CN103777245A - 基于地震资料的油气成藏条件定量评价方法 - Google Patents

基于地震资料的油气成藏条件定量评价方法 Download PDF

Info

Publication number
CN103777245A
CN103777245A CN201210394999.3A CN201210394999A CN103777245A CN 103777245 A CN103777245 A CN 103777245A CN 201210394999 A CN201210394999 A CN 201210394999A CN 103777245 A CN103777245 A CN 103777245A
Authority
CN
China
Prior art keywords
pressure
sandstone lens
velocity
seismic
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210394999.3A
Other languages
English (en)
Other versions
CN103777245B (zh
Inventor
张建宁
吕公河
李子锋
黎娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Geophysical Research Institute
Original Assignee
China Petroleum and Chemical Corp
Sinopec Geophysical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Geophysical Research Institute filed Critical China Petroleum and Chemical Corp
Priority to CN201210394999.3A priority Critical patent/CN103777245B/zh
Publication of CN103777245A publication Critical patent/CN103777245A/zh
Application granted granted Critical
Publication of CN103777245B publication Critical patent/CN103777245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明为基于地震资料的油气成藏条件定量评价方法,本评价方法确定了地震层速度和砂岩透镜体反射振幅等地震参数与烃源岩剩余压力、等效排烃压力之间的数学模型,通过对地震资料进行校正处理,获取地震层速度,并通过地震层速度获取砂岩透镜体的烃源剩余压力;所述评价方法还通过所述砂岩透镜体的真厚度获取砂体孔隙度,并通过砂体孔隙度获取等效排烃压力;根据烃源剩余压力和等效排烃压力获取所述砂岩透镜体的油气成藏指数,完成对所述砂岩透镜体油气成藏条件的定量评价;本发明实现了在缺少钻井、测井资料的条件下,用地震参数对砂岩透镜体成藏条件进行定量评价,提高勘探的效率。

Description

基于地震资料的油气成藏条件定量评价方法
技术领域
本发明属于地震勘探和开发领域,尤其涉及一种基于地震资料的油气成藏条件定量评价方法。
背景技术
岩性油气藏已经是我国东部重要勘探目标,岩性油藏勘探实践表明,并不是所有包裹于烃源岩之中的砂岩体都可以形成岩性油气藏。如何对岩性油气藏成藏好坏进行有效预测和定量计算一直是石油勘探界致力研究的热点。
近年来,国内外许多学者对岩性成藏条件进行了富有成效的研究,指出砂岩体是否成藏取决于砂岩体本身的渗透性和烃源岩与砂岩体之间的剩余压力,即成藏动力和成藏阻力,只有前者大于后者,才可能形成岩性油藏。
成藏动力指的是烃源岩剩余压力Ps;成藏阻力指的是等效排烃压力Pe,即被烃源岩包围的砂岩透镜体边缘的突破压力,定义为压汞实验中进汞50%时的排替压力。成藏阻力主要与砂岩透镜体边缘的孔隙度和渗透率相关。孔隙度和渗透率越好则成藏阻力就越小,在相同烃源岩剩余围岩压力条件下,越有利于油气进入岩性圈闭成藏。
目前,对成藏条件预测方法和评价手段都是通过应用实钻数据、测井资料实现的。但是在缺少钻井、测井资料的条件下,现有技术均不能对岩性油藏成藏因素进行有效预测和定量计算。
发明内容
本发明针对现有技术在缺少钻井、测井资料的条件下,无法定量评价油气成藏条件的缺陷,提供了一种基于地震资料的油气成藏条件定量评价方法。本发明通过统计地质学等方法,对地震相关参数与岩性油藏成藏条件之间关系进行了研究,总结出地震层速度和砂岩透镜体的反射振幅与烃源岩剩余压力、等效排烃压力之间的内在联系,实现通过应用地震资料对岩性油藏成藏条件的定量预测和计算。
基于地震资料的油气成藏条件定量评价方法,所述评价方法通过对地震资料进行校正处理,获取地震层速度Vint,并通过地震层速度Vint获取砂岩透镜体的烃源剩余压力Ps;所述评价方法还通过所述砂岩透镜体的真厚度Hi获取砂体孔隙度
Figure BDA00002269012000021
并通过砂体孔隙度
Figure BDA00002269012000022
获取等效排烃压力Pe;根据烃源剩余压力Ps和等效排烃压力Pe获取所述砂岩透镜体的油气成藏指数Id,完成对所述砂岩透镜体油气成藏条件的定量评价。
一般地,地下某一深度出现异常高压,表明该深度地层处于欠压实的状态,其孔隙度比相同深度处正常压实的孔隙度要高,地震层速度比同深度正常压实岩层的地震层速度小。利用这一特征,可以对地层中压力分布进行定量分析。在异常高压情况下,地层孔隙中的流体不得不支撑上覆岩石的压力,一般而言,异常压力越大,地层的孔隙度就越高,地震层速度就越小。
因此,只要准确获取到地震层速度,即可以获得砂岩透镜体的孔隙压力和烃源岩剩余压力。地震速度谱是求取地震层速度最主要的手段之一,通过应用地震速度谱资料即可获取烃源岩剩余压力Ps
对所述砂岩透镜体的烃源岩剩余压力Ps进行定量评价,其评价步骤为,
步骤1-1,对地震速度谱进行校正处理,获得叠加速度Vs
地震速度谱是在对野外采集的地震资料数据进行叠加分析处理过程中产生的中间产品,由于影响地震速度谱异常的因素较多,必须对地震速度谱进行校正处理;校正处理的主要方法是制订了对岩性差别因素、地层变化因素、构造影响、多次波影响速度谱资料异常干扰校正的四准则,包括二维极值点能量准则、层速度准则、趋势贴近准则以及最小路径准则。
二维极值点能量准则:二维极值点的能量反映了地震波的能量,在不考虑多次波和异常波的情况下,二维极值的能量越强,说明地震反射界面的波阻抗越大,因而可靠性就越大。因此,二维极值点的能量大小是主要判别校正的依据。
层速度准则:要求选取的速度谱点的曲线变化梯度合理,符合实际地质情况。
趋势贴近准则:速度谱上二维能量极值点的分布大致上反映了真实地层的速度变化趋势。
最小路径准则:由当前二维能量点向下延伸识别时,应优先考虑选取最小路径的点。
步骤1-2,通过叠加速度Vs获取地震层速度Vint
步骤1-3,通过地震层速度Vint获取孔隙流体压力Pk
Vint=V0+APk B      (1);
其中,V0为地表层速度;A、B为待定系数,A的取值范围是1~100,B的取值范围是0.001~0.9999;
步骤1-4,通过地层压力曲线或者地层密度资料获取上覆岩层压力Ph
步骤1-5,通过所述孔隙流体压力Pk以及上覆岩层压力Ph获取烃源岩剩余压力PS
Ps=Pk-Ph    (2);
其中,Pk为孔隙流体压力,Ph为上覆岩层压力。
在所述步骤1-1中,当地层为水平层状介质时,叠加速度Vs即为均方根速度Vr;当地层界面存在倾角时,叠加速度Vs为等效速度,对等效速度进行倾角校正,获得均方根速度Vr
Vr=Vscosα    (3);
其中,α为反射界面倾角,Vs为叠加速度m/s;
在所述步骤1-2中,通过叠加速度Vs获取均方根速度Vr,并通过均方根速度Vr获取地震层速度Vint
V int = V r , n 2 t 0 , n - V r , n - 1 2 t 0 , n - 1 t 0 , n - t 0 , n - 1 - - - ( 4 ) ;
其中,Vr,n和Vr,n-1分别为第n和第n-1层的均方根速度,单位是m/s;t0,n和t0,n-1分别为第n层和第n-1层顶界面的双程旅行时。
对所述砂岩透镜体的等效排烃压力Pe进行定量评价,其评价步骤为,
步骤2-1,对所述砂岩透镜体进行地震检测,获取所述砂岩透镜体的地震反射振幅Ai以及反射频率Fi
步骤2-2,通过所述砂岩透镜体的地震反射振幅Ai以及反射频率Fi获取所述砂岩透镜体的真厚度Hi
H i = KA i F i + Δh - - - ( 5 ) ;
其中,Ai为砂岩透镜体的反射振幅;Fi为砂岩透镜体的反射频率;K、Δh为待定系数,k的取值范围是0.0001~0.0099,Δh的取值范围是-5~5;
步骤2-3,根据所述砂岩透镜体的真厚度Hi获取所述砂岩透镜体的孔隙度
Figure BDA00002269012000043
其中,Hi为砂岩透镜体的真厚度,e为常数;
如图2的关系曲线所示,砂岩透镜体的孔隙度
Figure BDA00002269012000051
与真厚度Hi之间的相关系数为0.8903,因此,通过砂岩透镜体的真厚度Hi可以准确获取到砂岩透镜体的孔隙度
步骤2-4,根据所述砂岩透镜体的孔隙度获取所述砂岩透镜体的等效排烃压力Pe
Figure BDA00002269012000054
其中,
Figure BDA00002269012000055
为所述砂岩透镜体的孔隙度
Figure BDA00002269012000056
在所述步骤2-2中,当所述砂岩透镜体的真厚度Hi大于调谐厚度时,通过标准方法获取所述砂岩透镜体的真厚度Hi;当所述砂岩透镜体的真厚度Hi小于调谐厚度时,地震资料的时间不能分辩,不能用标准方法计算其真厚度,但是其地震反射与同样厚度的单层砂岩透镜体的反射效应基本相同,因此可以直接根据砂岩透镜体的地震的反射特征,即公式(5),获取所述砂岩透镜体的真厚度Hi
根据所述砂岩透镜体的烃源剩余压力Ps和等效排烃压力Pe获取所述砂岩透镜体的油气成藏指数Id
Id=Ps/Pe    (8);
其中,Ps为烃源岩剩余压力,Pe为等效排烃压力;
对油气成藏指数Id进行分析输出,得到油气藏成藏条件的定量分析结果图。
在岩性油气藏的勘探中,由于油气藏的成藏条件存在较大差异,其产量也存在较大的差别,成藏指数高的油气藏,可以获得高产的工业油气流,而成藏条件差的,油气产量就低,甚至是干井。因此,通过本发明,解决了在缺少钻井、测井资料的条件下,通过地震层速度和砂岩透镜体的反射振幅对岩性油气藏的烃源岩剩余压力和等效排烃压力进行定量评价,实现了对砂岩透镜体含油程度的定量预测,提高了勘探的效率。
附图说明
图1为本发明基于地震资料的油气藏成藏条件定量评价方法流程图;
图2为砂岩透镜体厚度与砂岩孔隙度的关系图;
图3为牛25-C砂岩透镜体的反射振幅和频率的平面展布情况;
图4为牛25-C的成藏指数分布图;
下面结合附图和具体实施方式对本发明作进一步详细地说明,本发明的保护范围不局限于下述的具体实施方式。
具体实施方式
如图1所示,基于地震资料的油气藏成藏条件定量评价方法,包括如下步骤;
对所述砂岩透镜体的烃源岩剩余压力Ps进行定量评价,其评价步骤为,
步骤1-1,对地震速度谱进行校正处理,获得叠加速度Vs
当地层为水平层状介质时,叠加速度Vs即为均方根速度Vr;当地层界面存在倾角时,叠加速度Vs为等效速度,对等效速度进行倾角校正,获得均方根速度Vr
Vr=Vscosα    (3);
其中,α为反射界面倾角,Vs为叠加速度m/s;
步骤1-2,通过叠加速度Vs获取均方根速度Vr,并通过均方根速度Vr获取地震层速度Vint
V int = V r , n 2 t 0 , n - V r , n - 1 2 t 0 , n - 1 t 0 , n - t 0 , n - 1 - - - ( 4 ) ;
其中,Vr,n和Vr,n-1分别为第n和第n-1层的均方根速度,单位是m/s;t0,n和t0,n-1分别为第n层和第n-1层顶界面的双程旅行时。
步骤1-3,通过地震层速度Vint获取孔隙流体压力Pk
Vint=V0+APk B    (1);
其中,V0为地表层速度;A、B为待定系数,A的取值范围是1~100,B的取值范围是0.001~0.9999;
步骤1-4,通过地层压力曲线或者地层密度资料获取上覆岩层压力Ph
步骤1-5,通过所述孔隙流体压力Pk以及上覆岩层压力Ph获取烃源岩剩余压力Ps
Ps=Pk-Ph      (2);
其中,Pk为孔隙流体压力,Ph为上覆岩层压力。
对所述砂岩透镜体的等效排烃压力Pe进行定量评价,其评价步骤为,
步骤2-1,对所述砂岩透镜体进行地震检测,获取所述砂岩透镜体的地震反射振幅Ai以及反射频率Fi
步骤2-2,如图3所示,通过砂岩透镜体地震反射同相轴,并使用解释软件对砂岩透镜体进行踪解释,得到其反射振幅和频率的平面展布情况;根据得到的振幅测量结果获取砂岩透镜体的真厚度Hi
H i = KA i F i + Δh - - - ( 5 ) ;
其中,Ai为砂岩透镜体的反射振幅;Fi为砂岩透镜体的反射频率;K、Δh为待定系数,k的取值范围是0.0001~0.0099,Δh的取值范围是-5~5;
步骤2-3,根据所述砂岩透镜体的真厚度Hi获取所述砂岩透镜体的孔隙度
Figure BDA00002269012000072
砂岩透镜体的真厚度Hi与孔隙度的关系如图2所示;
Figure BDA00002269012000081
其中,Hi为砂岩透镜体的真厚度,e为常数;
步骤2-4,根据所述砂岩透镜体的孔隙度
Figure BDA00002269012000082
获取所述砂岩透镜体的等效排烃压力Pe
Figure BDA00002269012000083
其中,
Figure BDA00002269012000084
为所述砂岩透镜体的孔隙度
Figure BDA00002269012000085
根据所述砂岩透镜体的烃源剩余压力Ps和等效排烃压力Pe获取所述砂岩透镜体的油气成藏指数Id
Id=Ps/Pe      (8);
其中,Ps为烃源岩剩余压力,Pe为等效排烃压力;
对油气成藏指数Id进行分析输出,得到油气藏成藏条件的定量分析结果图。实施例
利用本发明的评价方法,对某地区的砂岩透镜体进行成藏条件定量评价。待测砂岩透镜体为牛25-C砂岩透镜体,埋深为3250m,面积为10km2,是典型的砂岩透镜体油藏。区内构造形态简单,地震资料分辨率和信噪比较高。地震速度与岩性变化存在较好的对应关系。
首先,根据速度谱资料获取地震层速度Vint,再根据地震层速度Vint获取砂岩透镜体的孔隙流体压力Pk,通过地层压力曲线或者地层密度资料获取上覆岩层压力Ph,通过所述孔隙流体压力Pk以及上覆岩层压力Ph获取烃源岩剩余压力Ps
根据结果显示,本区高压层段从2820m开始,在埋深3250m处地层孔隙流体压力Pk为51MPa,烃源岩剩余压力Ps为16MPa。
牛25-C砂岩透镜体最大厚度不足25m,小于调谐厚度,而且砂层较单一,层间干扰比较少,利用地震反射振幅Ai和反射频率Fi获取砂岩透镜体的真厚度Hi;通过标定牛25-C砂岩透镜体地震反射同相轴,并使用解释软件对砂岩透镜体进行踪解释,得到其反射振幅和频率的平面展布情况,计算砂岩透镜体的孔隙度
Figure BDA00002269012000091
并通过砂岩透镜体的孔隙度
Figure BDA00002269012000092
获取砂岩透镜体的等效排烃压力Pe
根据所述砂岩透镜体的烃源剩余压力Ps和等效排烃压力Pe获取所述砂岩透镜体的油气成藏指数Id
如图4所示,牛25-C砂岩透镜体成藏指数分布图,从图中可以明显看出,预测的结果与实际钻探情况基本吻合,成藏指数大于12的牛25、牛43、牛23、牛42、牛101等井都获得较高的油气产量;成藏指数在5~12之间的牛41、牛25-14等井钻遇的油层较薄;而成藏指数小于5的牛38、牛39等井没有见到油层。
上述技术方案只是本发明的一种实施方式,对于本领域内的技术人员而言,在本发明公开了应用方法和原理的基础上,很容易做出各种类型的改进或变形,而不仅限于本发明上述具体实施方式所描述的方法,因此前面描述的方式只是优选地,而并不具有限制性的意义。

Claims (6)

1.基于地震资料的油气成藏条件定量评价方法,其特征在于:
所述评价方法通过对地震资料进行校正处理,获取地震层速度Vint,并通过地震层速度Vint获取砂岩透镜体的烃源剩余压力Ps;所述评价方法还通过所述砂岩透镜体的真厚度Hi获取砂体孔隙度并通过砂体孔隙度
Figure FDA00002269011900012
获取等效排烃压力Pe;根据烃源剩余压力Ps和等效排烃压力Pe获取所述砂岩透镜体的油气成藏指数Id,完成对所述砂岩透镜体油气成藏条件的定量评价。
2.根据权利要求1所述的油气成藏条件定量评价方法,其特征在于:
对所述砂岩透镜体的烃源岩剩余压力Ps进行定量评价,其评价步骤为,
步骤1-1,对地震速度谱进行校正处理,获得叠加速度Vs
步骤1-2,通过叠加速度Vs获取地震层速度Vint
步骤1-3,通过地震层速度Vint获取孔隙流体压力Pk
Vint=V0+APk B      (1);
其中,V0为地表层速度;A、B为待定系数,A的取值范围是1~100,B的取值范围是0.001~0.9999;
步骤1-4,通过地层压力曲线或者地层密度资料获取上覆岩层压力Pk
步骤1-5,通过所述孔隙流体压力Pk以及上覆岩层压力Ph获取烃源岩剩余压力Ps
Ps=Pk-Ph      (2);
其中,Pk为孔隙流体压力,Ph为上覆岩层压力。
3.根据权利要求2所述的油气成藏条件定量评价方法,其特征在于:
在所述步骤1-1中,当地层为水平层状介质时,叠加速度Vs即为均方根速度Vr;当地层界面存在倾角时,叠加速度Vs为等效速度,对等效速度进行倾角校正,获得均方根速度Vr
Vr=Vscosα    (3);
其中,α为反射界面倾角,Vs为叠加速度m/s;
在所述步骤1-2中,通过叠加速度Vs获取均方根速度Vr,并通过均方根速度Vr获取地震层速度Vint
V int = V r , n 2 t 0 , n - V r , n - 1 2 t 0 , n - 1 t 0 , n - t 0 , n - 1 - - - ( 4 ) ;
其中,Vr,n和Vr,n-1分别为第n和第n-1层的均方根速度,单位是m/s;t0,n和t0,n-1分别为第n层和第n-1层顶界面的双程旅行时。
4.根据权利要求1所述的油气成藏条件定量评价方法,其特征在于:
对所述砂岩透镜体的等效排烃压力Pe进行定量评价,其评价步骤为,
步骤2-1,对所述砂岩透镜体进行地震检测,获取所述砂岩透镜体的地震反射振幅Ai以及反射频率Fi
步骤2-2,通过所述砂岩透镜体的地震反射振幅Ai以及反射频率Fi获取所述砂岩透镜体的真厚度Hi
H i = KA i F i + Δh - - - ( 5 ) ;
其中,Ai为砂岩透镜体的反射振幅;Fi为砂岩透镜体的反射频率;K、Δh为待定系数,k的取值范围是0.0001~0.0099,Δh的取值范围是-5~5;
步骤2-3,根据所述砂岩透镜体的真厚度Hi获取所述砂岩透镜体的孔隙度
Figure FDA00002269011900031
Figure FDA00002269011900032
其中,Hi为砂岩透镜体的真厚度,e为常数;
步骤2-4,根据所述砂岩透镜体的孔隙度获取所述砂岩透镜体的等效排烃压力Pe
Figure FDA00002269011900034
其中,
Figure FDA00002269011900035
为所述砂岩透镜体的孔隙度
Figure FDA00002269011900036
5.根据权利要求4所述的油气成藏条件定量评价方法,其特征在于:
在所述步骤2-2中,当所述砂岩透镜体的真厚度Hi大于调谐厚度时,通过标准方法获取所述砂岩透镜体的真厚度Hi;当所述砂岩透镜体的真厚度Hi小于调谐厚度时,通过公式(5)获取所述砂岩透镜体的真厚度Hi
6.根据权利要求1、2、4之一所述的油气成藏条件定量评价方法,其特征在于:
根据所述砂岩透镜体的烃源剩余压力Ps和等效排烃压力Pe获取所述砂岩透镜体的油气成藏指数Id
Id=Ps/Pe      (8);
其中,Ps为烃源岩剩余压力,Pe为等效排烃压力;
对油气成藏指数Id进行分析输出,得到油气藏成藏条件的定量分析结果图。
CN201210394999.3A 2012-10-17 2012-10-17 基于地震资料的油气成藏条件定量评价方法 Active CN103777245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210394999.3A CN103777245B (zh) 2012-10-17 2012-10-17 基于地震资料的油气成藏条件定量评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210394999.3A CN103777245B (zh) 2012-10-17 2012-10-17 基于地震资料的油气成藏条件定量评价方法

Publications (2)

Publication Number Publication Date
CN103777245A true CN103777245A (zh) 2014-05-07
CN103777245B CN103777245B (zh) 2017-05-03

Family

ID=50569705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210394999.3A Active CN103777245B (zh) 2012-10-17 2012-10-17 基于地震资料的油气成藏条件定量评价方法

Country Status (1)

Country Link
CN (1) CN103777245B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105700017A (zh) * 2016-03-21 2016-06-22 中国石油天然气集团公司 一种确定油气分布数据的方法和装置
CN106056459A (zh) * 2016-05-31 2016-10-26 中国石油大学(华东) 一种基于排烃效率的致密油源岩分级评价标准划分方法
CN106646659A (zh) * 2017-01-19 2017-05-10 中国石油大学(华东) 一种排烃门限以下地层超压的量化表征方法
CN107103552A (zh) * 2016-02-23 2017-08-29 中国石油化工股份有限公司 勘探效率系数确定方法及装置
CN107807407A (zh) * 2017-09-30 2018-03-16 中国石油天然气股份有限公司 一种油气区带有效性评价方法和装置
CN109083640A (zh) * 2018-09-26 2018-12-25 中国石油化工股份有限公司 海上河流相油藏边部储量有效动用方法
CN112780267A (zh) * 2021-02-03 2021-05-11 中国石油大学(北京) 一种成藏可能性确定方法、装置和设备
CN113156502A (zh) * 2021-03-31 2021-07-23 华能煤炭技术研究有限公司 一种基于地震资料的煤层流体压力预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987522A (zh) * 2005-12-22 2007-06-27 陈信平 一种直接探测地下石油、天然气和煤层气的方法
CN102156297A (zh) * 2011-05-16 2011-08-17 中国石油大学(北京) 基于砂岩油藏叠后地震数据的流体替换方法
CN102426390A (zh) * 2011-10-21 2012-04-25 中国石油大学(北京) 一种非均质泥砂岩储层储量确定方法
CN102636812A (zh) * 2012-04-18 2012-08-15 中国石油天然气股份有限公司 一种获得碳酸盐岩储层储集空间体积的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1987522A (zh) * 2005-12-22 2007-06-27 陈信平 一种直接探测地下石油、天然气和煤层气的方法
CN102156297A (zh) * 2011-05-16 2011-08-17 中国石油大学(北京) 基于砂岩油藏叠后地震数据的流体替换方法
CN102426390A (zh) * 2011-10-21 2012-04-25 中国石油大学(北京) 一种非均质泥砂岩储层储量确定方法
CN102636812A (zh) * 2012-04-18 2012-08-15 中国石油天然气股份有限公司 一种获得碳酸盐岩储层储集空间体积的方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103552A (zh) * 2016-02-23 2017-08-29 中国石油化工股份有限公司 勘探效率系数确定方法及装置
CN105700017A (zh) * 2016-03-21 2016-06-22 中国石油天然气集团公司 一种确定油气分布数据的方法和装置
CN106056459B (zh) * 2016-05-31 2018-05-11 中国石油大学(华东) 一种基于排烃效率的致密油源岩分级标准划分方法
CN106056459A (zh) * 2016-05-31 2016-10-26 中国石油大学(华东) 一种基于排烃效率的致密油源岩分级评价标准划分方法
CN106646659B (zh) * 2017-01-19 2018-09-07 中国石油大学(华东) 一种排烃门限以下地层超压的量化表征方法
CN106646659A (zh) * 2017-01-19 2017-05-10 中国石油大学(华东) 一种排烃门限以下地层超压的量化表征方法
CN107807407A (zh) * 2017-09-30 2018-03-16 中国石油天然气股份有限公司 一种油气区带有效性评价方法和装置
CN107807407B (zh) * 2017-09-30 2019-10-11 中国石油天然气股份有限公司 一种油气区带有效性评价方法和装置
US11193372B2 (en) 2017-09-30 2021-12-07 Petrochina Company Limited Oil and gas zone effectiveness evaluation method and apparatus
CN109083640A (zh) * 2018-09-26 2018-12-25 中国石油化工股份有限公司 海上河流相油藏边部储量有效动用方法
CN109083640B (zh) * 2018-09-26 2022-05-03 中国石油化工股份有限公司 海上河流相油藏边部储量有效动用方法
CN112780267A (zh) * 2021-02-03 2021-05-11 中国石油大学(北京) 一种成藏可能性确定方法、装置和设备
CN112780267B (zh) * 2021-02-03 2023-02-17 中国石油大学(北京) 一种成藏可能性确定方法、装置和设备
CN113156502A (zh) * 2021-03-31 2021-07-23 华能煤炭技术研究有限公司 一种基于地震资料的煤层流体压力预测方法

Also Published As

Publication number Publication date
CN103777245B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
CN108957549B (zh) 一种辫状河沉积非均质致密砂岩气藏地质建模方法
CN102033242B (zh) 一种深层倾斜裂缝储层地震振幅预测方法
CN103777245A (zh) 基于地震资料的油气成藏条件定量评价方法
CN103454685B (zh) 利用测井约束波阻抗反演预测砂体厚度的方法和装置
CN101907725B (zh) 裂缝预测方法和装置
CN101446645B (zh) 一种利用地震流体阻抗进行流体确定的方法
WO2016041189A1 (zh) 一种评价页岩气储层及寻找甜点区的方法
CN108680951A (zh) 一种基于地震信息判断煤层气富集沉积控制作用的方法
CN106054248A (zh) 一种基于大面积致密储层地震岩石物理反演方法
Noorlandt et al. Characterisation of ground motion recording stations in the Groningen gas field
CN102466815A (zh) 三叠系碎屑岩油气藏识别方法
CN102073064B (zh) 一种利用相位信息提高速度谱分辨率的方法
CN103713319A (zh) 一种基于地震约束建模的叠前反演方法
CN103091712A (zh) 一种分析测井组合特征和地震相进行煤质预测的方法
Sauvin et al. Machine learning and quantitative ground models for improving offshore wind site characterization
CN108957526B (zh) 获得裂缝融合数据体的方法
CN107728205A (zh) 一种地层压力预测方法
CN104570086A (zh) 一种在共偏移距共方位角域进行叠前裂缝预测的方法
CN103076630B (zh) 一种基于弹性阻抗梯度的油气检测方法
CN115857047B (zh) 一种地震储层综合预测方法
CN100552472C (zh) 利用垂直地震剖面和微测井进行地震信号补偿方法
CN110297264B (zh) 一种低渗气藏薄储层甜点地震预测方法
Li et al. Time-Lapse Seismic Inversion for Predicting Reservoir Parameters Based on a Two-Stage Dual Network
Clemons et al. Seismic attributes: Exploiting seismic data to understand heterogeneous reservoir performance in the Eagle Ford Shale, south Texas, USA
Silver et al. Applications of machine learning techniques on angle stacks to enhance carbonate reservoir characterization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant