CN103887528B - 锂空气电池用MnO2-RuO2/C催化剂及其制备方法 - Google Patents

锂空气电池用MnO2-RuO2/C催化剂及其制备方法 Download PDF

Info

Publication number
CN103887528B
CN103887528B CN201410075258.8A CN201410075258A CN103887528B CN 103887528 B CN103887528 B CN 103887528B CN 201410075258 A CN201410075258 A CN 201410075258A CN 103887528 B CN103887528 B CN 103887528B
Authority
CN
China
Prior art keywords
mno
ruo
catalyst
nano
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410075258.8A
Other languages
English (en)
Other versions
CN103887528A (zh
Inventor
陈虹
卢云
卢毅
李敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Daaisi Electronics Co ltd
Original Assignee
Chengdu Daaisi Electronics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Daaisi Electronics Co ltd filed Critical Chengdu Daaisi Electronics Co ltd
Priority to CN201410075258.8A priority Critical patent/CN103887528B/zh
Publication of CN103887528A publication Critical patent/CN103887528A/zh
Application granted granted Critical
Publication of CN103887528B publication Critical patent/CN103887528B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/923Compounds thereof with non-metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种锂空气电池用MnO2?RuO2/C催化剂及其制备方法,所述催化剂的活性物质为MnO2?RuO2、载体为纳米碳,所述的MnO2?RuO2、纳米碳的质量百分含量分别为:MnO2:5%至20%,纳米碳:25%至55%,剩余含量为RuO2。本发明采用纳米MnO2?RuO2包覆纳米碳,在催化剂的制备过程中,以纳米碳为载体周围吸附大量的纳米MnO2和RuO2粒子,使MnO2和RuO2稳定的包覆在载体表面,从而提高了催化剂的稳定性及活性;同时由于纳米碳被包覆,就减少了与Li2O2的接触,即减少了副反应的发生,从而提高了电池的能量效率及电池的循环特性。

Description

锂空气电池用MnO2-RuO2/C催化剂及其制备方法
技术领域
本发明涉及锂空气电池技术领域,具体涉及一种锂空气电池用MnO2-RuO2/C催化剂及其制备方法。
背景技术
锂空气电池作为一种新型的高效的绿色环保能源,具有超高的比容量,能量密度高达11140wh/kg,具有可逆性,环境友好,成本低等优点。其中碳材料作为最主要的正极材料,但当碳材料用作主要的正极材料时主要存在以下两个方面问题。
首先,过电压较高,主要是由于放电过程的氧析出反应的过电压较高,而RuO2是一种较好的氧析出反应的高效催化剂,但对氧化还原反应的催化活性较低;MnO2是一种较好的氧还原催化剂,而析氧反应的催化活性较低;因而采用MnO2-RuO2的复合可作为一种高效的双功能催化剂。
其次,碳材在作为阴极时在充放电过程中与放电产物Li2O2反应生成Li2CO3,从而降低了电化学的反应效率,所以这里采用复合金属氧化物包覆纳米碳材的方法来降低副反应的发生率。
发明内容
本发明克服了现有技术的不足,提供一种解决降低过电压,减少副反应的发生的一种高效的双效的锂空气电池用MnO2-RuO2/C催化剂及其制备方法。
为解决上述的技术问题,本发明采用以下技术方案:
一种锂空气电池用MnO2-RuO2/C催化剂,所述催化剂的活性物质为MnO2-RuO2、载体为纳米碳,所述的MnO2-RuO2、纳米碳的质量百分含量分别为:MnO2:5%至20%,纳米碳:25%至55%,剩余含量为RuO2
更进一步的技术方案是提供一种锂空气电池用MnO2-RuO2/C催化剂的制备方法,所述的制备方法包括以下步骤:
将高锰酸钾溶液加入到二价锰盐溶液中搅拌均匀;
进行第一次水热反应后抽滤,洗涤;
在80-120℃干燥8-12h得到纳米MnO2
将MnO2、纳米碳加入三氯化钌水溶液中超声搅拌均匀;
所述MnO2、纳米碳加入三氯化钌水溶液中超声搅拌均匀后进行水热反应,进行第二次水热反应后抽滤;
用去离子水以及乙醇分别洗涤数次后在80-120℃干燥8-12h,得到纳米MnO2-RuO2包覆纳米碳的催化剂。
更进一步的技术方案是第一次水热反应的温度是160℃,反应时间是12h。
更进一步的技术方案是第二次水热反应的温度是180℃,反应时间是12h。
更进一步的技术方案是二价锰盐包括:硫酸锰、硝酸锰、氯化锰、醋酸锰。
更进一步的技术方案是纳米碳包括:KB600、Super P、XC-72、KB300、BP2000、介孔碳、碳气凝胶、单壁碳纳米管、多壁碳纳米管、碳纳米纤维、石墨烯中的一种或几种。
与现有技术相比,本发明的有益效果是:本发明采用纳米MnO2-RuO2包覆纳米碳,在催化剂的制备过程中,以纳米碳为载体周围吸附大量的纳米MnO2和RuO2粒子,使MnO2和RuO2稳定的包覆在载体表面,从而提高了催化剂的稳定性及活性;同时由于纳米碳被包覆,就减少了与Li2O2的接触,即减少了副反应的发生。 从而提高了电池的能量效率及电池的循环特性。
具体实施方式
下面对本发明作进一步阐述。
实施例1
取0.82g高锰酸钾溶于24ml去离子水,0.37g硫酸锰溶于10ml去离子水。高锰酸钾溶液滴加到硫酸锰溶液中,充分搅拌均匀,在反应釜中160℃水热反应12h,抽滤洗涤6次,100℃干燥12h。取0.0545gRuCl3·ⅹH2O,0.1g多壁碳纳米管,0.05g MnO2溶于去离子水,超声分散0.5h,将混合溶液放入反应釜中,180℃水热反应12h,抽滤,分别用去离子水,乙醇各洗涤3次,100℃干燥8h,即得到MnO2-RuO2包覆的多壁碳纳米管催化剂。
实施例2
取0.82g高锰酸钾溶于24ml去离子水,0.37g硫酸锰溶于10ml去离子水。高锰酸钾溶液滴加到硫酸锰溶液中,充分搅拌均匀,在反应釜中160℃水热反应12h,抽滤洗涤6次,100℃干燥12h。取0.05gRuCl3·ⅹH2O,0.1g Super P,0.05g MnO2溶于去离子水,超声分散0.5h,将混合溶液放入反应釜中,180℃水热反应12h,抽滤,分别用去离子水,乙醇各洗涤3次,110℃干燥8h,即得到MnO2-RuO2包覆Super P催化剂。
实施例3
取0.8g高锰酸钾溶于24ml去离子水,0.4g硫酸锰溶于10ml去离子水。高锰酸钾溶液滴加到硫酸锰溶液中,充分搅拌均匀,在反应釜中160℃水热反应12h,抽滤洗涤6次,100℃干燥12h。取0.05gRuCl3·ⅹH2O,0.1g石墨烯,0.05g MnO2溶于去离子水,超声分散0.5h,将混合溶液放入反应釜中,180℃水热反应 12h,抽滤,分别用去离子水,乙醇各洗涤3次,100℃干燥10h,即得到MnO2-RuO2包覆石墨烯的催化剂。
在本说明书中所谈到的“一个实施例”、“另一个实施例”、“实施例”、等,指的是结合该实施例描述的具体特征、结构或者特点包括在本申请概括性描述的至少一个实施例中。在说明书中多个地方出现同种表述不是一定指的是同一个实施例。进一步来说,结合任一个实施例描述一个具体特征、结构或者特点时,所要主张的是结合其他实施例来实现这种特征、结构或者特点也落在本发明的范围内。
尽管这里参照发明的多个解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开权利要求的范围内,可以对主题组合布局的组成部件和/或布局进行多种变型和改进。除了对组成部件和/或布局进行的变型和改进外,对于本领域技术人员来说,其他的用途也将是明显的。

Claims (5)

1.一种锂空气电池用MnO2-RuO2/C催化剂的制备方法,其特征在于所述的制备方法包括以下步骤:
将高锰酸钾溶液加入到二价锰盐溶液中搅拌均匀;
进行第一次水热反应后抽滤,洗涤;
在80-120℃干燥8-12h得到纳米MnO2
将MnO2、纳米碳加入三氯化钌水溶液中超声搅拌均匀;
所述MnO2、纳米碳加入三氯化钌水溶液中超声搅拌均匀后进行水热反应,进行第二次水热反应后抽滤;
用去离子水以及乙醇分别洗涤数次后在80-120℃干燥8-12h,得到纳米MnO2-RuO2包覆纳米碳的催化剂,催化剂的活性物质为MnO2-RuO2、载体为纳米碳,所述的MnO2-RuO2、纳米碳的质量百分含量分别为:MnO2:5%至20%,纳米碳:25%至55%,剩余含量为RuO2
2.根据权利要求1所述的锂空气电池用MnO2-RuO2/C催化剂的制备方法,其特征在于所述的第一次水热反应的温度是160℃,反应时间是12h。
3.根据权利要求1所述的锂空气电池用MnO2-RuO2/C催化剂的制备方法,其特征在于所述的第二次水热反应的温度是180℃,反应时间是12h。
4.根据权利要求1所述的锂空气电池用MnO2-RuO2/C催化剂的制备方法,其特征在于所述的二价锰盐包括:硫酸锰、硝酸锰、氯化锰、醋酸锰。
5.根据权利要求1所述的锂空气电池用MnO2-RuO2/C催化剂的制备方法,其特征在于所述的纳米碳包括:KB600、Super P、XC-72、KB300、BP2000、介孔碳、碳气凝胶、单壁碳纳米管、多壁碳纳米管、碳纳米纤维、石墨烯中的一种或几种。
CN201410075258.8A 2014-03-04 2014-03-04 锂空气电池用MnO2-RuO2/C催化剂及其制备方法 Active CN103887528B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410075258.8A CN103887528B (zh) 2014-03-04 2014-03-04 锂空气电池用MnO2-RuO2/C催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410075258.8A CN103887528B (zh) 2014-03-04 2014-03-04 锂空气电池用MnO2-RuO2/C催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN103887528A CN103887528A (zh) 2014-06-25
CN103887528B true CN103887528B (zh) 2016-07-13

Family

ID=50956328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410075258.8A Active CN103887528B (zh) 2014-03-04 2014-03-04 锂空气电池用MnO2-RuO2/C催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN103887528B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649338B1 (ko) * 2014-07-30 2016-08-30 인하대학교 산학협력단 이산화루테늄/이산화망간/탄소 복합체를 이용한 공기전극 및 이의 제조방법.
KR101671964B1 (ko) * 2014-07-30 2016-11-03 인하대학교 산학협력단 이산화루테늄/이산화망간/탄소 복합체를 이용한 리튬/공기 이차전지 공기전극의 제조방법 및 이에 따라 제조되는 공기전극.
CN104142041A (zh) * 2014-08-06 2014-11-12 江苏双鹿电器有限公司 具有蓄电池供电功能的冰箱及电池催化剂制备方法
CN107754795B (zh) * 2016-08-19 2020-06-16 中国科学院上海高等研究院 复合催化剂及其制备方法和应用
CN109786769B (zh) * 2018-12-18 2020-12-08 厦门大学 一种碳载贵金属氧化物双功能催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135475A1 (en) * 1983-08-18 1985-03-27 Eltech Systems Corporation Manufacture of oxygen evolving anodes with film forming metal base and catalytic oxide coating comprising ruthenium
CN101964423A (zh) * 2010-09-11 2011-02-02 华南理工大学 直接甲醇燃料电池阳极催化剂Pt/MnO2-RuO2/CNTs及其制备方法
CN102856611A (zh) * 2012-04-09 2013-01-02 中南大学 一种锂空气电池用微纳结构正极材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135475A1 (en) * 1983-08-18 1985-03-27 Eltech Systems Corporation Manufacture of oxygen evolving anodes with film forming metal base and catalytic oxide coating comprising ruthenium
CN101964423A (zh) * 2010-09-11 2011-02-02 华南理工大学 直接甲醇燃料电池阳极催化剂Pt/MnO2-RuO2/CNTs及其制备方法
CN102856611A (zh) * 2012-04-09 2013-01-02 中南大学 一种锂空气电池用微纳结构正极材料

Also Published As

Publication number Publication date
CN103887528A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
Ding et al. Metal-organic framework derived Co3O4/TiO2 heterostructure nanoarrays for promote photoelectrochemical water splitting
Zhou et al. Construction of LaNiO3 nanoparticles modified g-C3N4 nanosheets for enhancing visible light photocatalytic activity towards tetracycline degradation
Hunge et al. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications
CN103887528B (zh) 锂空气电池用MnO2-RuO2/C催化剂及其制备方法
Li et al. High-efficiency synergistic conversion of CO 2 to methanol using Fe 2 O 3 nanotubes modified with double-layer Cu 2 O spheres
Huang et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution
CN103715436B (zh) 一种二氧化碳电化学还原催化剂及其制备和应用
Luo et al. Cu-MOF assisted synthesis of CuS/CdS (H)/CdS (C): Enhanced photocatalytic hydrogen production under visible light
Wang et al. In-situ preparation of mossy tile-like ZnIn2S4/Cu2MoS4 S-scheme heterojunction for efficient photocatalytic H2 evolution under visible light
CN109208030A (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
CN104746096A (zh) 一种用于电催化氧化尿素的镍基催化电极的制备方法
CN109148903A (zh) 3d海胆球状碳基镍钴双金属氧化物复合材料的制备方法
Su et al. Metal organic framework-derived Co3O4/NiCo2O4 hollow double-shell polyhedrons for effective photocatalytic hydrogen generation
CN107051568A (zh) 一种析氧Fe掺杂二硒化钴@N‑CT复合催化剂及其制备方法和应用
CN104973595B (zh) 一种三维多孔石墨烯材料及其制备方法与应用
CN102730763A (zh) 超级电容器用花状二氧化锰电极材料及其制备方法
CN106935838B (zh) 制备单向择优生长高电化学活性的磷酸铁锂四元复合材料的方法
Chen et al. A solar responsive cubic nanosized CuS/Cu2O/Cu photocathode with enhanced photoelectrochemical activity
Gao et al. Rational design 2D/2D BiOCl/H+ Ti2NbO7− heterojunctions for enhanced photocatalytic degradation activity
Hu et al. Boosted photodegradation of tetracycline hydrochloride over Z-scheme MIL-88B (Fe)/Bi2WO6 composites under visible light
Chen et al. Designing of carbon cloth@ Co-MOF@ SiO2 as superior flexible anode for lithium-ion battery
CN108847494A (zh) 一种可用于燃料电池电催化剂的过渡金属/硫/氮共掺杂碳复合材料及其制备方法
CN108400329A (zh) 一种贵金属单质掺杂钒酸盐纳米电极材料的制备方法
CN107808958A (zh) 四氧化三铁/氮掺杂石墨烯复合材料的制备方法及其产品和应用
CN107123810A (zh) 一种基于磷化镍骨架结构复合材料的制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant