pixels a+c, b+d, and the pixel merge operation in the vertical direction is completed; then Perform horizontal transfer, corresponding to the horizontal pixel merging stage in Figure 3(b) and Figure 3(c), firstly send continuous drive pulse signals to the R1, R2, R3 horizontal drive gates, and the drive pixels enter the summation gate in turn The summing gate SG sends a high pulse every 2 pixel clocks for a summation operation, and the reset gate RST sends a high pulse every 2 pixel clocks to reset the CCD readout amplifier, thereby completing the image in the horizontal direction Meta merge operation.

以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can understand the conceivable transformation or replacement within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention, therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (9)

1.一种用于驱动电荷耦合器件的时序发生装置,其特征在于:主要包括单片机、有源晶体振荡器和现场可编程逻辑门阵列,其中:1. A timing generator for driving a charge-coupled device, characterized in that: it mainly includes a single-chip microcomputer, an active crystal oscillator and a field programmable logic gate array, wherein: 有源晶体振荡器与现场可编程逻辑门阵列输入端连接,为现场可编程逻辑门阵列提供时钟信号;The active crystal oscillator is connected to the input end of the field programmable logic gate array to provide a clock signal for the field programmable logic gate array; 单片机通过数据总线和地址总线对现场可编程逻辑门阵列内部的参数寄存器阵列依次访问,完成装置初始化,根据实际应用要求为现场可编程逻辑门阵列提供所有需要现场设定的参数;The single-chip microcomputer sequentially accesses the parameter register array inside the field programmable logic gate array through the data bus and the address bus, completes device initialization, and provides all parameters that need to be set on site for the field programmable logic gate array according to actual application requirements; 现场可编程逻辑门阵列的输入端与单片机输出端连接,接收单片机输出的现场可编程逻辑门阵列内部各个模块所需要的参数,并根据内部参数寄存器阵列的参数生成并输出水平驱动信号、垂直驱动信号、相关双采样及模数转换驱动信号及图像输出时序信号。The input end of the field programmable logic gate array is connected with the output end of the single-chip microcomputer, receives the parameters required by each module in the field programmable logic gate array output by the single-chip microcomputer, and generates and outputs horizontal drive signals and vertical drive signals according to the parameters of the internal parameter register array. signal, correlated double sampling and analog-to-digital conversion drive signal and image output timing signal. 2.根据权利要求1所述用于驱动电荷耦合器件的时序发生装置,其特征在于:现场可编程逻辑门阵列内部包含数据通信接口模块、参数寄存器阵列模块、数字时钟管理器模块、主控制器模块、水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块、图像输出时序发生器模块,其中:2. The timing generating device for driving charge-coupled devices according to claim 1, characterized in that: the Field Programmable Logic Gate Array includes a data communication interface module, a parameter register array module, a digital clock manager module, and a main controller Module, horizontal drive generator module, vertical drive generator module, correlated double sampling and analog-to-digital conversion drive generator module, image output timing generator module, in which: 通信接口模块的输入端分别与单片机输出端、参数寄存器阵列的数据端、数字时钟管理模块的输出端连接,协助单片机完成对现场可编程逻辑门阵列内部任一寄存器的访问,实现对现场可编程逻辑门阵列输出的每一路驱动信号源的单独配置;The input terminal of the communication interface module is respectively connected with the output terminal of the single-chip microcomputer, the data terminal of the parameter register array, and the output terminal of the digital clock management module, assisting the single-chip computer to complete the access to any register inside the field programmable logic gate array, and realizing the field programmable Individual configuration of each driving signal source output by the logic gate array; 数字时钟管理器模块的输入端与有源晶体振荡器的输出端连接,对有源晶体振荡器输入的时钟信号进行倍频、锁相,生成高频时钟信号作为主控制器模块、通信接口模块、水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块和图像输出时序发生器模块的主控时钟信号,控制各个模块之间的时序同步;The input terminal of the digital clock manager module is connected to the output terminal of the active crystal oscillator, and the clock signal input by the active crystal oscillator is frequency-multiplied and phase-locked to generate a high-frequency clock signal as the main controller module and communication interface module , the main control clock signal of the horizontal drive generator module, the vertical drive generator module, the correlated double sampling and analog-to-digital conversion drive generator module and the image output timing generator module, to control the timing synchronization between each module; 数字时钟管理器模块的输出端与通信接口模块、主控制器模块、水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块、图像输出时序发生器模块的输入端连接,通信接口模块接收数字时钟管理器模块输出的高频主控时钟信号,对单片机发送过来的数据进行同步译码,并写入参数寄存器阵列内的相应寄存器;主控制器模块、水平驱动信号发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块、图像输出时序发生模块接收数字时钟管理器模块输出的高频主控时钟信号,驱动每一个所述模块产生相应的动作;The output of the digital clock manager module and the input of the communication interface module, the main controller module, the horizontal drive generator module, the vertical drive generator module, the correlated double sampling and analog-to-digital conversion drive generator module, and the image output timing generator module The communication interface module receives the high-frequency main control clock signal output by the digital clock manager module, decodes the data sent by the single-chip microcomputer synchronously, and writes it into the corresponding register in the parameter register array; the main controller module, horizontal drive The signal generator module, the vertical drive generator module, the correlated double sampling and analog-to-digital conversion drive generator module, and the image output timing generation module receive the high-frequency main control clock signal output by the digital clock manager module, and drive each of the modules to generate corresponding action; 主控制器模块的输入端与通信接口模块输出端、参数寄存器阵列模块的输出端连接,接收通信接口模块输出的控制信号和参数寄存器阵列输出的参数数据,控制主控制器模块内部状态机的运转,主控制器模块输出用于控制水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块及图像输出时序发生器模块的控制信号;The input terminal of the main controller module is connected with the output terminal of the communication interface module and the output terminal of the parameter register array module, receives the control signal output by the communication interface module and the parameter data output by the parameter register array, and controls the operation of the internal state machine of the main controller module , the main controller module outputs control signals for controlling the horizontal drive generator module, the vertical drive generator module, the correlated double sampling and analog-to-digital conversion drive generator module and the image output timing generator module; 水平驱动发生器模块的输入端与主控制器模块的输出端连接,用于接收水平控制信号,并根据控制信号内容生成并输出水平驱动信号;The input terminal of the horizontal driving generator module is connected with the output terminal of the main controller module, and is used for receiving the horizontal control signal, and generating and outputting the horizontal driving signal according to the content of the control signal; 垂直驱动发生器模块的输入端与主控制器模块的输出端连接,用于接收垂直控制信号,并根据控制信号内容生成并输出垂直驱动信号;The input terminal of the vertical drive generator module is connected to the output terminal of the main controller module, and is used to receive the vertical control signal, and generate and output the vertical drive signal according to the content of the control signal; 相关双采样及模数转换驱动发生器模块的输入端与主控制器模块的输出端连接,用于接收相关双采样及模数转换控制信号,并根据控制信号内容生成并输出相关双采样及模数转换驱动信号;The input terminal of the correlated double sampling and analog-to-digital conversion drive generator module is connected to the output terminal of the main controller module for receiving correlated double sampling and analog-to-digital conversion control signals, and generating and outputting correlated double sampling and analog-to-digital conversion signals according to the content of the control signal Digital conversion drive signal; 图像输出时序发生器模块的输入端与主控制器模块的输出端连接,用于接收图像时序控制信号,并根据控制信号内容生成并输出图像时序驱动信号。The input end of the image output timing generator module is connected with the output end of the main controller module, and is used for receiving the image timing control signal, and generating and outputting the image timing driving signal according to the content of the control signal. 3.根据权利要求2所述用于驱动电荷耦合器件的时序发生装置,其特征在于:参数寄存器阵列模块包括频率参数寄存器、相位参数寄存器、占空比参数寄存器,在现场可编程逻辑门阵列内部对每一路输出的驱动信号源分别设有频率参数寄存器、相位参数寄存器、占空比参数寄存器,并设有被驱动电荷耦合器件的总体参数寄存器包括:总行数参数寄存器、有效行数参数寄存器、总列数参数寄存器、有效列数参数寄存器、曝光时间参数寄存器、同步模式参数寄存器、输出模式参数寄存器,像元合并参数寄存器。3. The timing generating device for driving charge-coupled devices according to claim 2, characterized in that: the parameter register array module includes a frequency parameter register, a phase parameter register, and a duty cycle parameter register, and is inside the Field Programmable Logic Gate Array There are frequency parameter registers, phase parameter registers, and duty cycle parameter registers for each output driving signal source, and the overall parameter registers of the driven charge-coupled device include: total row number parameter register, effective row number parameter register, The total column number parameter register, the effective column number parameter register, the exposure time parameter register, the synchronous mode parameter register, the output mode parameter register, and the pixel merging parameter register. 4.根据权利要求3所述用于驱动电荷耦合器件的时序发生装置,其特征在于:使用单片机对输出的每一路驱动电荷耦合器件栅极的驱动信号源进行相应的参数寄存器初始设置,实现对该驱动信号源特性的完整控制。4. The timing generating device for driving a charge-coupled device according to claim 3, characterized in that: use a single-chip microcomputer to carry out corresponding parameter register initial settings for each output drive signal source driving the gate of a charge-coupled device, so as to realize Complete control over the characteristics of the drive source. 5.根据权利要求2所述用于驱动电荷耦合器件的时序发生装置,其特征在于:主控制器模块对电荷耦合器件成像过程中的快速擦除、曝光、电荷包垂直转移准备、电荷包垂直转移、水平无效电荷清空、电荷包水平转移、电荷包信号放大、电荷包读出的过程设计状态机,控制水平驱动发生器模块、垂直驱动发生器模块、相关双采样及模数转换驱动发生器模块及图像输出时序发生器模块在电荷耦合器件不同工作状态下产生相应的驱动信号。5. The timing generating device for driving a charge-coupled device according to claim 2, characterized in that: the main controller module performs fast erasing, exposure, charge packet vertical transfer preparation, charge packet vertical Process design state machine for transfer, horizontal invalid charge emptying, charge packet horizontal transfer, charge packet signal amplification, charge packet readout, control horizontal drive generator module, vertical drive generator module, correlated double sampling and analog-to-digital conversion drive generator The module and the image output timing generator module generate corresponding driving signals under different working states of the charge-coupled device. 6.根据权利要求2所述用于驱动电荷耦合器件的时序发生装置,其特征在于:水平驱动发生器模块在主控制器模块控制下产生一组电荷包水平转移所需要的时序,不发生转移时关闭水平驱动发生器模块。6. The timing generating device for driving charge-coupled devices according to claim 2, characterized in that: the horizontal drive generator module generates the required timing for a group of charge packets horizontally transferred under the control of the main controller module, and no transfer occurs turn off the horizontal drive generator module. 7.根据权利要求2所述用于驱动电荷耦合器件的时序发生装置,其特征在于:垂直驱动发生器模块在主控制器模块控制下产生一组电荷包垂直转移所需要的时序,不发生转移时关闭垂直驱动发生器模块。7. The timing generating device for driving charge-coupled devices according to claim 2, characterized in that: the vertical drive generator module produces the required timing for vertical transfer of a group of charge packets under the control of the main controller module, and no transfer occurs Turn off the vertical drive generator module at this time. 8.根据权利要求2所述用于驱动电荷耦合器件的时序发生装置,其特征在于:相关双采样及模数转换驱动发生器模块在主控制器模块控制下完成对电荷耦合器件的前端预处理读出放大电路的模拟信号进行相关双采样处理,消除复位噪声,并控制相关双采样及模数转换驱动发生模块将以模拟信号表示的图像转换为数字图像。8. The timing generating device for driving charge-coupled devices according to claim 2, characterized in that: correlated double sampling and analog-to-digital conversion drive generator module completes the front-end preprocessing of charge-coupled devices under the control of the main controller module The analog signal of the readout amplification circuit is processed by correlated double sampling to eliminate reset noise, and the correlated double sampling and analog-to-digital conversion drive generation module is controlled to convert the image represented by the analog signal into a digital image. 9.根据权利要求2所述用于驱动电荷耦合器件的时序发生装置,其特征在于:图像输出时序发生器模块配合模数转换后生成的数字图像提供时序信号,以便CameraLink接口电路将数字图像传输到该装置外部。9. The timing generating device for driving a charge-coupled device according to claim 2, characterized in that: the image output timing generator module cooperates with the digital image generated after the analog-to-digital conversion to provide timing signals, so that the CameraLink interface circuit transmits the digital image to the outside of the device.
CN201410106542.7A 2014-03-20 2014-03-20 Time sequence generating device for driving charge coupled device Active CN103888688B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410106542.7A CN103888688B (en) 2014-03-20 2014-03-20 Time sequence generating device for driving charge coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410106542.7A CN103888688B (en) 2014-03-20 2014-03-20 Time sequence generating device for driving charge coupled device

Publications (2)

Publication Number Publication Date
CN103888688A true CN103888688A (en) 2014-06-25
CN103888688B CN103888688B (en) 2017-04-26

Family

ID=50957389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410106542.7A Active CN103888688B (en) 2014-03-20 2014-03-20 Time sequence generating device for driving charge coupled device

Country Status (1)

Country Link
CN (1) CN103888688B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104394333A (en) * 2014-11-26 2015-03-04 中国科学院国家天文台南京天文光学技术研究所 Control system of CCD drive in South Pole Telescope
CN104469196A (en) * 2014-11-26 2015-03-25 哈尔滨工程大学 A driving device for an image acquisition system of an interline transfer CCD sensor
CN104796640A (en) * 2015-04-20 2015-07-22 中国航天科技集团公司第九研究院第七七一研究所 Multifunctional column sequence control circuit of oversized area-array CMOS (complementary metal oxide semiconductor) image sensor
CN105407274A (en) * 2015-11-02 2016-03-16 深圳怡化电脑股份有限公司 Method for achieving image acquisition by utilizing FPGA
CN106791505A (en) * 2016-12-29 2017-05-31 中国科学院西安光学精密机械研究所 Time sequence generator and time sequence driving method for two-channel CCD imaging system
CN106791499A (en) * 2016-11-22 2017-05-31 北京空间机电研究所 A kind of method for realizing improving electron multiplication CCD camera output image signal to noise ratio
CN110516810A (en) * 2019-08-29 2019-11-29 合肥本源量子计算科技有限责任公司 A kind of processing method, device, storage medium and the electronic device of quantum program
CN111405208A (en) * 2020-03-20 2020-07-10 中国电子科技集团公司第四十四研究所 Internally frame transferred CCD

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839768A (en) * 2010-05-14 2010-09-22 浙江工业大学 Portable fiber-optic spectrometer based on CPLD and LABVIEW
US20100283882A1 (en) * 2009-05-08 2010-11-11 Photon Etc., Inc. Apparatus and method for low noise imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100283882A1 (en) * 2009-05-08 2010-11-11 Photon Etc., Inc. Apparatus and method for low noise imaging
CN101839768A (en) * 2010-05-14 2010-09-22 浙江工业大学 Portable fiber-optic spectrometer based on CPLD and LABVIEW

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王明富,杨世洪,吴钦章,夏默: "一种高帧频EMCCD驱动电路设计", 《光电工程》 *
王明富,杨世洪,吴钦章: "大面阵CCD图像实时显示系统的设计", 《光学精密工程》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104394333A (en) * 2014-11-26 2015-03-04 中国科学院国家天文台南京天文光学技术研究所 Control system of CCD drive in South Pole Telescope
CN104469196A (en) * 2014-11-26 2015-03-25 哈尔滨工程大学 A driving device for an image acquisition system of an interline transfer CCD sensor
CN104796640A (en) * 2015-04-20 2015-07-22 中国航天科技集团公司第九研究院第七七一研究所 Multifunctional column sequence control circuit of oversized area-array CMOS (complementary metal oxide semiconductor) image sensor
CN105407274A (en) * 2015-11-02 2016-03-16 深圳怡化电脑股份有限公司 Method for achieving image acquisition by utilizing FPGA
CN105407274B (en) * 2015-11-02 2018-08-24 深圳怡化电脑股份有限公司 The method for realizing Image Acquisition using FPGA
CN106791499A (en) * 2016-11-22 2017-05-31 北京空间机电研究所 A kind of method for realizing improving electron multiplication CCD camera output image signal to noise ratio
CN106791499B (en) * 2016-11-22 2019-06-18 北京空间机电研究所 A method for improving the signal-to-noise ratio of the output image of an electron multiplying CCD camera
CN106791505A (en) * 2016-12-29 2017-05-31 中国科学院西安光学精密机械研究所 Time sequence generator and time sequence driving method for two-channel CCD imaging system
CN106791505B (en) * 2016-12-29 2023-09-05 中国科学院西安光学精密机械研究所 A timing generator and timing driving method for a dual-channel CCD imaging system
CN110516810A (en) * 2019-08-29 2019-11-29 合肥本源量子计算科技有限责任公司 A kind of processing method, device, storage medium and the electronic device of quantum program
CN110516810B (en) * 2019-08-29 2022-08-12 合肥本源量子计算科技有限责任公司 Quantum program processing method and device, storage medium and electronic device
CN111405208A (en) * 2020-03-20 2020-07-10 中国电子科技集团公司第四十四研究所 Internally frame transferred CCD

Also Published As

Publication number Publication date
CN103888688B (en) 2017-04-26

Similar Documents

Publication Publication Date Title
CN103888688B (en) Time sequence generating device for driving charge coupled device
CN107710415B (en) Interline charge coupled device
CN104159043B (en) A kind of double two field picture acquisition methods of ultrahigh speed
TWI615028B (en) Image sensor, imaging terminal having same and imaging method using same
US20170155863A1 (en) Method of driving image pickup device, image pickup device, image pickup system
CN107659762A (en) A kind of imaging sensor
KR20160063856A (en) An image sensor, and an image processing system including the image sensor
CN102055915B (en) Driving time sequence implementation method of frame transfer CCD (Charge Coupled Device) short exposure time
CN103795944A (en) Universal area array CCD timing sequence driven generator
CN106791505B (en) A timing generator and timing driving method for a dual-channel CCD imaging system
JP2007116675A (en) Imaging apparatus
CN108495065B (en) Driving time sequence control method of frame transfer type area array CCD
CN108174116B (en) A CCD Exposure Time Control Method
TW201517626A (en) Image sensor including spread spectrum charge pump
WO2024046262A1 (en) Pixel array control method and apparatus, and electronic device
CN103763484A (en) Imaging and data transmission system of EMCCD camera
JP2015002415A (en) Photoelectric conversion device, photoelectric conversion system, and method for driving photoelectric conversion device
CN111787245A (en) An FPGA-based CCD star sensor serial-parallel linkage image acquisition method and system
CN107018341B (en) A TDI CCD image sensor and driving method
CN115484409A (en) Multi-image sensor cooperative working method and system
CN206364914U (en) Time sequence generator for double-channel CCD imaging system
JP5695967B2 (en) Solid-state imaging device
JP5614922B2 (en) Imaging apparatus, X-ray diagnostic imaging apparatus, and control method thereof
Li et al. Method to implement the CCD Timing Generator Based on FPGA
US20030133026A1 (en) CCD having improved flushing by reducing power consumption and creating a uniform dark field while maintaining low dark current

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant