CN113990967B - 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源 - Google Patents

一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源 Download PDF

Info

Publication number
CN113990967B
CN113990967B CN202111241120.7A CN202111241120A CN113990967B CN 113990967 B CN113990967 B CN 113990967B CN 202111241120 A CN202111241120 A CN 202111241120A CN 113990967 B CN113990967 B CN 113990967B
Authority
CN
China
Prior art keywords
gaas
layer
photoconductive switch
semi
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111241120.7A
Other languages
English (en)
Other versions
CN113990967A (zh
Inventor
栾崇彪
刘宏伟
王凌云
何泱
袁建强
马勋
李洪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Fluid Physics of CAEP
Original Assignee
Institute of Fluid Physics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Fluid Physics of CAEP filed Critical Institute of Fluid Physics of CAEP
Priority to CN202111241120.7A priority Critical patent/CN113990967B/zh
Publication of CN113990967A publication Critical patent/CN113990967A/zh
Application granted granted Critical
Publication of CN113990967B publication Critical patent/CN113990967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Lasers (AREA)
  • Manufacture Of Switches (AREA)
  • Micromachines (AREA)

Abstract

本发明实施例提供一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源,通过光导开关的低导通电阻以提高冲激脉冲源的输出功率;包括:在半绝缘GaAs材料表面外延生长一层n+‑GaAs层;将半绝缘GaAs材料表面除电极区域外的n+‑GaAs层去除;将锗、金、镍和金依次沉积到电极区域的n+‑GaAs层表面;在去除n+‑GaAs层的半绝缘GaAs材料的半绝缘GaAs材料表面刻蚀槽;在槽内蒸镀金属或者外延生长n+‑GaAs;经过高温快速退火在电极区域形成欧姆接触,制作得到光导开关。本发明实施例得到了欧姆接触电阻率小于10‑6Ω·cm2的光导开关,使采用该光导开关的冲激脉冲源提高了输出功率。

Description

一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源
技术领域
本发明涉及一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源。
背景技术
冲激雷达具有距离分辨力高、频谱超宽等优良的特性,使其在反隐身雷达、电子战干扰机等军事电子领域有广阔的应用前景。随着相关技术的不断进步,对冲激雷达提出了更高要求—固态化、模块化、紧凑轻量化、高重复频率、长使用寿命和良好的环境适应性,这也是对冲激雷达前端的脉冲功率源的技术要求。
冲激脉冲源中的开关器件一般采用雪崩三极管或者阶跃恢复二极管,但雪崩三极管需要使用逆变高压电源激励,对能源需求较高且体积较大;而阶跃恢复二极管工作电压较低,难以实现较高功率输出,实际使用时并联数量较大,体积庞大。因此,需要进一步提升单个器件的输出功率,降低系统复杂度和体积重量。
发明内容
本发明实施例提供一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源,以通过光导开关的低导通电阻以提高冲激脉冲源的输出功率。
本发明实施例通过下述技术方案实现:
第一方面,本发明实施例提供一种堆栈结构GaAs光导开关,包括:
在半绝缘GaAs材料表面外延生长一层n+-GaAs层;
将半绝缘GaAs材料表面除电极区域外的n+-GaAs层去除;
将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面;
在去除n+-GaAs层的半绝缘GaAs材料的半绝缘GaAs材料表面刻蚀槽;
在槽内蒸镀金属或者外延生长n+-GaAs;
经过高温快速退火在电极区域形成欧姆接触,制作得到光导开关。
进一步的,所述在半绝缘GaAs材料表面外延生长一层n+-GaAs层;包括:在半绝缘GaAs材料表面通过MOCVD的方法外延生长一层n+-GaAs层,掺杂浓度大于1019cm-3
进一步的,所述槽的深度为20-100nm;所述刻蚀的方法为干法或湿法。
进一步的,将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面;包括:通过电子束蒸发的方式将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面。
进一步的,所述经过高温快速退火在电极区域形成欧姆接触,制作得到光导开关;包括:采用快速热退火的方式在电极区域形成欧姆接触,制作得到光导开关。
进一步的,所述光导开关通过TLM方法测试得到的欧姆接触电阻率小于10-6Ω·cm2
第二方面,本发明实施例提供一种光导开关,包括
n+-GaAs层,设于半绝缘GaAs材料电极区域;
合金淀积层,从外至内依次包括第一金层、镍层、第二金层和锗层;
锗层,位于n+-GaAs层表面;
第一金层,第一金层的表面形成欧姆接触;以及
槽,设于除半绝缘GaAs材料电极区域的半绝缘GaAs材料表面;槽内蒸镀金属或者外延生长n+-GaAs。
进一步的,所述经过高温快速退火在电极区域形成欧姆接触,制作得到光导开关;包括:采用快速热退火的方式在电极区域形成欧姆接触,制作得到光导开关。
进一步的,所述槽的深度为20-100nm;所述刻蚀的方法为干法或湿法。
第三方面,本发明实施例提供一种冲激脉冲源,包括:
激光器,用于产生激光光束;以及
脉冲形成模块,设有所述制作方法制得的光导开关或设有所述光导开关;
所述激光光束照向光导开关。
本发明实施例与现有技术相比,具有如下的优点和有益效果:
本发明实施例的一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源,通过半绝缘GaAs材料电极区域的+-GaAs层、各个金属层、形成的欧姆接触以及槽内的蒸镀金属或者外延生长n+-GaAs等等实现了通过TLM方法测得的欧姆接触电阻率小于10-6Ω·cm2的光导开关,从而使采用该光导开关的冲激脉冲源提高了输出功率。
附图说明
为了更清楚地说明本发明示例性实施方式的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为堆栈结构GaAs光导开关的结构示意图。
图2为基于堆栈结构GaAs光导开关的冲激脉冲源的原理示意图。
附图中标记及对应的零部件名称:
1-n+-GaAs层,2-合金淀积层,3-半绝缘GaAs材料,4-蒸镀金属或者外延生长n+-GaAs,5-激光器,6-激光光束,7-脉冲形成模块,8-光导开关。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
在以下描述中,为了提供对本发明的透彻理解阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本发明。在其他实施例中,为了避免混淆本发明,未具体描述公知的结构、电路、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本发明至少一个实施例中。因此,在整个说明书的各个地方出现的短语“一个实施例”、“实施例”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和、或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,在此提供的示图都是为了说明的目的,并且示图不一定是按比例绘制的。这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
在本发明的描述中,术语“前”、“后”、“左”、“右”、“上”、“下”、“竖直”、“水平”、“高”、“低”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
实施例
与雪崩三极管、阶跃恢复二极管等器件相比,光导开关具有体积小,重复频率性能好、闭合时间短(ps量级)、时间抖动小(ps量级)、开关电感低(亚纳亨)、同步精度高(ps量级)、电磁兼容性强等优势,非常适合应用于冲激脉冲源。基于堆栈结构光导开关模块和微片激光器集成化设计的冲激脉冲源是一种实现高功率超窄脉冲输出的全新技术途径。
为实现光导开关的低导通电阻以提高冲激脉冲源的输出功率,第一方面,本发明实施例提供一种堆栈结构GaAs光导开关,参考图1所示,包括:
在半绝缘GaAs材料3表面外延生长一层n+-GaAs层1;
将半绝缘GaAs材料表面除电极区域外的n+-GaAs层去除;
将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面;
在去除n+-GaAs层的半绝缘GaAs材料的半绝缘GaAs材料表面刻蚀槽;
在槽内蒸镀金属或者外延生长n+-GaAs4;
经过高温快速退火在电极区域形成欧姆接触,制作得到光导开关。
参考图1所示,所述光导开关为堆栈结构光导开关。其中电极区域指的作为电极使用的区域,如图1中半绝缘GaAs材料表面的两端。
进一步的,所述在半绝缘GaAs材料表面外延生长一层n+-GaAs层;包括:在半绝缘GaAs材料表面通过MOCVD的方法外延生长一层n+-GaAs层,掺杂浓度大于1019cm-3
进一步的,所述槽的深度为20-100nm;所述刻蚀的方法为干法或湿法。
可选地,槽的深度可以为20、50或100nm;刻蚀还可以采用其它方式。
进一步的,将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面;包括:通过电子束蒸发的方式将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面。
进一步的,所述经过高温快速退火在电极区域形成欧姆接触,制作得到光导开关;包括:采用快速热退火的方式在电极区域形成欧姆接触,制作得到光导开关。
进一步的,所述光导开关通过TLM方法测试得到的欧姆接触电阻率小于10-6Ω·cm2
第二方面,本发明实施例提供一种光导开关,参考图1所示,包括
n+-GaAs层1,设于半绝缘GaAs材料3电极区域;
合金淀积层2,从外至内依次包括第一金层、镍层、第二金层和锗层;
锗层,位于n+-GaAs层表面;
第一金层,第一金层的表面形成欧姆接触;以及
槽,设于除半绝缘GaAs材料电极区域的半绝缘GaAs材料表面;槽内蒸镀金属或者外延生长n+-GaAs4。
进一步的,所述槽的深度为20-100nm;所述刻蚀的方法为干法或湿法。
第三方面,本发明实施例提供基于堆栈结构GaAs光导开关的一种冲激脉冲源,参考图2所示,包括:
激光器,用于产生激光光束;以及
脉冲形成模块,设有所述制作方法制得的光导开关或设有所述光导开关;
所述激光光束照向光导开关。
图2所示,激光器5为输出光脉冲宽度为ps量级的微片激光器,激光器产生的激光光束6照向脉冲形成模块7上的光导开关8。
本发明实施例的冲激脉冲源针对ps激光器体积大,难以实现集成化的问题,提出脉冲形成模块与微片激光器一体化集成设计,大幅度减小了系统体积,为后续多单元组合应用奠定了基础。研制的冲激脉冲源可实现亚ns脉冲宽度(百ps量级前沿)、200Hz重频、较长持续工作时间的电脉冲输出,单模块功率大于2MW。
从而,本发明实施例解决了光导开关导通电阻大、系统体积大、快脉冲测试困难等关键难点问题,研制成功基于堆栈结构光导开关和微片激光器集成化设计的冲激脉冲源,在重频200Hz、输出电压8.1kV、输出脉宽950ps、前沿330ps条件下,可连续工作10分钟以上,在冲激雷达等领域有良好的应用前景。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种堆栈结构GaAs光导开关的制作方法,其特征在于,包括:
在半绝缘GaAs材料表面外延生长一层n+-GaAs层;
将半绝缘GaAs材料表面除电极区域外的n+-GaAs层去除;
将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面;
在去除n+-GaAs层的半绝缘GaAs材料表面刻蚀槽;
在槽内蒸镀金属或者外延生长n+-GaAs;
经过高温快速退火在电极区域形成欧姆接触,制作得到光导开关。
2.如权利要求1所述堆栈结构GaAs光导开关的制作方法,其特征在于,所述在半绝缘GaAs材料表面外延生长一层n+-GaAs层;包括:在半绝缘GaAs材料表面通过MOCVD的方法外延生长一层n+-GaAs层,掺杂浓度大于1019 cm-3
3.如权利要求1所述堆栈结构GaAs光导开关的制作方法,其特征在于,所述槽的深度为20-100nm;所述刻蚀的方法为干法或湿法。
4.如权利要求1所述堆栈结构GaAs光导开关的制作方法,其特征在于,将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面;包括:通过电子束蒸发的方式将锗、金、镍和金依次沉积到电极区域的n+-GaAs层表面。
5.如权利要求1所述堆栈结构GaAs光导开关的制作方法,其特征在于,所述光导开关通过TLM方法测试得到的欧姆接触电阻率小于10-6 Ω·cm2 。
6.一种光导开关,其特征在于,包括:
n+-GaAs层,设于半绝缘GaAs材料电极区域;
合金淀积层,从外至内依次包括第一金层、镍层、第二金层和锗层;所述锗层,位于n+-GaAs层表面;所述第一金层的表面形成欧姆接触;以及
槽,设于除半绝缘GaAs材料电极区域外的半绝缘GaAs材料表面;槽内蒸镀金属或者外延生长n+-GaAs。
7.如权利要求6所述光导开关,其特征在于,所述槽的深度为20-100nm。
8.一种冲激脉冲源,其特征在于,包括:
激光器,用于产生激光光束;以及
脉冲形成模块,设有权利要求1-5任意一项所述的制作方法制得的光导开关或设有权利要求6-7任意一项所述光导开关;
所述激光光束照向光导开关。
CN202111241120.7A 2021-10-25 2021-10-25 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源 Active CN113990967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111241120.7A CN113990967B (zh) 2021-10-25 2021-10-25 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111241120.7A CN113990967B (zh) 2021-10-25 2021-10-25 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源

Publications (2)

Publication Number Publication Date
CN113990967A CN113990967A (zh) 2022-01-28
CN113990967B true CN113990967B (zh) 2023-04-28

Family

ID=79740979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111241120.7A Active CN113990967B (zh) 2021-10-25 2021-10-25 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源

Country Status (1)

Country Link
CN (1) CN113990967B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252221B1 (en) * 1999-06-21 2001-06-26 Agilent Technologies, Inc. Photo-conductive switch having an improved semiconductor structure
US6403990B1 (en) * 2001-03-27 2002-06-11 Agilent Technologies, Inc. Short turn-off time photoconductive switch
CN103794664A (zh) * 2014-02-28 2014-05-14 淮阴师范学院 一种新品n型半绝缘GaAs欧姆接触电极材料及其制备方法
CN105845770A (zh) * 2016-04-07 2016-08-10 中国工程物理研究院流体物理研究所 一种带有高反膜和增透膜的低导通电阻GaAs光导开关

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110061827A (ko) * 2009-12-02 2011-06-10 한국전자통신연구원 다결정 갈륨비소 박막을 포함하는 광전도체 소자 및 그 제조방법
US20140264684A1 (en) * 2013-03-14 2014-09-18 Ues, Inc. Photoconductive semiconductor switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252221B1 (en) * 1999-06-21 2001-06-26 Agilent Technologies, Inc. Photo-conductive switch having an improved semiconductor structure
US6403990B1 (en) * 2001-03-27 2002-06-11 Agilent Technologies, Inc. Short turn-off time photoconductive switch
CN103794664A (zh) * 2014-02-28 2014-05-14 淮阴师范学院 一种新品n型半绝缘GaAs欧姆接触电极材料及其制备方法
CN105845770A (zh) * 2016-04-07 2016-08-10 中国工程物理研究院流体物理研究所 一种带有高反膜和增透膜的低导通电阻GaAs光导开关

Also Published As

Publication number Publication date
CN113990967A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
Tsao et al. Ultrawide‐bandgap semiconductors: research opportunities and challenges
Kaplar et al. Generation-After-Next Power Electronics: Ultrawide-bandgap devices, high-temperature packaging, and magnetic nanocomposite materials
Wort et al. Diamond as an electronic material
US9728660B2 (en) Optically-triggered linear or avalanche solid state switch for high power applications
KR20020001862A (ko) 평형전 화학 반응 에너지 컨버터
Prudaev et al. The Mechanism of Superfast Switching of Avalanche ${S} $-Diodes Based on GaAs Doped With Cr and Fe
CN107393890B (zh) 一种石墨烯掩埋散热层和纵向沟道GaN MISFET元胞结构及制备方法
CN113990967B (zh) 一种堆栈结构GaAs光导开关及制作方法和冲激脉冲源
US9960037B2 (en) Laser assisted SiC growth on silicon
RU2356128C2 (ru) Способ генерации сверхвысокочастотных электромагнитных колебаний
US20030042404A1 (en) III-Nitride laser activated semiconductor switch and associated methods of fabrication and operation
Botsula et al. Impact ionization in short Al Z Ga 1-z N-based diodes
CN109994568B (zh) 一种堆栈结构的激光触发大功率半绝缘AlGaN/GaN开关
Kozlov et al. New generation of drift step recovery diodes (DSRD) for subnanosecond switching and high repetition rate operation
CN104681721B (zh) 基于notch结构的GaN耿氏二极管及制作方法
CN111739947B (zh) 一种横向结构impatt二极管及其制备方法
CN110808292B (zh) 一种基于金属檐结构的GaN基完全垂直肖特基变容管及其制备方法
Mukherjee et al. DDR pulsed IMPATT sources at MM-Wave window frequency: High-power operation mode
CN112072450A (zh) 基于光导器件的可调谐超高重频微波产生装置及产生方法
RU175209U1 (ru) Устройство для фотоэлектрического переключения лавинного импульсного s-диода
US6326729B1 (en) Field emission cathode and electromagnetic wave generating apparatus comprising the same
US20230215678A1 (en) Electronically-tunable, air-stable, negative electron affinity semiconductor photocathode
CN114267749B (zh) 一种基于石墨烯膜的光导半导体开关
Ivanov et al. High voltage subnanosecond silicon carbide opening switch
Mukherjee et al. Effects of charge bump on high-frequency characteristics of α-SiC-based double-drift ATT diodes at millimeter-wave window frequencies

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant