CN103794664A - 一种新品n型半绝缘GaAs欧姆接触电极材料及其制备方法 - Google Patents

一种新品n型半绝缘GaAs欧姆接触电极材料及其制备方法 Download PDF

Info

Publication number
CN103794664A
CN103794664A CN201410069878.0A CN201410069878A CN103794664A CN 103794664 A CN103794664 A CN 103794664A CN 201410069878 A CN201410069878 A CN 201410069878A CN 103794664 A CN103794664 A CN 103794664A
Authority
CN
China
Prior art keywords
insulating gaas
electrode material
contact electrode
type semi
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410069878.0A
Other languages
English (en)
Other versions
CN103794664B (zh
Inventor
翟章印
胡小飞
陈贵宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Normal University
Original Assignee
Huaiyin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Normal University filed Critical Huaiyin Normal University
Priority to CN201410069878.0A priority Critical patent/CN103794664B/zh
Publication of CN103794664A publication Critical patent/CN103794664A/zh
Application granted granted Critical
Publication of CN103794664B publication Critical patent/CN103794664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提出了一种新品n型半绝缘GaAs的欧姆接触电极材料及其制备方法。该方法所述电极底层采用未掺杂的n型半绝缘GaAs基片,基片上的两个电极区上,采用脉冲激光沉积法镀有钴(Co)掺杂的非晶碳膜(a-C),非晶碳膜层上再采用真空热蒸发方法镀银(Ag)而制成。本发明的新品n型半绝缘GaAs的欧姆接触电极材料,经多项数据检测,电极的I-V曲线具有很好的线性和对称关系,其性能指标均符合稳定接触电极的要求,且光灵敏度较大,可成功应用于与n型半绝缘GaAs相关的器件中;且与现有技术的制作工艺相比,流程简短、成本低,具有良好的经济效益。

Description

一种新品n型半绝缘GaAs欧姆接触电极材料及其制备方法
技术领域
本发明涉及光电领域的半导体技术,特别涉及一种新品n型半绝缘GaAs的欧姆接触电极材料及其制备方法。 
背景技术  
  砷化镓( GaAs)是一种Ⅲ-Ⅴ族化合物半导体,具有闪锌矿的晶状结构。晶格常数为5.65×10-10m,熔点为1237℃,禁带宽度为1.42电子伏。它可以制成电阻率比硅、锗高3个数量级以上的半绝缘高阻材料,应用于光电导开关、集成电路衬底、红外探测器、γ光子探测器等;由于其电子迁移率比硅大5~6倍,在微波器件和高速数字电路方面也有重要应用;用GaAs制成的半导体器件,具有高频、高温、低温性能好、噪声小、抗辐射能力强等优点。此外,GaAs电路还可以运用在移动电话、卫星通讯、微波点对点连线、雷达系统等场所;且用GaAs、Ge(锗)和InGaP(铟镓磷)三种材料做成的三接面太阳能电池,其转换效率可高达32%以上。可见,它在现代先进技术中具有很高的应用价值。然而不同的欧姆接触电极材料对它的光电性能影响很大,因此获取良好的欧姆接触电极材料及其制备技术仍处于不断的探求之中。
所谓的欧姆接触是指半导体设备上具有线性并且对称的电流-电压特性曲线的区域。目前比较成熟的GaAs欧姆接触电极材料:n-GaAs是采用Au wt88%(重量百分比),Ge wt12%,+Ni wt5%的AuGeNi/Au电极;P-GaAs是采用Zn-Au,Cr-Au或Ti/Pt/Au电极。现有技术的早期,n-GaAs是使用AuGe共晶合金制作电极,其工艺是在真空蒸镀后,再高温退火以实现共晶化,但在此过程中Au容易起球,造成电极体的凹凸不平,更甚者可使电极脱落;为了解决该存在问题,业内研究者在共晶过程中加入了Ni防止了Au的起球;在再后来的工艺改进中又加入氮化钨(WN)作为防扩散层,最后再蒸镀Au形成欧姆接触电极。可见,现行GaAs的欧姆接触电极材料不仅制作工艺比较复杂,而且成本昂贵。为此,寻求获得工艺简单、成本较低的具有良好集成电路性能的稳定接触GaAs的欧姆接触电极材料,一直是业内科技人员力致于研究的课题。 
发明内容
本发明提出了一种新品n型半绝缘GaAs的欧姆接触电极材料及其制备方法,目的在于通过一种简便而低成本的工艺技术,改变现行n型半绝缘GaAs的欧姆接触电极材料的结构构成,以制备出性能良好而廉价的n型半绝缘GaAs欧姆接触电极材料的新品。 
本发明的技术解决方案: 
本发明所称的新品n型半绝缘GaAs的欧姆接触电极材料的结构是:其底层为n型半绝缘GaAs基片,基片上设置的两个电极区上,镀有钴(Co)掺杂的非晶碳膜(a-C),非晶碳膜层上设置有镀银(Ag)层,由各自的非晶碳膜层及其镀银层构成相对应的两个电极。
所述非晶碳膜层厚35-45 nm;所述镀Ag层厚50-100nm。 
所述n型半绝缘GaAs基片为未掺杂的n型半绝缘GaAs,其电阻率约为9.5×107-5.0×108Ω.cm。 
本发明所称的制备方法,其步骤是,首先采用脉冲激光沉积法,在n型半绝缘GaAs基片上的两个电极区镀Co掺杂的非晶碳膜;然后在该非晶碳膜上采用真空热蒸发方法镀Ag,便制成新品n型半绝缘GaAs的欧姆接触电极材料。 
所述镀Co掺杂的非晶碳膜,是使用纯度为99.99%的石墨和99.9%的金属Co为靶源,将金属Co片贴在石墨靶上,并通过靶和基片的自转实现镀膜过程中的均匀掺杂;所控制的相关参数为:Co掺杂量约10 at%(原子百分比)、激光能量450毫焦/脉冲、腔体真空度5×10-5Pa、基片温度450℃、靶与基片距离5.5cm;当镀膜层厚度达到要求后,退火30分钟、自然冷却至室温。 
所述真空热蒸发方法镀Ag是,一段约50毫克、纯度为99.9%的Ag,放入加热舟内,腔内抽至背底真空为10-4Pa,室温下增大电流直至Ag蒸发,达到镀Ag层厚度要求即可。 
本发明的有益效果 
(一)本发明方法所制作的新品n型半绝缘GaAs的欧姆接触电极材料,经多项数据检测,电极的I-V曲线具有很好的线性和对称关系,且光灵敏度较大;电极电阻率又远小于半绝缘GaAs基片的电阻率,其性能指标均符合稳定接触的电极要求,可成功应用于n型半绝缘GaAs相关的器件中。
(二)本发明方法与现有技术的制作工艺相比,流程简短、成本低,具有良好的经济效益。 
附图说明
图1为本发明新品n型半绝缘GaAs的欧姆接触电极材料及电光测量示意图; 
图2为本发明新品镀Co掺杂的非晶碳膜的拉曼移动图,图中:D峰(1356cm-1
和G峰(1596cm-1)是非晶碳膜SP2键的两个特征峰;
图3为本发明新品在室温下所测光照(光电流)与无光照(暗电流)电流-电压(I-V)曲线图;
图4为本发明新品在室温下光照(光电阻)与无光照(暗电阻)电阻-时间周期变化曲线图。
具体实施方式
    根据本发明的技术解决方案,列举实施例如下: 
首先,采用脉冲激光沉积方法在基片上镀掺Co的非碳晶膜。基片使用电阻率约为5×108Ω.cm的未掺杂的n型半绝缘GaAs材料。以纯度为99.99%的石墨和99.9%的金属Co为靶源,金属Co片贴在石墨靶上,对n型半绝缘GaAs基片所设两个电极区进行脉冲激光沉积镀膜。镀膜过程中,通过靶和基片自转实现均匀掺杂,Co掺杂量约10 at%(原子百分比)。激光能量450毫焦/脉冲,腔体真空度5×10-5Pa,基片温度控制在450℃左右,靶与基片距离为5.5cm。镀得非碳晶膜厚约40nm,退火30分钟,自然降温到室温。然后,采用真空热蒸发方法镀Ag。将一段约50毫克、纯度为99.9%的Ag放入加热舟内,腔内抽至背底真空10-4Pa,室温下增大电流直至Ag蒸发后厚度达50-100nm即可。
如图1所示,本发明新品底层1为n型半绝缘GaAs基片,基片上设除电极区外的空白区2(箭头表示光照的进入),电极区镀Co掺杂的非晶碳膜(a-C)层3,非晶碳膜层3上设置有镀Ag层4,由非晶碳膜层3和镀银层4构成电极。 
如图2所示,为本发明新品在制备中,完成镀掺Co的非碳晶膜后的检测,其中纵坐标为相对强度,横坐标为拉曼移动/cm-1值,其结果完全证明了该碳膜的非晶结构。 
如图3所示,为对所制备新品采用Keithley 2400量表、光源取用红光激光二极管(波长为650nm、功率为45mJ/cm-2)测得的I-V曲线图,纵坐标为电流/μA值,横坐标为电压/V值。该I-V曲线具有很好的线性和对称关系,证实了本发明新品为欧姆接触。测得其光灵敏度为320,说明该结构适用于光敏电阻器件。 
如图4所示,为对所采用的n型半绝缘GaAs基片所进行的光照与无光照的电阻-时间周期变化曲线图,纵坐标为(电阻/Ω)值,横坐标为(时间/S)值,高阻态为暗电阻,低阻态为光电阻。该结果再次证明了n型半绝缘GaAs基片所具有的光敏电阻特性。 
以上各项的检测结果,均证实本发明新品n型半绝缘GaAs的欧姆接触电极材料为符合要求的稳定的欧姆接触电极材料。 
     综上,本发明达到了预期的发明目的。 

Claims (6)

1.一种新品n型半绝缘GaAs的欧姆接触电极材料,其特征在于:它的底层为n型半绝缘GaAs基片,基片上设置的两个电极区上,镀有钴(Co)掺杂的非晶碳膜(a-C),非晶碳膜层上设置有镀银(Ag)层,由各自的非晶碳膜层及镀银层构成相对应的两个电极。
2.根据权利要求1所述的一种新品n型半绝缘GaAs的欧姆接触电极材料,其特征在于:所述非晶碳膜层厚35-45 nm;所述镀银层厚50-100nm。
3.根据权利要求1所述的一种新品n型半绝缘GaAs的欧姆接触电极材料,其特征在于:所述n型半绝缘GaAs基片为未掺杂的n型半绝缘GaAs基片,其电阻率约为9.5×107-5×108Ω.cm。
4.制备一种新品n型半绝缘GaAs的欧姆接触电极材料的方法,其特征在于:该方法的步骤是,首先,采用脉冲激光沉积法,在n型半绝缘GaAs基片上的两个电极区镀Co掺杂的非晶碳膜;然后在该非晶碳膜上采用真空热蒸发方法镀Ag,便制成新品n型半绝缘GaAs的欧姆接触电极材料。
5.根据权利要求4所述的制备一种新品n型半绝缘GaAs的欧姆接触电极材料的方法,其特征在于:所述镀Co掺杂的非晶碳膜,是使用纯度为99.99%的石墨和99.9%的金属Co为靶源,将金属Co片贴在石墨靶上,并通过靶和基片的自转实现镀膜过程中的均匀掺杂;所控制的相关参数为:Co掺杂量约10 at%(原子百分比)、激光能量450毫焦/脉冲、腔体真空度5×10-5Pa、基片温度450℃、靶与基片距离5.5cm;当镀膜层厚度达到要求后,退火30分钟、自然冷却至室温。
6.根据权利要求4所述的制备一种新品n型半绝缘GaAs的欧姆接触材料电极的方法,其特征在于:所述真空热蒸发方法镀Ag是,将一段约50毫克、纯度为99.9%的Ag,放入加热舟内,腔内抽至背底真空为10-4Pa,室温下增大电流直至Ag蒸发,达到镀银层厚度要求即可。
CN201410069878.0A 2014-02-28 2014-02-28 一种n型半绝缘GaAs欧姆接触电极材料及其制备方法 Active CN103794664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410069878.0A CN103794664B (zh) 2014-02-28 2014-02-28 一种n型半绝缘GaAs欧姆接触电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410069878.0A CN103794664B (zh) 2014-02-28 2014-02-28 一种n型半绝缘GaAs欧姆接触电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103794664A true CN103794664A (zh) 2014-05-14
CN103794664B CN103794664B (zh) 2016-01-20

Family

ID=50670155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410069878.0A Active CN103794664B (zh) 2014-02-28 2014-02-28 一种n型半绝缘GaAs欧姆接触电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103794664B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511535A (zh) * 2018-06-04 2018-09-07 北京铂阳顶荣光伏科技有限公司 一种太阳能电池片及其制备方法
CN113990967A (zh) * 2021-10-25 2022-01-28 中国工程物理研究院流体物理研究所 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源
CN114122166A (zh) * 2021-11-30 2022-03-01 淮阴师范学院 一种n型GaAs欧姆接触电极材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413348B2 (zh) * 1975-12-17 1979-05-30
US5332918A (en) * 1988-02-19 1994-07-26 Massachusetts Institute Of Technology Ultra-high-speed photoconductive devices using semi-insulating layers
JPH08222526A (ja) * 1995-02-15 1996-08-30 Matsushita Electric Ind Co Ltd P・n型同一オーミック材料及びその製造方法
JP2000058792A (ja) * 1998-07-20 2000-02-25 Internatl Business Mach Corp <Ibm> 超薄膜キャパシタおよびdram
CN101271933A (zh) * 2007-03-21 2008-09-24 中国科学院半导体研究所 量子点-阱红外探测器的结构及其制备方法
KR20120003611A (ko) * 2010-07-05 2012-01-11 현대중공업 주식회사 태양전지 및 그 제조방법
CN103022220A (zh) * 2011-09-21 2013-04-03 中国科学院上海硅酸盐研究所 高耐压、低导通电阻的光电导开关及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413348B2 (zh) * 1975-12-17 1979-05-30
US5332918A (en) * 1988-02-19 1994-07-26 Massachusetts Institute Of Technology Ultra-high-speed photoconductive devices using semi-insulating layers
JPH08222526A (ja) * 1995-02-15 1996-08-30 Matsushita Electric Ind Co Ltd P・n型同一オーミック材料及びその製造方法
JP2000058792A (ja) * 1998-07-20 2000-02-25 Internatl Business Mach Corp <Ibm> 超薄膜キャパシタおよびdram
CN101271933A (zh) * 2007-03-21 2008-09-24 中国科学院半导体研究所 量子点-阱红外探测器的结构及其制备方法
KR20120003611A (ko) * 2010-07-05 2012-01-11 현대중공업 주식회사 태양전지 및 그 제조방법
CN103022220A (zh) * 2011-09-21 2013-04-03 中国科学院上海硅酸盐研究所 高耐压、低导通电阻的光电导开关及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马明: "钯掺杂非晶碳膜/二氧化硅/硅异质结的制备及其光电特性的研究", 《CNKI》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511535A (zh) * 2018-06-04 2018-09-07 北京铂阳顶荣光伏科技有限公司 一种太阳能电池片及其制备方法
CN113990967A (zh) * 2021-10-25 2022-01-28 中国工程物理研究院流体物理研究所 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源
CN113990967B (zh) * 2021-10-25 2023-04-28 中国工程物理研究院流体物理研究所 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源
CN114122166A (zh) * 2021-11-30 2022-03-01 淮阴师范学院 一种n型GaAs欧姆接触电极材料及其制备方法

Also Published As

Publication number Publication date
CN103794664B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
Qin et al. Metal–semiconductor–metal ε-Ga2O3 solar-blind photodetectors with a record-high responsivity rejection ratio and their gain mechanism
Wang et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction
Morales-Acevedo Can we improve the record efficiency of CdS/CdTe solar cells?
Chen et al. Schottky solar cells based on CsSnI3 thin-films
Minami et al. Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure
Hadar et al. Nonlinear band gap tunability in selenium–tellurium alloys and its utilization in solar cells
WO2017166878A1 (zh) 具有高光电响应率的黑磷晶体、二维黑磷pn结及其制备方法与应用
Ma et al. High-photoresponsivity self-powered a-, ε-, and β-Ga2O3/p-GaN heterojunction UV photodetectors with an in situ GaON layer by MOCVD
Periasamy et al. Large-area and nanoscale n-ZnO/p-Si heterojunction photodetectors
US3978510A (en) Heterojunction photovoltaic devices employing i-iii-vi compounds
US8044477B1 (en) Photovoltaic device and method for making
Han et al. Self-powered Au/MgZnO/nanolayered Ga-Doped ZnO/In metal–insulator–semiconductor UV detector with high internal gain at deep UV light under low voltage
Ilican et al. XPS Studies of Electrodeposited Grown F‐Doped ZnO Rods and Electrical Properties of p‐Si/n‐FZN Heterojunctions
Zia et al. Study the efficiency of single crystal CdTe/ZnCdS solar cell at various temperatures and illumination levels
CN103794664B (zh) 一种n型半绝缘GaAs欧姆接触电极材料及其制备方法
JP5540323B2 (ja) ショットキー型接合素子とこれを用いた光電変換素子及び太陽電池
Bagheri et al. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation
Hou et al. MgZnO based ultraviolet photodetector with high photoresponsivity achieved by fluorine doping
WO2014171146A1 (ja) 太陽光発電モジュール
Chang et al. Zn/Mg co-alloyed for higher photoelectric performance and unchanged spectral response in β-Ga2O3 solar-blind photodetector
Saidov et al. Photothermovoltaic Effect in p-Si− n-(Si 2) 1–x–y (Ge 2) x (ZnSe) y Structure
Hsu et al. Properties of ZnTe thin films on silicon substrate
CN113193069B (zh) 一种hBN/BAlN异质结紫外探测器及其制备方法
KR101183111B1 (ko) 단극성 수직형 투명 다이오드
CN114038926A (zh) 一种高增益平面型雪崩单光子探测器及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant