CN103765998A - 辐射源和光刻设备 - Google Patents

辐射源和光刻设备 Download PDF

Info

Publication number
CN103765998A
CN103765998A CN201280042339.7A CN201280042339A CN103765998A CN 103765998 A CN103765998 A CN 103765998A CN 201280042339 A CN201280042339 A CN 201280042339A CN 103765998 A CN103765998 A CN 103765998A
Authority
CN
China
Prior art keywords
voltage
drop
electrode
reflector
fuel droplet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280042339.7A
Other languages
English (en)
Other versions
CN103765998B (zh
Inventor
H·斯希梅尔
J·迪吉克斯曼
D·兰贝特斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of CN103765998A publication Critical patent/CN103765998A/zh
Application granted granted Critical
Publication of CN103765998B publication Critical patent/CN103765998B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/006X-ray radiation generated from plasma being produced from a liquid or gas details of the ejection system, e.g. constructional details of the nozzle
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • H05G2/005X-ray radiation generated from plasma being produced from a liquid or gas containing a metal as principal radiation generating component

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

提供用于促进通过用于光刻设备中的辐射源液滴束流生成装置生成的束流中的燃料液滴的聚结的方法和设备。描述了多个示例,其中调制电压源被应用于发射器,使得液滴的电特性可以被控制。这导致束流中的液滴的加速和减速,引起它们合并和促进聚结。

Description

辐射源和光刻设备
相关申请的交叉引用
本申请要求于2011年9月2日递交的美国临时申请61/530,766的优先权,其在此通过引用全文并入。
技术领域
本发明涉及辐射源和光刻设备。
背景技术
光刻设备是一种将期望的图案应用到衬底上,通常是衬底的目标部分上的机器。例如,可以将光刻设备用在集成电路(ICs)的制造中。在这种情况下,可以将可选地称为掩模或掩模版的图案形成装置用于生成将要在所述IC的单层上形成的电路图案。这种图案可以被转移到衬底(例如硅晶片)上的目标部分(例如包括部分管芯、一个或多个管芯)上。通常,图案转移是通过将图案成像到设置在衬底上的辐射敏感材料(抗蚀剂)的层上来实现。通常,单个衬底将包含被连续图案化的相邻的目标部分的网络。
光刻术被广泛地看作制造IC和其他器件和/或结构的关键步骤之一。然而,随着通过使用光刻术制造的特征的尺寸变得越来越小,光刻术正变成允许制造微型IC或其他器件和/或结构的更加关键的因素。
图案印刷极限的理论估计可以由用于分辨率的瑞利法则给出,如等式(1)所示:
CD = k 1 * λ NA - - - ( 1 )
其中λ是所用辐射的波长,NA是用以印刷图案的投影系统的数值孔径,k1是依赖于过程的调节因子,也称为瑞利常数,CD是所印刷的特征的特征尺寸(或临界尺寸)。由等式(1)知道,特征的最小可印刷尺寸减小可以由三种途径获得:通过缩短曝光波长λ、通过增大数值孔径NA或通过减小k1的值。
为了缩短曝光波长并因此减小最小可印刷尺寸,已经提出使用极紫外(EUV)辐射源。EUV辐射是具有在5-20nm范围内波长的电磁辐射,例如在13-14nm范围内,例如在5-10nm范围内,例如6.7nm或6.8nm。可能的源包括例如激光产生的等离子体源、放电等离子体源或基于通过电子存储环提供的同步加速器辐射的源。
可以通过使用等离子体来产生EUV辐射。用于产生EUV辐射的辐射系统可以包括用于激发燃料以提供等离子体的激光器和用于容纳等离子的源收集器模块。例如可以通过引导激光束至诸如合适材料(例如锡)的颗粒或液滴或者合适气体或蒸汽(例如氙气或锂蒸汽)的束流等燃料来产生等离子体。所形成的等离子体发出输出辐射,例如EUV辐射,其通过使用辐射收集器来收集。辐射收集器可以是反射镜式正入射辐射收集器,其接收辐射并将辐射聚焦成束。源收集器模块可以包括包围结构或腔室,所述包围结构或腔室布置成提供真空环境以支持等离子体。这种辐射系统通常被称为激光产生的等离子体(LPP)源。
将具有期望的尺寸和期望的间隔的燃料材料的液滴传递至等离子体形成位置可能是困难的。
发明内容
期望提供一种相对于已知的辐射源是新颖的且具有创造性的辐射源和光刻设备。
根据本发明的第一方面,提供一种辐射源的燃料液滴束流生成装置,包括:燃料液滴发射器,连接至调制电压源,调制电压源配置成施加第一电压至燃料液滴束流的第一部分并施加第二电压至燃料液滴束流的第二部分;第一电极,位置靠近燃料液滴发射器;第二电极,位置远离燃料液滴发射器;和电压源,配置成在第一和第二电极之间施加电势差并由此在第一和第二电极之间生成电场,该电场施加减速作用力至燃料液滴束流的第一和第二部分中的一个部分并施加加速作用力至燃料液滴束流的第一和第二部分中的另一个部分。
在一个示例中,第一和第二电压相对于第一电极被保持的电压分别是正的和负的,其中第一电极可以被保持在零电势。在一个示例中,第一和第二电极之间的电势差是基本恒定的。
在本发明的一些实施例中,在施加第一电压和第二电压之间的时间段不对液滴束流施加电压。
第一电压相对于被施加至第一电极的电压的幅值与第二电压相对于被施加至第一电极的电压的幅值可以相等或不同。
第一电压和第二电压可以被施加相同的时间段或不同的时间段。
根据本发明的第二方面,提供一种辐射源的燃料液滴束流生成装置,包括:燃料液滴发射器;电极,位置靠近通过发射器形成的液滴的形成点;和电压源,配置成在发射器和电极之间施加交变的电压,由此在束流中的交替的液滴被给予交变的符号的电荷。
在一个示例中,在液滴的序列中,每隔一个液滴上的电荷的幅值增加。在一个示例中,在液滴的序列之后,在下一个序列之前可以存在不施加电压的时间段。另外,在一个示例中,交变的电压的施加与液滴的形成同步。
根据本发明的第三方面,提供一种辐射源的燃料液滴束流生成装置,包括:燃料液滴发射器、电极和电压源,所述电压源配置成在发射器和电极之间施加交变的电压,由此形成具有相反的电符号或相同符号且不同幅值的液滴束流,并且它们被朝向电极加速或减速,由此促进液滴的聚结。
在一个示例中,恒定电压被附加地施加至发射器。
根据本发明的第四方面,提供一种辐射源的燃料液滴束流生成装置,包括:燃料液滴发射器、电极和调制电压源,所述调制电压源连接至发射器,用于控制发射器和电极之间的液滴的相对速度,由此,促进较小的液滴聚结为较大的液滴。
在一个示例中,通过在电场中提供具有相反电荷的不同的液滴和/或为不同液滴提供不同幅值的电荷来控制液滴的相对速度。在一个示例中,液滴的相对速度通过调制电场控制。
根据本发明的第五方面,提供一种光刻设备,包括上面限定的辐射源,并且还包括:照射系统,配置成调节辐射束;支撑结构,构造成支撑图案形成装置,所述图案形成装置能够在辐射束的横截面上将图案赋予辐射束以形成图案化的辐射束;衬底台,构造成保持衬底;和投影系统,配置成将图案化的辐射束投影到衬底的目标部分上。
根据本发明的第六方面,提供一种促进从燃料液滴发射器发射的辐射源的燃料液滴的聚结的方法,包括通过对发射器施加调制电压来控制束流中液滴的相对速度的步骤。
本发明的其他特征和优点以及本发明不同实施例的结构和操作将在下文中参照附图进行描述。要注意的是,本发明不限于这里所描述的具体实施例。在这里给出的这些实施例仅是示例性用途。基于这里包含的教导,其他的实施例对本领域技术人员将是显而易见的。
附图说明
被包含在申请文件中并且形成说明书的一部分的附图示出本发明,并且与文字描述一起进一步用于解释本发明的原理,使得本领域普通技术人员能够实现和使用本发明。
图1示意地示出根据本发明的实施例的光刻设备;
图2是图1的设备的更加详细的视图,包括LPP源收集器模块;
图3示意地示出燃料液滴发射器,其可以形成图1和2中示出的光刻设备的一部分。
图4示意地示出燃料液滴束流生成装置,其可以形成根据本发明的实施例的辐射源的一部分。
图5示意地示出替代的燃料液滴束流生成装置,其可以形成根据本发明的实施例的辐射源的一部分。
图6示意地示出另一替代的燃料液滴束流生成装置,其可以形成根据本发明的实施例的辐射源的一部分,以及
图7示意地示出另一替代的燃料液滴束流生成装置,其可以形成根据本发明的实施例的辐射源的一部分。
结合附图通过下面详细的说明,本发明的特征和优点将变得更加清楚,在附图中相同的附图标记在全文中表示对应元件。在附图中,相同的附图标记通常表示相同的、功能类似的和/或结构类似的元件。元件第一次出现的附图用相应的附图标记中最左边的数字表示。
具体实施方式
本说明书公开一个或更多个实施例,其中包含了本发明的特征。所公开的实施例仅给出本发明的示例。本发明的范围不限于这些公开的实施例。本发明由所附的权利要求来限定。
所述的实施例和在说明书中提到的“一个实施例”、“实施例”、“示例性实施例”等表示所述的实施例可以包括特定的特征、结构或特性,但是每个实施例可以不必包括所有的特定的特征、结构或特性。而且,这些段落不必指的是同一个实施例。此外,当特定的特征、结构或特性与实施例结合进行描述时,应该理解,无论是否明确描述,与其他实施例相结合地实现这些特征、结构或特性是在本领域技术人员所知的知识范围内的。
本发明的实施例可以实施为硬件、固件、软件或其任何组合。本发明实施例还可以实现为存储在机器可读介质上的指令,其可以通过一个或更多个处理器读取和执行。机器可读介质可以包括用于以机器(例如计算装置)可读形式存储或传送信息的任何机制。例如,机器可读介质可以包括:只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光学存储介质;闪存装置;传播信号的电、光、声或其他形式(例如,载波、红外信号、数字信号等),以及其他。此外,这里可以将固件、软件、例程、指令描述成执行特定动作。然而,应该认识到,这些描述仅为了方便并且这些动作实际上由计算装置、处理器、控制器或执行所述固件、软件、例程、指令等的其他装置来完成的。
然而,在详细描述这些实施例之前,给出应用本发明的实施例的示例环境是有利的。
图1示意性地示出一种光刻设备。所述设备包括:照射系统(照射器)IL,配置用于调节辐射束B(例如,UV辐射或DUV辐射);支撑结构(例如掩模台)MT,构造用于支撑图案形成装置(例如掩模)MA并与配置用于根据特定参数精确地定位图案形成装置的第一定位装置PM相连;衬底台(例如晶片台)WT,构造用于保持衬底(例如涂覆有抗蚀剂的晶片)W,并与配置用于根据特定参数精确地定位衬底的第二定位装置PW相连;和投影系统(例如反射式投影系统)PL,所述投影系统PL配置用于将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一根或更多根管芯)上。
所述照射系统可以包括各种类型的光学部件,例如折射型、反射型、磁性型、电磁型、静电型或其它类型的光学部件、或其任意组合,以引导、成形、或控制辐射。
支撑结构MT以依赖于图案形成装置的方向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中等其它条件的方式保持图案形成装置MA。所述支撑结构可以采用机械的、真空的、静电的或其它夹持技术来保持图案形成装置。所述支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动的。所述支撑结构可以确保图案形成装置位于所需的位置上(例如相对于投影系统)。
这里所使用的术语“图案形成装置”应该被广义地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束、以便在衬底的目标部分上形成图案的任何装置。被赋予辐射束的图案可以与在目标部分上形成的器件中的特定的功能层相对应,例如集成电路。
图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程液晶显示(LCD)面板。掩模在光刻术中是公知的,并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜可以独立地倾斜,以便沿不同方向反射入射的辐射束。所述已倾斜的反射镜将图案赋予由所述反射镜矩阵反射的辐射束。
如同照射系统,投影系统可以包括多种类型的光学部件,例如折射型、反射型、磁性型、电磁型和静电型或其他类型光学部件、或其任意组合,如对于所使用的曝光辐射所适合的、或对于诸如使用浸没液或使用真空之类的其他因素所适合的。可以希望对EUV辐射使用真空,因为其他气体可能吸收太多的辐射。因而可以借助真空壁和真空泵对整个束路径提供真空环境。
如这里所示的,所述设备是是反射型的(例如,采用反射式掩模)。
所述光刻设备可以是具有两个(双台)或更多衬底台(和/或两个或更多的掩模台)的类型。在这种“多台”机器中,可以并行地使用附加的台,或可以在一个或更多个台上执行预备步骤的同时,将一个或更多个其它台用于曝光。
参照图1,照射器IL接收来自源收集器模块SO的极紫外(EUV)辐射束。用以产生EUV辐射的方法包括但不必限于将材料转换为等离子体状态,该材料具有在EUV范围内具有一个或更多个发射线的至少一种元素,例如氙、锂或锡。在通常称为激光产生等离子体(“LPP”)的一种这样的方法中,所需的等离子体可以通过使用激光束照射例如具有所需发射线元素的材料的液滴等燃料来产生。源收集器模块SO可以是包括激光器(在图1中未示出)的EUV辐射系统的一部分,所述激光器用于提供用于激发燃料的激光束。所形成的等离子体发射输出辐射,例如EUV辐射,其通过使用设置在源收集器模块中的辐射收集器收集。
激光器和源收集器模块可以是分立的实体,例如当CO2激光器用以提供用于燃料激发的激光束。在这种情况下,借助于包括例如合适的定向反射镜和/或扩束器的束传递系统,辐射束被从激光器传递至源收集器模块。激光器和燃料源可以被看作包括EUV辐射源。
照射器IL可以包括调节器,用于调节辐射束的角度强度分布。通常,可以对所述照射器的光瞳平面中的强度分布的至少外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,所述照射器IL可以包括各种其它部件,例如琢面场反射镜装置和琢面光瞳反射镜装置(也称为多小面场反射镜装置和光瞳反射镜装置)。可以将所述照射器用于调节所述辐射束,以在其横截面中具有所需的均匀性和强度分布。
所述辐射束B入射到保持在支撑结构(例如,掩模台)MT上的所述图案形成装置(例如,掩模)MA上,并且通过所述图案形成装置来形成图案。在已经由图案形成装置(例如,掩模)MA反射之后,所述辐射束B通过投影系统PS,所述投影系统PS将辐射束聚焦到所述衬底W的目标部分C上。通过第二定位装置PW和位置传感器系统PS2(例如,干涉仪器件、线性编码器或电容传感器)的帮助,可以精确地移动所述衬底台WT,例如以便将不同的目标部分C定位于所述辐射束B的路径中。类似地,可以将所述第一定位装置PM和另一个位置传感器系统PS1用于相对于所述辐射束B的路径精确地定位图案形成装置(例如,掩模)MA。可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准图案形成装置(例如,掩模)MA和衬底W。
可以将所述设备用于以下模式中的至少一种中:
1.在步进模式中,在将支撑结构(例如掩模台)MT和衬底台WT保持为基本静止的同时,将赋予所述辐射束的整个图案一次投影到目标部分C上(即,单一的静态曝光)。然后将所述衬底台WT沿X和/或Y方向移动,使得可以对不同目标部分C曝光。
2.在扫描模式中,在对支撑结构(例如掩模台)MT和衬底台WT同步地进行扫描的同时,将赋予所述辐射束的图案投影到目标部分C上(即,单一的动态曝光)。衬底台WT相对于支撑结构(例如掩模台)MT的速度和方向可以通过所述投影系统PS的(缩小)放大率和图像反转特征来确定。
3.在另一种模式中,将用于保持可编程图案形成装置的支撑结构(例如掩模台)MT保持为基本静止,并且在对所述衬底台WT进行移动或扫描的同时,将赋予所述辐射束的图案投影到目标部分C上。在这种模式中,通常采用脉冲辐射源,并且在所述衬底台WT的每一次移动之后、或在扫描期间的连续辐射脉冲之间,根据需要更新所述可编程图案形成装置。这种操作模式可易于应用于利用可编程图案形成装置(例如,如上所述类型的可编程反射镜阵列)的无掩模光刻术中。
也可以采用上述使用模式的组合和/或变体,或完全不同的使用模式。
图2更详细地示出光刻设备100,包括源收集器模块SO、照射系统IL以及投影系统PS。源收集器模块SO构造并布置成使得在源收集器模块的包围结构220内保持真空环境。
激光器LA布置成将激光能量经由激光束205沉积到由燃料液滴束流生成装置200提供的燃料,例如氙(Xe)、锡(Sn)或锂(Li)。由此在等离子体形成位置211形成具有几十eV电子温度的高度离子化的等离子体210。在这些离子的去激发和复合期间产生的高能辐射从等离子体发射,通过近正入射辐射收集器CO收集和聚焦。激光器LA和燃料液滴束流生成装置200可以一起被看作包括EUV辐射源。EUV辐射源可以称为激光产生等离子体(LPP)源。
可以设置第二激光器(未示出),第二激光器配置成在激光束205入射到燃料上之前预热燃料。使用这种方法的LPP源可以称为双激光脉冲(DLP)源。
通过收集器光学元件CO反射的辐射被聚焦在虚源点IF。虚源点IF通常称为中间焦点,并且源收集器模块SO布置成使得中间焦点IF位于包围结构220中的开口221处或其附近。虚源点IF是用于发射辐射的等离子体210的像。
随后,辐射穿过照射系统IL,照射系统IL可以包括布置成在图案形成装置MA处提供辐射束21的期望的角分布以及在图案形成装置MA处提供期望的辐射强度均匀性的琢面场反射镜装置22和琢面光瞳反射镜装置24。在辐射束21在通过由支撑结构MT保持的图案形成装置MA处反射时,图案化束26被形成,并且图案化束26通过投影系统PS经由反射元件28、30成像到由晶片台或衬底台WT保持的衬底W。
在照射系统IL和投影系统PS中通常可以存在比图示的元件更多的元件。此外,可以存在比图中示出的反射镜更多的反射镜,例如在投影系统PS中可以存在除图2中示出的元件以外的1-6个附加的反射元件。
图3示意地示出燃料液滴束流生成装置的燃料液滴发射器310。燃料液滴发射器310包括贮液器300,其包含燃料液体302(例如液态锡)。贮液器300连接至毛细管304,其通过压电致动器306包围。在压电致动器306和毛细管304之间(例如通过使用合适的结合材料)提供牢固的连接,使得振动可以从压电致动器传递至毛细管。毛细管304设置有喷嘴308,燃料材料从喷嘴308沿轨迹A喷射。轨迹A与沿毛细管304的中心延伸的轴线共轴,如通过毛细管的中心的点线所示意地表示的。
在一个实施例中,喷嘴308可以具有3-5微米的直径。毛细管304可以例如是25毫米长,外径1毫米,壁厚0.2毫米。压电致动器306可以例如是大约10mm长,并且可以使用粘合剂固定至毛细管304。粘合剂可以是高温粘合剂,即在燃料供给装置200的操作温度条件下不丧失粘结性。压电致动器306配置成使得其可以以期望的调制频率挤压毛细管304,由此在具有可以改变束流的速度的效果的情况下调制毛细管内的压力。
在使用中,液体燃料302被保持在贮液器300内的压力条件下。这可以例如通过对也位于贮液器300内的气体(未示出)加压来实现,使得通过气体施加压力至液体燃料。由于压力,从喷嘴308排出燃料的束流。在没有压电致动器306的情况下,束流在行进离开喷嘴308一定距离(该距离可以例如是喷嘴的直径的100-1000倍)之后将自然地破碎,由此形成液滴束流。这被称为瑞利破碎。当瑞利破碎发生时,燃料液滴形成,其直径为喷嘴308的直径的大约两倍或比其略小,并且间隔是喷嘴直径的大约4.5倍。虽然在没有压电致动器306的致动情况下将发生燃料液滴束流的瑞利破碎,但是压电致动器306可以用以通过调制毛细管304内的压力控制瑞利破碎。
然而,重要的、需要说明的是,在本发明的实施例中可以使用其他类型的燃料液滴发射器。尤其是,可能的液滴发射器包括通过可以通过机械装置辅助或调整的瑞利破碎机制生成连续的液滴束流的液滴发射器。其他可用的液滴发射器是可以称为通过一些机械的和/或电学的激励来产生液滴的所谓请求式液滴发射器。请求式液滴发射器的所形成的液滴束流可以具有恒定的液滴频率。替代地,液滴之间的时间可以根据需要变化。
图3和部分其他图中示出笛卡尔坐标,以便允许读者容易理解在不同视图中示出的设备的取向。笛卡尔坐标不是为了表示设备必须具有特定的方向。
燃料液滴束流生成装置200在图4中示意地示出。燃料液滴束流生成装置200包括图3中的燃料液滴发射器310,并且还包括第一电极314和第二电极318。调制电压源312连接在燃料液滴发射器310和第一电极314之间。恒定电压源316连接在第一电极314和第二电极318之间。第一电极314被保持在固定电压,第一电极314可以接地,但是也可以第二电极318或液滴发射器接地。
调制电压源312配置成施加电压,该电压从恒定正值Va切换为恒定负值-Va,之后是0电压。正电压Va被施加持续与燃料液滴发射器310发射液滴束流的一半液滴所花费的时间相对应的时间段,负电压-Va被施加持续与发射另一半液滴束流所花费的时间相对应的时间段。液滴束流的第一半在图4中表示为320,液滴束流的第二半表示为322。因为在发射液滴束流的第一半320时施加正电压Va,所以这些液滴具有正电荷。类似地,因为在发射液滴束流的第二半322时施加负电压-Va,所以这些液滴具有负电荷。应该理解,在这种情况下,术语负电压和正电压是相对于电极314的固定电压而言的。如果电极314被保持在零电压的条件下,则这些术语意味着绝对意义上的正和负,但是如果例如电极314被保持在正电压时,则施加至液滴发射器310的电压可以在绝对意义上是正的但是相对于电极314的电压是负的。还应该理解,交变的电压Va不仅用以给液滴充电,而且用以给它们加速。电压Va改变极性时,已经在发射器310和电极314之间行进的少量液滴可以被减速,因为它们是“错误的”电荷,但是如果发射器310和电极314之间的距离小,则这些液滴数量少,表示束流中的仅小部分液滴,并且将不会显著影响液滴的整体加速。
在液滴束流的第二半322已经发射之后,由调制电压源312施加的电压变为零并且液滴不带电。电压可以保持在零位时间段t沉默,其与带电液滴的束流的末端和带电液滴的下一个束流的开头之间的时间段对应。时间段t沉默可以是任何合适的时间段。在一个实施例中,时间段t沉默可以是零,即,使得电压立即从-Va变为Va。在一个实施例中,在液滴束流的第二半的末端和随后的液滴束流的第一半的开始之间没有间隙。
第一电极314具有零电势(或至少固定电势,其不必为零,因为如果发射器和两个电极全部上升相同的固定电势,则本发明的该实施例将仍然有效),并且第二电极318通过恒定电压源316被设置为固定的正电压(相对于电极314)。以此方式,在电极314和318之间生成恒定电场,其中带负电的液滴322被加速并且带正电的液滴320被减速。这将导致液滴速度的变化,一部分液滴将比另一部分液滴快,并且高速液滴将超越低速液滴。在该示例中,高速液滴将是带负电的并且低速液滴将是带正电的,因而当高速液滴经过低速液滴时,将存在电吸引,这将帮助和促进聚结。
电压调制和相位差异使得当带负电的燃料液滴322从燃料液滴发射器310发射并且第一电极314具有正电荷。第一电极314因此吸引燃料液滴322,由此引起燃料液滴加速。燃料液滴322通过第二电极314中的开口315。当燃料液滴322通过该开口时,它们的速度高于它们从燃料液滴发射器310发射时具有的速度。
在燃料液滴320、322已经通过第一电极314之后,燃料液滴经历通过恒定电源316施加至第二电极318的电压产生的电场。该电压是恒定正电压Vc,并且因此形成液滴束流的第一半的带正电的燃料液滴320经受排斥力并被减速。形成液滴束流的第二半的带负电的燃料液滴322经受吸引力并被加速。这引起带负电的燃料液滴322和带正电的燃料液滴320移动得更靠近彼此,由此促进多个燃料液滴聚结为单一的燃料液滴。液滴束流320、322因此聚结为单个液滴324。这种聚结可以在第二电极318之前发生。还应该说明的是,依赖于选择电极318处于高于或低于电极314的电势,并且还依赖于束流中液滴的序列,即带正电的液滴超过带负电的液滴,反之亦然,在单个束流内的带正电的和带负电的液滴可以聚结,或在一个束流中的带正电的液滴可以与紧邻的束流中的带负电的液滴聚结。还应该理解的是,该实施例可以与能够产生间隔开的液滴组的类型的液滴发射器310(这是如图所示的实施例)一起使用,或可以与产生连续的液滴束流的类型的液滴发射器310一起使用。
如果存在数量相同的带正电的和带负电的液滴并且全部这些带电液滴具有相同幅值的电荷,则所形成的聚结的较大的液滴将是电中性的。然而,可以通过形成数量不等的正、负带电粒子(其可以通过使Va高的时间段和Va低的时间段不相等来实现)和/或通过具有幅值不等的正和负电荷(其可以通过具有不同幅值的正Va和负Va来实现)形成具有电荷的聚结颗粒。如果聚结的液滴被形成在具有电荷的电极314和318之间,则这可以允许实现进一步的加速。
单一液滴324或保持未聚结的液滴的束流通过第二电极318中的开口319。燃料液滴束流生成装置200因此生成一系列的燃料液滴324,所述一系列的燃料液滴324可以行进至等离子体形成位置211(见图2),并可以用以生成用于发射EUV辐射的等离子体。燃料液滴324具有中性电荷,因为它们由带正电的燃料液滴320和带负电的燃料液滴322的组合形成。
与已知的燃料液滴束流生长装置一样,可以通过燃料液滴发射器310的喷嘴308的直径、施加至贮液器300中的压力以及通过压电致动器306施加的调制来部分地确定燃料液滴324的尺寸、它们的速度以及它们的间隔(见图3)。然而,另外,燃料液滴324的速度可以通过施加至第一电极314的电压来修改。另外,液滴束流的不完全聚结以形成单一液滴发生的可能性由于施加至第二电极318的电压被减小。
控制器CT可以用以控制被施加至燃料液滴发射器310的电压,和控制被施加至电极314、318、332的电压。控制器CT还可以控制燃料液滴发射器310的压电致动器的致动,并且可以控制燃料液滴发射器的其他方面。
在上述说明中,通过调制电压源312提供的电压调制是从正到负,并且通过恒定电压源316提供的恒定电压是正的。然而,电压的符号可以交换,即,使得通过调制电压源312提供的电压的调制是从负到正,并且通过恒定电压源提供的恒定电压是负的。
如图4中示意性地表示的,第一电极314和燃料液滴发射器310之间的距离可以小于第一电极和第二电极318之间的距离。事实上,在一个示例中,发射器310和第一电极314之间的距离是液滴离开发射器310时它们之间距离的量级,但是该距离在图4中为了图示清楚被更大地示出。
被施加至第一电极的电压可以配置成将燃料液滴320、322的束流的液滴加速至相同的速度。
电极314、318中的开口315、319可以具有任何合适的形状和尺寸。开口315、319可以被电极314、318完全包围或可以被电极部分地包围。
图4中示出的本发明的实施例可以与通过压电致动器306(见图3)施加的调制结合,其促进由燃料液滴发射器310发射的燃料的瑞利破碎。致动器的频率可以接近瑞利破碎频率(即在10倍以内)。使用压电致动器的优点在于,由于瑞利破碎机制导致液滴形成的位置变得明确。这意味着在液滴形成点和电极314之间的距离被更好地限定。
图4中示出的实施例可以与信号Va的顶部的附加信号、与接近瑞利破碎频率的频率(在10倍以内)结合以便促进瑞利破碎。
在本示例中,所述喷嘴可以例如具有4微米的直径。燃料液滴可以通过瑞利破碎形成并且可以具有7微米的直径。液滴可以分开大约18微米的直径。与喷嘴308的液滴产生速率对应的瑞利频率与喷嘴处的燃料平均速度和喷嘴的直径相关:
Figure BDA0000471097780000141
虽然在没有压电致动器306致动的情况下也可以发生燃料液体束流的瑞利破碎,但是压电致动器306可以用以通过调制毛细管304内的压力来控制瑞利破碎。调制毛细管304内的压力调制离开喷嘴308的液体燃料的排出速度,并使液体燃料的束流在离开喷嘴之后以受控的方式直接破碎为液滴。如果通过压电致动器306施加的频率足够接近瑞利频率,则燃料液滴形成,液滴被分开的距离由离开燃料喷嘴308的平均排出速度和由压电致动器306施加的频率确定。燃料液滴可以通过图4中示出的本发明的实施例加速。燃料液滴聚结以形成较大的液滴可以通过图4中示出的本发明的实施例促成。
如果由压电致动器306施加的频率显著低于瑞利频率,则代替所形成的一系列的燃料液滴,形成燃料云。给出的燃料的云可以包括以相对高的速度行进的一组液滴和以相对低的速度行进的一组液滴(速度是相对于燃料云的平均速度而言)。这些可以聚结在一起以形成单一燃料液滴。以此方式,一系列燃料液滴可以通过将明显低于瑞利频率的频率施加至压电致动器306生成。本发明图4中示出的实施例可以与燃料云结合使用。
还应该注意的是,图4中的实施例中,电极314可以由以已知间距间隔开的液滴的级联(cascade)构成,以使得,液滴被加速至甚至更高的速度或更低的电压可以用以加速液滴。
图5中示意地示出本发明的替代的实施例。本发明替代的实施例包括燃料液滴发射器310和电极332,调制电压源338连接在它们之间。燃料液滴发射器310可以配置成发射燃料液滴的束流,每个束流可以在时间上隔开。在图示的实施例中,每个液滴束流330a-c包括六个液滴。然而,每个液滴束流可以包括任何合适数量的液滴。束流之间的距离是任意的。
调制电压源338配置成施加电压Vv,其在正、负值之间交替改变。电压在正、负值之间交替改变的频率是通过燃料液滴发射器310发射燃料液滴的频率的一半。因此,在图示的实施例中,当第一液滴束流330a的第一液滴发射时,电压是正的,当第一液滴束流的第二液滴发射时,电压是负的,当第一液滴束流330a的第三液滴发射时,电压是正的,等等。结果,第一液滴束流330a的第一、第三以及第五液滴是带正电的,第一液滴束流的第二、第四和第六液滴是带负电的。在第一液滴束流330a的最后的液滴已经被发射之后,电压Vv下降为零并保持为零,直到第二液滴束流330b的第一液滴通过燃料液滴发射器310发射为止。随后在第二液滴束流330b以与第一液滴束流330a发射期间施加电压的相同的方式在发射期间施加电压Vv。在随后的液滴束流发射期间,电压Vv可以以相同的方式被施加。以此方式,每个液滴束流330a-c的连续的液滴被赋予相反符号的电荷。喷嘴(或更精确地是液滴形成点)之间的距离应该小于两个液滴之间的距离,否则电极不能给相继的液滴施加不同的电压。
通过图5可以看到,被施加至液滴束流的液滴的电压以时间的函数增大。因此,例如,第一液滴束流330a的第一液滴具有相对小的正电荷,第一液滴束流330a的第二液滴具有较大的负电荷,第一液滴束流330a的第三液滴具有相对大的正电荷,等等。
替代地,另一可能性在于,电压的幅值可以保持相同(但是符号仍然改变),使得液滴具有相同的速度但是具有相同幅值的交变的正、负电荷。使用电极332下游的额外的电极,可以加速液滴的一半并使另一半减速,由此导致液滴两个两个地聚结,由此导致在初始液滴频率的一半的条件下形成中性液滴。
调制电压源338也施加电压至电极332。电压被调制成使得电极332产生加速带正电的液滴和/或带负电的液滴的电场。液滴束流330a-c的最后的液滴具有最大的电荷并因此经受最大的加速。液滴束流的第一液滴具有最小的电荷并因此经受最小的加速。中间的液滴经受中间的加速,越靠近液滴束流末端的液滴经受越大的加速。液滴经历的不同的加速导致它们更靠近一起地移动,由此促进液滴束流聚结为单一液滴336。单一液滴336通过电极332内的开口334,并可以到达等离子体形成位置211(见图2)。如果之后t沉默等于零,则存在一部分的液滴序列,其中后面的液滴将比前面的液滴慢,这再次导致聚结。实际上,信号Vv的幅值的任何调制导致以等于调制频率的最后的液滴频率聚结。
另一可能是为液滴加速的电压随着时间减小。
因为液滴束流330a-c的液滴的一半具有正电荷并且液滴的一半具有负电荷,所以通过聚结形成的单个液滴336具有中性电荷(或接近中性的电荷,例如小于液滴束流的任意液滴的电荷的电荷)。
除了促进液滴束流330a-c聚结为单一液滴336之外,电极332生成的场也加速液滴。单一液滴336的速度因此大于电极332不存在时液滴将具有的速度。
在被施加至燃料液滴发射器310的电压为零所持续的时间段t沉默可以是任何合适的时间段。时间段t沉默可以例如被减小为零。
虽然被施加至液滴束流330a-c的第一液滴的电压在图示的实施例中是正的,但是替代地,电压也可以是负的。
控制器CT可以用以控制被施加至燃料液滴发射器310的电压Vv,并控制被施加至电极332的电压。控制器CT也可以控制燃料液滴发射器310的压电致动器的致动,并可以控制燃料液滴发射器的其他方面。
本实施例可以与请求式液滴系统一起使用,因为在那种情况下,更容易知道何时产生液滴并且随后使电压与其同步。然而,也可以使电压调制与瑞利破碎机制同步并因此本实施例也可以与使用瑞利破碎机制的液滴发射器(不管是电激发的还是机械激发的)一起使用。
图6示意地示出本发明的另一替换的实施例。在本实施例中,通过电压源348施加交变的电压至燃料液滴发射器310。虽然从燃料液滴发射器310发射的燃料开始是连续的束流的形式,但是连续的束流有时在被发射之后破碎为液滴束流340(例如由于瑞利破碎)。
也可以将交变的电压源348连接至电极342。电极342产生电场,其加速液滴束流340的燃料液滴。因为液滴的一半具有正电荷并且液滴的一半具有负电荷,因此促进液滴聚结为较大液滴346。当交变的电压具有零的平均值时,液滴346将是中性的。
交变的电压源348所施加的电压的幅值确定离开发生形成较大液滴346的聚结的燃料液滴发射器310的距离,因为当交变的电压的幅值较大时,液滴速度存在较大的变化,因此较早发生聚结。通过交变的电压源348施加的电压的频率确定较大燃料液滴346的频率并确定较大燃料液滴的尺寸,因为调制的频率确定速度调制的频率,速度调制的频率又确定多少液滴被聚结和因此确定所聚结成的液滴的尺寸。
电极342设置有供液滴束流340通过的开口344。如果在电极342之前液滴束流340聚结为较大燃料液滴346已经发生,则较大的燃料液滴通过开口344。
图7示意地示出本发明的另一替代的实施例。在另一替代的实施例中,恒定的电源360连接至燃料液滴发射器310,并布置成施加电荷至通过燃料液滴发射器发射的燃料。电荷可以是负电荷或正电荷。
恒定电源360也连接至电极352。电极352具有与被施加至从燃料液滴发射器310发射的燃料的电荷符号相反的电荷。因此电极352施加吸引力至燃料,由此朝向电极加速燃料。
正如图7示意地表示,所述燃料可以从燃料液滴发射器310作为恒定的束流发射,并且燃料可以破碎为燃料液滴350(例如,由于瑞利破碎)。
调制电压源358对电极352施加电压调制。被施加至电极352的电压调制产生电场,所述电场促进燃料液滴350聚结为较大的燃料液滴束流356。调制可以例如具有与较大的燃料液滴356的频率对应的频率。调制的第一部分可以例如具有与燃料液滴350的电荷相同的符号,由此将排斥力施加给燃料液滴并引起它们减速。调制的第二部分可以例如具有与燃料液滴的电荷相反的符号,由此施加吸引力给燃料液滴并引起它们加速。燃料液滴可以因此更靠近地移动到一起,从而促进聚结为较大的燃料液滴356。
可以在电极352之后提供离子化的气体(未示出),离子化的气体用以中和通过燃料液滴发射器310施加至燃料的电荷。离子化的气体可以通过任何合适的离子化气体源提供。
在另一备选实施例中(未示出),具有相同符号但是不同幅值的电压被施加于从燃料液滴发射器发射的燃料。通过离开燃料液滴发射器放置的电极施加恒定电场。恒定电场施加较强的力至具有较大电荷的燃料液滴并施加较弱的力至具有较小电荷的燃料液滴。这引起对燃料施加不同的加速,由此促进聚结为较大的燃料液滴。
对于所有实施例,频率接近瑞利破碎频率(即,在大约10倍以内)的信号可以在此被加至电压以便促进瑞利破碎。
可以以不同模式驱动管形压电致动器(例如图3中示出的压电致动器306),例如长度键音调(length key tone)1/2λ模式、厚度(径向)键音调(thickness(radial)key tone)1/2λ模式、弯曲模式、高阶谐振(泛音)。这些特性模式受压电致动器如何安装的影响。图3中示出的压电致动器306可以以厚度1/2λ模式驱动。压电致动器306的厚度模式频率因为毛细管304的存在而被减小。压电致动器306承受毛细管304作为额外的质量并还承受增大的硬度。毛细管304内燃料302的存在也改变了压电致动器306的厚度模式频率。压电致动器306可以以其厚度(径向)模式驱动使得其在毛细管304内生成驻波。压电致动器306和毛细管304的壁结合的厚度可以是大约XX mm。如果驻波具有的1/2λ=XX mm,则驻波的相关频率可以通过使用毛细管304的壁和压电致动器内声音的速度计算。压电致动器306可以是陶瓷的并且毛细管304可以是玻璃的。这些材料内的声音速度可以是4000m/s。驻波的频率F的估计因此为(波长=2×厚度):
F=声音的速度/波长=XX MHz(方程9)
这接近瑞利频率。因此,压电致动器306可以被驱动以瑞利频率调制毛细管304。
喷嘴308的直径可以例如是3微米或更大。提供具有不小于3微米直径的喷嘴308可能让喷嘴容易由于污染而堵塞。
可以期望,提供具有大约20微米直径的燃料液滴。这种直径的燃料液滴足够大以至于激光束205错过燃料液滴的风险非常小,并且足够小以至于大部分燃料通过激光束被汽化并且由于未汽化的燃料材料导致的污染低。
喷嘴的直径可以小于(由于瑞利破碎)自然地生成具有大约20微米直径的燃料液滴的喷嘴的直径。喷嘴可以因此产生较小的燃料液滴,其随后聚结一起形成具有期望的直径的燃料液滴。
可以以期望的速度提供燃料液滴,例如通过使用电极对燃料液滴加速来实现。可以期望的是,燃料液滴具有高的速度(例如100m/s或更高)。这是因为速度越高,燃料液滴之间的间隔距离越大(对于等离子体形成位置处的给定频率的燃料液滴输送而言)。较大的间隔是期望的,因为这减小了由前面的燃料液滴生成的等离子体与下一个燃料液滴相互作用的风险,例如由此引起该燃料液滴的轨迹的修改。被输送至等离子体形成位置的液滴之间的1mm或更大的间隔可以是期望的(但是可以使用任何间隔)。
本发明的一个或更多个实施例可以提供压电致动器以其自身谐振频率或接近其自身谐振频率(考虑毛细管壁和任何位于毛细管壁和压电致动器之间的材料)被驱动的优点。这允许比在其他情况下更有效地驱动压电致动器。
燃料液滴速度值、燃料液滴尺寸值、燃料液滴间隔值、贮液器内的燃料压力值、通过压电致动器施加的调制频率值、喷嘴直径值仅是示例。可以使用任何其他合适的值。
在本发明的上述实施例中,燃料液滴是液体锡。然而,燃料液滴可以由一个或更多个其他材料(例如液体形式)形成。
压电致动器306仅是可以用以施加压力调制至液体燃料的致动器的示例。任何合适的致动器都可以使用。
通过源生成的辐射可以例如是EUV辐射。EUV辐射可以例如具有在5-20nm范围的波长,例如在13-14nm范围内的波长,例如在5-10nm范围内的波长,例如6.7nm或6.8nm。
虽然本文具体参考光刻设备在制造集成电路中的应用,但是应该理解,这里所述的光刻设备可以具有其他应用,例如制造集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头、LED器件、太阳能电池、光子器件等。本领域技术人员将会认识到,在这样替换的应用情形中,任何使用的术语“晶片”或“管芯”可以分别认为是与更上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层涂到衬底上,并且对已曝光的抗蚀剂进行显影的工具)、量测工具和/或检验工具中。在可应用的情况下,可以将所述公开内容应用于这种和其他衬底处理工具中。另外,所述衬底可以处理一次以上,例如为产生多层IC,使得这里使用的所述术语“衬底”也可以表示已经包含多个已处理层的衬底。
在允许的情况下,术语“透镜”可以表示不同类型的光学构件中的任何一种或其组合,包括折射式的、反射式的、磁性的、电磁的以及静电的光学构件。
虽然上面已经描述了本发明的具体实施例,但是应该认识到,本发明可以以上述不同的方式实施。上面的说明书是为了说明,而不是限制。因此,本领域技术人员应当理解,在不脱离权利要求的范围情况下可以作出对本发明的修改。
应该认识到,具体实施例部分,而不是发明内容和摘要部分,用于解释权利要求。发明内容和摘要部分可以给出发明人构思的本发明的一个或更多个、但不是全部示例性实施例,因而不能够以任何方式限制本发明和所附的权利要求。
上面借助示出具体功能及其关系的实现的功能性构造块描述了本发明。为了方便说明,这些功能性构造块的边界在此任意限定。只要特定功能及其关系被适当地实施,就可以限定替换的边界。
具体实施例的前述说明将充分地揭示本发明的一般属性,以致于其他的实施例通过应用本领域技术人员的知识可以在不需要过多的实验、不脱离本发明的总体构思的情况下容易地修改和/或适应于不同应用。因此,基于这里给出的教导和启示,这种修改和适应应该在所公开的实施例的等价物的范围和含义内。应该理解,这里的术语或措辞是为了描述和说明而不是限制,使得本说明书的术语或措辞由本领域技术人员根据教导和启示进行解释。
本发明的覆盖度和范围不应该被上述的示例性实施例限制,而应该仅根据所附的权利要求及其等同范围限定。

Claims (21)

1.一种辐射源的燃料液滴束流生成装置,包括:
燃料液滴发射器,连接至调制电压源,所述调制电压源配置成施加第一电压至燃料液滴束流的第一部分并施加第二电压至燃料液滴束流的第二部分,
第一电极,位置靠近燃料液滴发射器,
第二电极,位置远离燃料液滴发射器,和
电压源,配置成在第一和第二电极之间施加电势差并由此在第一和第二电极之间生成电场,该电场施加减速作用力至燃料液滴束流的第一和第二部分中的一个部分并施加加速作用力至燃料液滴束流的第一和第二部分中的另一个部分。
2.如权利要求1所述辐射源,其中第一和第二电压相对于第一电极所保持的电压分别是正的和负的。
3.如权利要求1或2所述的辐射源,其中第一电极被保持在零电势。
4.如权利要求1-3中任一项所述的辐射源,其中第一和第二电极之间的电势差是基本恒定的。
5.如前述权利要求任一项所述的辐射源,其中在施加第一电压和第二电压之间的时间段,不对液滴束流施加电压。
6.如前述权利要求任一项所述的辐射源,其中第一电压相对于被施加至第一电极的电压的幅值与第二电压相对于被施加至第一电极的电压的幅值相同。
7.如权利要求1-5中任一项所述的辐射源,其中第一电压相对于被施加至第一电极的电压的幅值与第二电压相对于被施加至第一电极的电压的幅值不同。
8.如前述权利要求任一项所述的辐射源,其中第一电压和第二电压被施加相同的时间段。
9.如前述权利要求任一项所述的辐射源,其中第一电压和第二电压被施加不同的时间段。
10.一种辐射源的燃料液滴束流生成装置,包括:
燃料液滴发射器;
电极,位置靠近通过发射器形成的液滴的形成点,和
电压源,配置成在发射器和电极之间施加交变的电压,
由此在束流中的交替的液滴被给予交变的符号的电荷。
11.如权利要求10所述的辐射源,其中在液滴的序列中,每隔一个液滴上的电荷的幅值增加。
12.如权利要求11所述的辐射源,其中在液滴的序列之后,在下一个序列之前存在不施加电压的时间段。
13.如权利要求10至12中任一项所述的辐射源,其中交变的电压的施加与液滴的形成同步。
14.一种辐射源的燃料液滴束流生成装置,包括:
燃料液滴发射器,
电极,和
电压源,所述电压源配置成在发射器和电极之间施加交变的电压,
由此形成具有相反的电符号或相同符号且不同幅值的液滴束流,并且它们被朝向电极加速或减速,由此促进液滴的聚结。
15.如权利要求14所述的辐射源,其中恒定电压被附加地施加至发射器。
16.一种辐射源的燃料液滴束流生成装置,包括:
燃料液滴发射器,
电极,和
调制电压源,所述调制电压源连接至发射器,用于控制发射器和电极之间的液滴的相对速度,
由此,促进较小的液滴聚结为较大的液滴。
17.如权利要求16所述的辐射源,其中通过在电场中提供具有相反电荷的不同的液滴来控制液滴的相对速度。
18.如权利要求16或17所述的辐射源,其中液滴的相对速度还通过为不同液滴提供不同幅值的电荷来控制。
19.如权利要求16所述的辐射源,其中液滴的相对速度通过调制电场来控制。
20.一种光刻设备,包括:
如权利要求1至19中任一项所述的辐射源,
照射系统,配置成调节辐射束,
支撑结构,构造成支撑图案形成装置,所述图案形成装置能够在辐射束的横截面上将图案赋予辐射束以形成图案化的辐射束,
衬底台,构造成保持衬底,和
投影系统,配置成将图案化的辐射束投影到衬底的目标部分上。
21.一种促进从燃料液滴发射器发射的辐射源的燃料液滴的聚结的方法,包括通过对发射器施加调制电压来控制束流中液滴的相对速度的步骤。
CN201280042339.7A 2011-09-02 2012-07-31 辐射源的燃料液滴束流生成装置、光刻设备和促进辐射源的燃料液滴的聚结的方法 Expired - Fee Related CN103765998B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161530766P 2011-09-02 2011-09-02
US61/530,766 2011-09-02
PCT/EP2012/064945 WO2013029902A1 (en) 2011-09-02 2012-07-31 Radiation source and lithographic apparatus

Publications (2)

Publication Number Publication Date
CN103765998A true CN103765998A (zh) 2014-04-30
CN103765998B CN103765998B (zh) 2016-04-27

Family

ID=46598530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280042339.7A Expired - Fee Related CN103765998B (zh) 2011-09-02 2012-07-31 辐射源的燃料液滴束流生成装置、光刻设备和促进辐射源的燃料液滴的聚结的方法

Country Status (7)

Country Link
US (1) US9310689B2 (zh)
JP (1) JP6047574B2 (zh)
KR (1) KR20140060559A (zh)
CN (1) CN103765998B (zh)
NL (1) NL2009257A (zh)
TW (1) TWI586223B (zh)
WO (1) WO2013029902A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275741A (zh) * 2020-06-15 2021-08-20 台湾积体电路制造股份有限公司 光蚀刻系统以及液滴控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019803A1 (en) * 2012-08-01 2014-02-06 Asml Netherlands B.V. Method and apparatus for generating radiation
JP6434515B2 (ja) * 2013-08-26 2018-12-05 エーエスエムエル ネザーランズ ビー.ブイ. 放射システム及びリソグラフィ装置
JP6283684B2 (ja) 2013-11-07 2018-02-21 ギガフォトン株式会社 極端紫外光生成装置及び極端紫外光生成装置の制御方法
JP6480466B2 (ja) * 2014-11-26 2019-03-13 ギガフォトン株式会社 加振ユニット及びターゲット供給装置
KR102348353B1 (ko) * 2015-04-30 2022-01-07 엘지디스플레이 주식회사 플렉서블 디스플레이 장치 및 이의 제조 방법
CN113812214A (zh) * 2019-05-06 2021-12-17 Asml荷兰有限公司 用于控制液滴形成的装置和方法
US11537053B2 (en) * 2021-05-14 2022-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor processing tool and methods of operation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1501172A (zh) * 2002-11-12 2004-06-02 Asml荷兰有限公司 光刻装置和器件制造方法
CN1684834A (zh) * 2002-09-24 2005-10-19 柯尼卡美能达控股株式会社 静电吸引式液体喷射头的制造方法,喷嘴板的制造方法,静电吸引式液体喷射头的驱动方法,静电吸引式液体喷射装置以及液体喷射装置
CN101196695A (zh) * 2006-11-27 2008-06-11 Asml荷兰有限公司 光刻设备、器件制造方法和计算机程序产品
US20090014668A1 (en) * 2007-07-13 2009-01-15 Cymer, Inc. Laser produced plasma EUV light source having a droplet stream produced using a modulated disturbance wave
CN101443853A (zh) * 2006-02-28 2009-05-27 劳伦斯威尔等离子物理公司 用于产生x射线、离子束和核聚变能量的方法和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405416B2 (en) * 2005-02-25 2008-07-29 Cymer, Inc. Method and apparatus for EUV plasma source target delivery
US8289274B2 (en) * 2004-01-13 2012-10-16 Sliwa John W Microdroplet-based 3-D volumetric displays utilizing emitted and moving droplet projection screens
TWI345931B (en) * 2006-02-21 2011-07-21 Cymer Inc Laser produced plasma euv light source with pre-pulse
JP5162113B2 (ja) * 2006-08-07 2013-03-13 ギガフォトン株式会社 極端紫外光源装置
US7835583B2 (en) 2006-12-22 2010-11-16 Palo Alto Research Center Incorporated Method of separating vertical and horizontal components of a rasterized image
JP5001055B2 (ja) * 2007-04-20 2012-08-15 株式会社小松製作所 極端紫外光源装置
DE102007056872A1 (de) 2007-11-26 2009-05-28 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Berlin Strahlungserzeugung mittels Laserbestrahlung eines freien Tröpfchentargets
NL1036272A1 (nl) * 2007-12-19 2009-06-22 Asml Netherlands Bv Radiation source, lithographic apparatus and device manufacturing method.
US9097982B2 (en) * 2008-05-30 2015-08-04 Asml Netherlands B.V. Radiation system, radiation collector, radiation beam conditioning system, spectral purity filter for radiation system and method for forming a spectral purity filter
JP5454881B2 (ja) * 2008-08-29 2014-03-26 ギガフォトン株式会社 極端紫外光源装置及び極端紫外光の発生方法
JP5486797B2 (ja) 2008-12-22 2014-05-07 ギガフォトン株式会社 極端紫外光源装置
WO2010111231A1 (en) 2009-03-23 2010-09-30 Raindance Technologies, Inc. Manipulation of microfluidic droplets
WO2011013779A1 (ja) * 2009-07-29 2011-02-03 株式会社小松製作所 極端紫外光源装置、極端紫外光源装置の制御方法、およびそのプログラムを記録した記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684834A (zh) * 2002-09-24 2005-10-19 柯尼卡美能达控股株式会社 静电吸引式液体喷射头的制造方法,喷嘴板的制造方法,静电吸引式液体喷射头的驱动方法,静电吸引式液体喷射装置以及液体喷射装置
CN1501172A (zh) * 2002-11-12 2004-06-02 Asml荷兰有限公司 光刻装置和器件制造方法
CN101443853A (zh) * 2006-02-28 2009-05-27 劳伦斯威尔等离子物理公司 用于产生x射线、离子束和核聚变能量的方法和设备
CN101196695A (zh) * 2006-11-27 2008-06-11 Asml荷兰有限公司 光刻设备、器件制造方法和计算机程序产品
US20090014668A1 (en) * 2007-07-13 2009-01-15 Cymer, Inc. Laser produced plasma EUV light source having a droplet stream produced using a modulated disturbance wave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113275741A (zh) * 2020-06-15 2021-08-20 台湾积体电路制造股份有限公司 光蚀刻系统以及液滴控制方法
CN113275741B (zh) * 2020-06-15 2024-02-09 台湾积体电路制造股份有限公司 光蚀刻系统以及液滴控制方法
US11940738B2 (en) 2020-06-15 2024-03-26 Taiwan Semiconductor Manufacturing Co., Ltd. Droplet splash control for extreme ultra violet photolithography

Also Published As

Publication number Publication date
US9310689B2 (en) 2016-04-12
JP2014529862A (ja) 2014-11-13
TWI586223B (zh) 2017-06-01
NL2009257A (en) 2013-03-05
CN103765998B (zh) 2016-04-27
US20150002830A1 (en) 2015-01-01
TW201316841A (zh) 2013-04-16
KR20140060559A (ko) 2014-05-20
WO2013029902A1 (en) 2013-03-07
JP6047574B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
CN103765998B (zh) 辐射源的燃料液滴束流生成装置、光刻设备和促进辐射源的燃料液滴的聚结的方法
JP5955423B2 (ja) デブリ粒子を抑制するための放射線源装置、リソグラフィ装置、照明システム、および方法
KR101710433B1 (ko) 액적 가속기를 포함하는 euv 방사선 소스 및 리소그래피 장치
US9055657B2 (en) Extreme ultraviolet light generation by polarized laser beam
CN103019038B (zh) 辐射源
CN103782662B (zh) 辐射源
CN102804070B (zh) 光刻设备和器件制造方法
TWI618987B (zh) 增加光展量的光學組件
CN103718654A (zh) 辐射源和用于光刻设备的方法和器件制造方法
CN103019036B (zh) 辐射源
CN103748968A (zh) 辐射源和光刻设备
CN103748969A (zh) 辐射源
CN102859443B (zh) 用于装载衬底的方法和设备
CN105474101B (zh) 辐射源和光刻设备
WO2013115208A1 (ja) 伝送光学系、照明光学系、露光装置、およびデバイス製造方法
NL2007861A (en) Radiation source and lithographic apparatus.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160427

Termination date: 20180731

CF01 Termination of patent right due to non-payment of annual fee