CN103774098B - 氧化亚锡织构薄膜及其制备方法 - Google Patents

氧化亚锡织构薄膜及其制备方法 Download PDF

Info

Publication number
CN103774098B
CN103774098B CN201410017207.XA CN201410017207A CN103774098B CN 103774098 B CN103774098 B CN 103774098B CN 201410017207 A CN201410017207 A CN 201410017207A CN 103774098 B CN103774098 B CN 103774098B
Authority
CN
China
Prior art keywords
tin monoxide
body layer
deposition
tin
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410017207.XA
Other languages
English (en)
Other versions
CN103774098A (zh
Inventor
刘权
梁凌燕
曹鸿涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201410017207.XA priority Critical patent/CN103774098B/zh
Publication of CN103774098A publication Critical patent/CN103774098A/zh
Application granted granted Critical
Publication of CN103774098B publication Critical patent/CN103774098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种氧化亚锡织构薄膜及其制备方法,本发明采用电子束蒸发法在衬底上依次沉积得到氧化亚锡主体层和金属氧化物覆盖层,通过金属氧化物覆盖层的作用改变氧化亚锡薄膜的表面能,进而达到控制热处理过程中氧化亚锡主体层结晶取向,从而得到择优取向为(101)的氧化亚锡织构薄膜。本发明的氧化亚锡织构薄膜对衬底要求不高,采用普通的石英即可,且制备工艺简单,成本低廉,采用电子束蒸发法,可大面积均匀成膜,适用于商业生成。

Description

氧化亚锡织构薄膜及其制备方法
技术领域
本发明涉及半导体薄膜技术领域,尤其涉及一种氧化亚锡织构薄膜及其制备方法。
背景技术
氧化亚锡是一种简单的二元氧化物,由于氧化亚锡层状结构的各向异性,导致它的输运性质也是各向异性的。根据理论计算,氧化亚锡的有效空穴质量是各向异性的,从而使空穴在层内的跳跃传导比层间更容易。因此,通过实验的方法调节氧化亚锡的结晶取向显得十分重要。目前,氧化亚锡已经在薄膜晶体管、气体传感器等方面得到广泛的研究,尤其是已经制备出性能优良的以氧化亚锡作为沟道层的p型和双极性薄膜晶体管。
所谓氧化物织构薄膜,是指只有一种结晶取向的薄膜。目前,已报道的氧化亚锡织构薄膜都是在较高的温度下,昂贵的单晶衬底上获得(001)取向的氧化亚锡外延膜。例如,YoichiOgo等通过脉冲激光沉积的方法,在YSZ单晶衬底上,575℃的高温下,获得(001)取向的外延膜,并用所得氧化亚锡外延膜制备出了p沟道薄膜晶体管。(p-channelthin-filmtransistorusingp-typeoxidesemiconductor,SnO,YoichiOgo,HidenoriHiramatsu,KenjiNomura,HiroshiYanagi,ToshioKamiyaetal,APPLIEDPHYSICSLETTERS93,032113,2008);W.Guo等在γ-面Al2O3单晶衬底上,600℃,通过电子束蒸发的方法,也制备出(001)取向的外延膜。(Microstructure,optical,andelectricalpropertiesofp-typeSnOthinfilms,W.Guo,L.Fu,Y.Zhangetal,APPLIEDPHYSICSLETTERS96,042113,2010)。
然而,在较低温度下的普通衬底上,实现氧化亚锡(00l)取向以及其他面择优生长的报道则较少。结晶取向不同,薄膜的微观结构、物理性质等也会有明显的差异。现有技术虽然通过直流反应磁控溅射的方法,在工作气压为1.8mTorr,氧分压为15%的条件下获得了(101)的择优取向,但是也出现了(110)、(112)等取向的衍射峰。具有不同结晶取向的SnO薄膜,可以满足薄膜晶体管、有机发光器件、气体传感器等领域的不同应用要求。因此,通过简单的方法获得不同结晶取向的薄膜,在半导体薄膜技术领域有着广泛的应用前景。
发明内容
针对现有的氧化亚锡织构薄膜及其制备方法的不足,本发明提供了一种具有(101)择优取向的氧化亚锡织构薄膜及其制备方法。
一种氧化亚锡织构薄膜,从下至上依次包括:衬底,氧化亚锡主体层和金属氧化物覆盖层,所述氧化亚锡主体层中氧化亚锡的择优取向为(101)。
金属氧化物覆盖层改变了氧化亚锡的Sn/O、氧化亚锡的表面能以及氧化亚锡和衬底间的界面能,从而控制了薄膜的结晶取向,金属氧化物覆盖层应该性能稳定,不与氧化亚锡主体层反应,能减少氧的扩散等,如:Al2O3、ZnO、Y2O3、HfO2等。
由于氧化铝来源广泛,价格便宜,制备工艺简单,制成器件时与COMS工艺兼容性好。作为优选,所述金属氧化物覆盖层为氧化铝薄膜。
作为优选,所述金属氧化物覆盖层的厚度为8~45nm。金属氧化物覆盖层太薄时金属氧化物覆盖层可能没有形成完整的膜,不容易结晶;太厚的覆盖层,增加了整个膜系的厚度,不利于器件的应用。
所述氧化亚锡主体层的厚度为18~57nm。所述氧化亚锡主体层的厚度大于金属氧化物覆盖层的的厚度。太薄的氧化亚锡主体层,氧化亚锡是非晶的;太厚的主体层,就会出现其他方向的衍射峰。作为优选,所述氧化亚锡主体层的厚度为25~35nm。
所述的衬底为载玻片、热氧化硅片、石英、硅片。所选衬底要相对于其他单晶衬底具有成本低以及衬底预处理工艺简单等特点。尤其是石英,在可见光区透明度高达90%以上,是全透明光电子及电子器件的理想衬底材料。
本发明还提供上述氧化亚锡织构薄膜的制备方法,包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗、干燥后的衬底上沉积得到氧化亚锡主体层,沉积速率为1~2nm/min,当氧化亚锡主体层的厚度达到18~57nm时停止沉积;
(2)采用电子束蒸发法蒸发金属氧化物蒸发料,在氧化亚锡主体层沉积得到金属氧化物覆盖层,沉积速率为0.3~0.8nm/min,当金属氧化物覆盖层的厚度达到8~45nm时停止沉积;
(3)将沉积有氧化亚锡主体层和金属氧化物覆盖层的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜。退火温度为350~450℃,退火时间为5~30min。
其中,衬底的清洗步骤为:用丙酮、乙醇、去离子水依次超声清洗各2次,每次15min,最后用N2吹干。
电子束蒸发镀膜设备,具有操作简单、可大面积均匀成膜等优势。作为优选,薄膜制备时选择电子束蒸发系统。
作为优选,沉积得到氧化亚锡主体层的沉积速率为1.6~1.8nm/min,当氧化亚锡主体层的厚度达到25~35nm时停止沉积。
作为优选,沉积得到金属氧化物覆盖层的沉积速率为0.6~0.8nm/min,当金属氧化物覆盖层的厚度达到8~45nm时停止沉积。
作为优选,退火温度为400℃,退火时间为10min。
Ar气为惰性气体,退火时不与SnO薄膜发生反应。作为优选,退火气氛为Ar气。
本发明中的氩气气氛使用的氩气纯度为99.999%。
所述步骤(1)中电子束蒸发时沉积得到氧化亚锡主体层时沉积参数如下:衬底温度为室温,本底真空度为1×10-3~6×10-6Pa。
所述步骤(2)中电子束蒸发时沉积得到金属氧化物覆盖层时沉积参数如下:衬底温度为室温,本底真空度为1×10-3~6×10-6Pa。
本发明还提供了具有一种择优取向为(00l)的氧化亚锡织构薄膜,该织构薄膜从下至上依次包括:衬底,氧化亚锡主体层,所述氧化亚锡主体层中氧化亚锡的择优取向为(00l),氧化亚锡主体层的厚度为18~57nm。该织构薄膜的制备过程如下:
(a)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗、干燥后的衬底上沉积得到氧化亚锡主体层,沉积速率为1~2nm/min,当氧化亚锡主体层的厚度达到18~57nm时停止沉积;
(b)将沉积有氧化亚锡主体层的衬底放入氩气气氛中进行快速热退火,得到多晶氧化亚锡薄膜,退火温度为350~450℃,退火时间为5~30min。
本发明中所述的为(00l)为(001)和(002)。
本发明的氧化亚锡织构薄膜及其制备方法中采用电子束蒸发法在衬底上依次沉积得到氧化亚锡主体层和金属氧化物覆盖层,通过金属氧化物覆盖层的作用改变在氧化亚锡薄膜的表面能,进而达到控制热处理过程中氧化亚锡主体层结晶取向,从而得到择优取向为(101)的氧化亚锡织构薄膜。本发明的氧化亚锡织构薄膜对衬底要求不高,采用普通的石英即可,且制备工艺简单,成本低廉,采用电子束蒸发法,相对于脉冲激光沉积、磁控溅射等操作简单、且可大面积均匀成膜,适用于商业生成。
附图说明
图1是本发明的氧化亚锡织构薄膜的结构示意图;
图2为实施例1和对比例1中的氧化亚锡织构薄膜的XRD谱图;
图3为实施例2和对比例2中的氧化亚锡织构薄膜的XRD谱图;
图4为实施例3和对比例3中的氧化亚锡织构薄膜的XRD谱图;
图5为实施例4和对比例4中的氧化亚锡织构薄膜的XRD谱图;
图6为实施例5和对比例5中的氧化亚锡织构薄膜的XRD谱图;
其中,XRD谱图的横轴为衍射角(2θ),纵轴为强度(Intensity)。
具体实施方式
下面将结合具体实施例和对比例以及附图对本发明做进一步说明。
实施例1
本实施例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的载玻片上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)采用电子束蒸发法蒸发颗粒状氧化铝蒸发料,在氧化亚锡主体层上沉积得到氧化铝薄膜作为金属氧化物覆盖层,沉积速率为0.6nm/min,当氧化铝薄膜的厚度达到8nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(3)将沉积有氧化亚锡主体层和氧化铝薄膜的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
由以上方法制备得到的氧化亚锡织构薄膜如图1所示,从下至上依次包括:衬底1(本实施例中为载玻片)、氧化亚锡主体层2和金属氧化物覆盖层3(本实施例中为氧化铝薄膜),其中氧化亚锡主体层2的厚度为26nm,金属氧化物覆盖层3的厚度为8nm。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图2中曲线(a)所示,结果表明该氧化亚锡织构薄膜的择优取向为(101)。
实施例2
本实施例的氧化亚锡织构薄膜的制备方法与包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的热氧化硅片(n+-Si/SiO2,(100))上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)采用电子束蒸发法蒸发颗粒状氧化铝蒸发料,在氧化亚锡主体层沉积得到氧化铝薄膜作为金属氧化物覆盖层,沉积速率为0.6nm/min,当氧化铝薄膜的厚度达到8nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(3)将沉积有氧化亚锡主体层和氧化铝薄膜的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
由以上方法制备得到的氧化亚锡织构薄膜如图1所示,从下至上依次包括:衬底1(本实施例中为热氧化硅片n+-Si/SiO2(100))、氧化亚锡主体层2和金属氧化物覆盖层3(本实施例中为氧化铝薄膜),其中氧化亚锡主体层2的厚度为26nm,金属氧化物覆盖层3的厚度为8nm。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80°,步幅0.02°/s,得到的XRD图谱如图3中曲线(a)所示,结果表明该氧化亚锡织构薄膜的择优取向为(101)。
实施例3
本实施例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的石英上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)采用电子束蒸发法蒸发颗粒状氧化铝蒸发料,在氧化亚锡主体层沉积得到氧化铝薄膜作为金属氧化物覆盖层,沉积速率为0.6nm/min,当氧化铝薄膜的厚度达到8nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(3)将沉积有氧化亚锡主体层和氧化铝薄膜的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
由以上方法制备得到的氧化亚锡织构薄膜如图1所示,从下至上依次包括:衬底1(本实施例中为石英)、氧化亚锡主体层2和金属氧化物覆盖层3(本实施例中为氧化铝薄膜),其中氧化亚锡主体层2的厚度为26nm,金属氧化物覆盖层3的厚度为8nm。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80°,步幅0.02°/s,得到的XRD图谱如图4中曲线(a)所示,结果表明该氧化亚锡织构薄膜的择优取向为(101)。
实施例4
本实施例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的载玻片上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到57nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)采用电子束蒸发法蒸发颗粒状氧化铝蒸发料,在氧化亚锡主体层沉积得到氧化铝薄膜作为金属氧化物覆盖层,沉积速率为0.6nm/min,当氧化铝薄膜的厚度达到28nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(3)将沉积有氧化亚锡主体层和氧化铝薄膜的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
由以上方法制备得到的氧化亚锡织构薄膜如图1所示,从下至上依次包括:衬底1(本实施例中为载玻片)、氧化亚锡主体层2和金属氧化物覆盖层3(本实施例中为氧化铝薄膜),其中氧化亚锡主体层2的厚度为57nm,金属氧化物覆盖层3的厚度为28nm。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图5中曲线(a)所示,结果表明该氧化亚锡织构薄膜的择优取向为(101)。
实施例5
本实施例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的石英上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)采用电子束蒸发法蒸发颗粒状氧化钇蒸发料,在氧化亚锡主体层沉积得到氧化钇薄膜作为金属氧化物覆盖层,沉积速率为0.6nm/min,当氧化钇薄膜的厚度达到15nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(3)将沉积有氧化亚锡主体层和氧化钇薄膜的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
由以上方法制备得到的氧化亚锡织构薄膜如图1所示,从下至上依次包括:衬底1(本实施例中为石英)、氧化亚锡主体层2和金属氧化物覆盖层3(本实施例中为氧化钇薄膜),其中氧化亚锡主体层2的厚度为26nm,金属氧化物覆盖层3的厚度为15nm。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图6中曲线(a)所示,结果表明该氧化亚锡织构薄膜的择优取向为(101)。
对比例1
本对比例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的载玻片上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)将沉积有氧化亚锡主体层的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图2中曲线(b)所示,结果表明该氧化亚锡织构薄膜的择优取向为(00l),主要为(001)和(002)。
对比例2
本对比例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的热氧化硅片n+-Si/SiO2(100)上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)将沉积有氧化亚锡主体层的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图3中曲线(b)所示,结果表明该氧化亚锡织构薄膜的择优取向为(00l)。
对比例3
本对比例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的石英上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)将沉积有氧化亚锡主体层的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图4中曲线(b)所示,结果表明该氧化亚锡织构薄膜的择优取向为(00l)。
对比例4
本对比例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的载玻片上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到57nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)将沉积有氧化亚锡主体层的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图5中曲线(b)所示,结果表明该氧化亚锡织构薄膜的择优取向为(00l)。
对比例5
本对比例的氧化亚锡织构薄膜的制备方法包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗干燥后的石英上沉积得到氧化亚锡主体层,沉积速率为1.8nm/min,当氧化亚锡主体层的厚度达到26nm时停止沉积,沉积时衬底温度为室温,本底真空度为6×10-4Pa;
(2)将沉积有氧化亚锡主体层的衬底放入氩气气氛中进行快速热退火,得到氧化亚锡织构薄膜,退火温度为400℃,退火时间为10min。
对制备得到的氧化亚锡织构薄膜进行XRD测试,该仪器采用密封式的X射线管,以θ-θ模式扫描。实验中,选取2θ角的范围为:10-80。,步幅0.02°/s,得到的XRD图谱如图6中曲线(b)所示,结果表明该氧化亚锡织构薄膜的择优取向为(00l)。
由图2、图3和图4可以看出,当氧化亚锡薄膜的厚度为26nm时,通过增加氧化铝覆盖层的厚度,抑制了(00l)取向的峰强,(101)取向的峰强逐渐增加,而和衬底种类无关。当氧化铝覆盖层的厚度增加至8nm时,实现了只有(101)取向的氧化亚锡薄膜。
由图5可以看出,当氧化亚锡薄膜的厚度增加至57nm时,通过增加氧化铝覆盖层的厚度,抑制了(00l)取向的峰强,(101)取向的峰强逐渐增加,而和衬底种类无关。当氧化铝覆盖层的厚度增加至28nm时,实现了只有(101)取向的氧化亚锡薄膜。
由图6可以看出,当氧化亚锡薄膜的厚度为26nm时,通过增加氧化钇覆盖层的厚度,抑制了(00l)取向的峰强,(101)取向的峰强逐渐增加,而和衬底种类无关。当氧化钇覆盖层的厚度增加至15nm时,实现了只有(101)取向的氧化亚锡薄膜。
这可能是增加的氧化铝覆盖层或氧化钇覆盖层改变了氧化亚锡薄膜的化学计量比、降低了SnO的表面能以及SnO与衬底之间的界面能等,从而控制了结晶取向。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种氧化亚锡织构薄膜,其特征在于,从下至上依次包括:衬底,氧化亚锡主体层和金属氧化物覆盖层,所述氧化亚锡主体层中氧化亚锡的择优取向为(101),所述的衬底为载玻片、热氧化硅片或石英,所述氧化亚锡主体层的厚度大于金属氧化物覆盖层的厚度。
2.如权利要求1所述的氧化亚锡织构薄膜,其特征在于,所述金属氧化物覆盖层为氧化铝薄膜。
3.如权利要求2所述的氧化亚锡织构薄膜,其特征在于,所述金属氧化物覆盖层的厚度为8~45nm。
4.如权利要求3所述的氧化亚锡织构薄膜,其特征在于,所述氧化亚锡主体层的厚度为18~57nm。
5.如权利要求1所述的氧化亚锡织构薄膜的制备方法,其特征在于,包括以下步骤:
(1)采用电子束蒸发法蒸发二氧化锡蒸发料,在清洗、干燥后的衬底上沉积得到氧化亚锡主体层,沉积速率为1~2nm/min,当氧化亚锡主体层的厚度达到18~57nm时停止沉积;
(2)采用电子束蒸发法蒸发金属氧化物蒸发料,在氧化亚锡主体层上沉积得到金属氧化物覆盖层,沉积速率为0.3~0.8nm/min,当金属氧化物覆盖层的厚度达到8~45nm时停止沉积;
(3)将沉积有氧化亚锡主体层和金属氧化物覆盖层的衬底放入氩气气氛中进行快速热退火,得到多晶氧化亚锡薄膜,退火温度为350~450℃,退火时间为5~30min。
6.如权利要求5所述的氧化亚锡织构薄膜的制备方法,其特征在于,所述步骤(1)中电子束蒸发时沉积得到氧化亚锡主体层时沉积参数如下:衬底温度为室温,本底真空度为1×10-3~6×10-6Pa。
7.如权利要求6所述的氧化亚锡织构薄膜的制备方法,其特征在于,所述步骤(2)中电子束蒸发时沉积得到金属氧化物覆盖层时沉积参数如下:衬底温度为室温,本底真空度为1×10-3~6×10-6Pa。
CN201410017207.XA 2014-01-15 2014-01-15 氧化亚锡织构薄膜及其制备方法 Active CN103774098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410017207.XA CN103774098B (zh) 2014-01-15 2014-01-15 氧化亚锡织构薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410017207.XA CN103774098B (zh) 2014-01-15 2014-01-15 氧化亚锡织构薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN103774098A CN103774098A (zh) 2014-05-07
CN103774098B true CN103774098B (zh) 2016-06-08

Family

ID=50566841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410017207.XA Active CN103774098B (zh) 2014-01-15 2014-01-15 氧化亚锡织构薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN103774098B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992981A (zh) * 2015-05-26 2015-10-21 中国科学院宁波材料技术与工程研究所 氧化物薄膜晶体管及其制备方法和反相器及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206245A (zh) * 2015-05-08 2016-12-07 清华大学 氧化亚锡薄膜的制备方法
CN108842142B (zh) * 2018-07-03 2021-03-26 河北工业大学 一种由微米级五边形氧化亚锡构成的薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764065A (zh) * 2010-01-20 2010-06-30 中国科学院宁波材料技术与工程研究所 一种p型氧化亚锡沟道薄膜晶体管的制备方法
CN102021519A (zh) * 2009-09-17 2011-04-20 中国科学院宁波材料技术与工程研究所 氧化亚锡多晶薄膜的制备方法
JP2012072456A (ja) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd 蒸着材料
CN102593063A (zh) * 2012-02-22 2012-07-18 中国科学院宁波材料技术与工程研究所 一种双极性氧化亚锡反相器的制备方法
JP2012182329A (ja) * 2011-03-01 2012-09-20 Tokyo Institute Of Technology 同時両極性電界効果型トランジスタ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021519A (zh) * 2009-09-17 2011-04-20 中国科学院宁波材料技术与工程研究所 氧化亚锡多晶薄膜的制备方法
CN101764065A (zh) * 2010-01-20 2010-06-30 中国科学院宁波材料技术与工程研究所 一种p型氧化亚锡沟道薄膜晶体管的制备方法
JP2012072456A (ja) * 2010-09-29 2012-04-12 Toppan Printing Co Ltd 蒸着材料
JP2012182329A (ja) * 2011-03-01 2012-09-20 Tokyo Institute Of Technology 同時両極性電界効果型トランジスタ及びその製造方法
CN102593063A (zh) * 2012-02-22 2012-07-18 中国科学院宁波材料技术与工程研究所 一种双极性氧化亚锡反相器的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992981A (zh) * 2015-05-26 2015-10-21 中国科学院宁波材料技术与工程研究所 氧化物薄膜晶体管及其制备方法和反相器及其制备方法
CN104992981B (zh) * 2015-05-26 2018-03-06 中国科学院宁波材料技术与工程研究所 氧化物薄膜晶体管及其制备方法和反相器及其制备方法

Also Published As

Publication number Publication date
CN103774098A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
JP6060202B2 (ja) 透明導電膜の製造方法、スパッタリング装置及びスパッタリングターゲット
JP5955504B2 (ja) 窒素ガスを用いた亜鉛ターゲットの反応性スパッタにより形成される薄膜半導体材料
WO2012090490A1 (ja) 酸化物半導体薄膜層を有する積層構造及び薄膜トランジスタ
JP4670877B2 (ja) 酸化亜鉛系透明導電膜積層体と透明導電性基板およびデバイス
CN103789730B (zh) 一种二次电子发射薄膜的制备方法
CN105132877B (zh) 一种二氧化钒薄膜低温沉积方法
WO2007046181A1 (ja) 半導体薄膜及びその製造方法
Kowalik et al. Structural and optical properties of low-temperature ZnO films grown by atomic layer deposition with diethylzinc and water precursors
CN103774098B (zh) 氧化亚锡织构薄膜及其制备方法
Hammoodi et al. Structural and optical properties of CuO thin films prepared via RF magnetron sputtering
Wu et al. Influence of oxygen/argon reaction gas ratio on optical and electrical characteristics of amorphous IGZO thin films coated by HiPIMS process
Parshina et al. Effect of energy density on the target on SnO 2: Sb film properties when using a high-speed particle separator
US9193624B2 (en) Production method for thermochromatic glass in which use is made of a low-temperature metal-vapour-deposition process, and thermochromatic glass obtained thereby
CN103996717A (zh) 薄膜晶体管及其制作方法、显示基板和显示装置
TWI544097B (zh) An oxide sintered body, a target for sputtering, and an oxide semiconductor thin film obtained by using the same
US9856578B2 (en) Methods of producing large grain or single crystal films
Shu-Wen A Study of annealing time effects on the properties of Al: ZnO
JP2014056945A (ja) アモルファス酸化物薄膜及びその製造方法、並びにそれを用いた薄膜トランジスタ
TWI547441B (zh) 氧化物燒結體、濺鍍用靶、及使用其而獲得之氧化物半導體薄膜
CN108193178B (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
Sreedhar et al. Effect of Ar ion-beam-assistance and substrate temperature on physical properties of Al-doped ZnO thin films deposited by RF magnetron sputtering
CN104846333B (zh) 一种组分可控的硼碳氮薄膜的制备方法
Pandey et al. Revisiting the interface sensitive selective crystallization in HWCVD a-Si: H/Al bilayer system
US20170197887A1 (en) Method of annealing ceramic glass by laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant