CN103752335B - Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用 - Google Patents

Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用 Download PDF

Info

Publication number
CN103752335B
CN103752335B CN201410004146.3A CN201410004146A CN103752335B CN 103752335 B CN103752335 B CN 103752335B CN 201410004146 A CN201410004146 A CN 201410004146A CN 103752335 B CN103752335 B CN 103752335B
Authority
CN
China
Prior art keywords
silicalite
nano wire
molecular sieve
sio
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410004146.3A
Other languages
English (en)
Other versions
CN103752335A (zh
Inventor
谢鹏飞
马臻
刘田
程彦虎
杨新玲
李璀灿
徐欣
华伟明
乐英红
高滋
刘惠章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU RUOYI NEW MATERIAL TECHNOLOGY CO., LTD.
SHANGHAI EASYSORB MOLECULAR SIEVE CO., LTD.
Fudan University
Original Assignee
JIANGSU RUOYI NEW MATERIAL TECHNOLOGY Co Ltd
SHANGHAI EASYSORB MOLECULAR SIEVE Co Ltd
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU RUOYI NEW MATERIAL TECHNOLOGY Co Ltd, SHANGHAI EASYSORB MOLECULAR SIEVE Co Ltd, Fudan University filed Critical JIANGSU RUOYI NEW MATERIAL TECHNOLOGY Co Ltd
Priority to CN201410004146.3A priority Critical patent/CN103752335B/zh
Publication of CN103752335A publication Critical patent/CN103752335A/zh
Application granted granted Critical
Publication of CN103752335B publication Critical patent/CN103752335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

本发明属于化工催化剂技术领域,具体为一种Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用。本发明以Fe2O3/SiO2作前驱体,以乙二胺和三乙胺作模板剂,水热晶化法合成得到具有MFI结构的Fe2O3/Silicalite-1纳米线,同时Fe2O3高度分散在Silicalite-1纳米线上,且Fe2O3粒径小于5?nm。将其用于N2O直接分解反应,取得很好的活性,在500oC时N2O分解率达到100%。

Description

Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用
技术领域
本发明属于化工催化剂技术领域,具体涉及一种Fe2O3/Silicalite-1分子筛纳米线及其合成方法和在N2O分解中的应用。
背景技术
Silicalite-1是一种具有MFI结构的SiO2分子筛,孔径在0.51nm~0.54nm,具有很高的热稳定性和很强的疏水性,所以Silicalite-1在科研领域和工业上都得到了广泛的应用。目前应用较多的是两方面,一方面是用钛取代Silicalite-1中的一部分硅合成出钛硅沸石(TitaniumSilicalite-1),钛硅沸石主要用于温和的条件下以H2O2为氧化剂,选择催化氧化反应(如:仲醇氧化制备酮的反应、烯烃的环氧化反应);另一方面是Silicalite-1分子筛膜的应用,由于Silicalite-1分子筛膜具有大小均一的微孔孔道,所以在分离纯化、二甲苯的异构化、甲苯歧化、甲醇制烯烃、甲苯烷基化等反应中利用其择形分离性能来提高目标产物的选择性。目前,Silicalite-1分子筛的形貌主要有棺材形、六方片状、中空纤维状,而纳米线形的Slicalite-1分子筛却鲜有报道。
Fe2O3是一种具有较好的氧化还原性的过渡金属氧化物,可用来催化很多反应,如:苯酚的羟基化、乙苯脱氢、一氧化碳氧化、一氧化碳还原一氧化氮等。最近有文献报道,铁可以在水热条件下催化制备二氧化硅纳米线,但这种二氧化硅纳米线并不是分子筛,不具有MFI结构。
本发明利用Fe2O3/SiO2作前驱体,以乙二胺和三乙胺作模板剂,水热晶化法合成了Fe2O3/Silicalite-1纳米线,该纳米线是具有MFI结构的分子筛,并将其用于N2O直接分解反应,取得了较好的活性,在500oC时N2O分解率达到100%。
发明内容
本发明的目的是提供一种Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用。
本发明提出的Fe2O3/Silicalite-1分子筛纳米线,采用水热合成法得到,即以乙二胺和三乙胺为模板剂,在氧化铁的辅助下形成Silicalite-1分子筛纳米线,纳米线宽度为100-300nm,长度>5um;同时Fe2O3也高度分散在Silicalite-1分子筛纳米线上,Fe2O3粒径小于5nm。将得到的Fe2O3/Silicalite-1纳米线应用于催化N2O分解成N2和O2,取得了较高的活性。
上述Fe2O3/Silicalite-1分子筛纳米线的合成方法,具体步骤如下:
(1)化学沉淀和喷雾干燥法合成Fe2O3/SiO2前驱体
将一定量的Fe盐溶解于水中,接着加入重量浓度为10-25%氨水溶液,调节PH为6-8,然后加入重量浓度为10-40%硅溶胶,形成浆液,将浆液进行喷雾干燥,得到粉体,把粉体放在旋转炉中,于350-550oC焙烧4-10h,得到Fe2O3/SiO2前驱体;
(2)水热晶化法合成Fe2O3/Silicalite-1分子筛纳米线Fe2O3/SiO2前驱体
以Fe2O3/SiO2前驱体为硅源,以乙二胺和三乙胺为双模板剂,水为溶剂,混合后搅拌均匀,装入水热釜内,于150-200oC晶化4-20天,晶化后样品经500-600oC空气气氛焙烧4-7h,制得Fe2O3/Silicalite-1纳米线。
步骤(1)中,Fe盐为Fe(NO3)39H2O或NH4Fe(SO4)212H2O。
步骤(1)中,硅与铁的摩尔比为1:1-10:1。
步骤(2)中,乙二胺与三乙胺的摩尔比为1:1-5:1。
步骤(2)中,水与硅的摩尔比为6:1-12:1。
步骤(2)中,模板剂(乙二胺和三乙胺)与硅的摩尔比为20:1-8:1。
本发明所得Fe2O3/Silicalite-1分子筛纳米线,作为催化剂可用于N2O直接分解反应,具有很好的活性,在500oC时N2O分解率达到100%。具体说来,Fe2O3/Silicalite-1分子筛纳米线用于N2O分解成N2和O2中,以He为平衡气,通过N2O量控制其浓度。其中,催化分解N2O的反应条件为:
(1)催化反应的温度为300-500oC;
(2)He为平衡气,N2O的浓度为1000-7000ppm;
(3)N2O和He混合气体的气时空速范围为4000-10000h-1
本发明中,Fe2O3/Silicalite-1分子筛纳米线的合成不仅控制了分子筛的形貌,而且获得了小粒径(<5nm)和高分散的Fe2O3,为分子筛的合成和改性提供了一个新的途径。另外将Fe2O3/Silicalite-1分子筛纳米线应用到N2O直接分解反应中,500oC达到100%,很大程度上减少了N2O的环境污染,具有良好的经济和社会效益。
本发明制备的Fe2O3/Silicalite-1分子筛纳米线的特征可用如下方法进行表征:
X射线粉末衍射(XRD)。在X射线粉末衍射图中,参照标准图谱,确定得到的Fe2O3/Silicalite-1纳米线为MFI结构晶体。
扫描电子显微镜(SEM)。确定样品的形貌和尺寸大小。
透射电子显微镜(TEM)。确定分散氧化铁的颗粒大小。
附图说明
图1为Fe2O3/Silicalite-1分子筛纳米线的XRD图。其中,(a)晶化4天;(b)晶化6天;(c)晶化18天;(d)浸渍法制备的Fe2O3/Silicalite-1。
图2为Fe2O3/Silicalite-1分子筛纳米线的SEM图。其中,(a)晶化4天;(b)晶化6天。
图3为晶化6天Fe2O3/Silicalite-1分子筛纳米线的TEM图。
具体实施方式
下面通过实施例对本发明作进一步的阐述。
实施例1
将5gFe(NO3)39H2O溶解于10g水中,接着加入重量浓度为25%氨水溶液直至PH为7.5,然后加入10g重量浓度为40%硅溶胶形成浆液,将浆液进行喷雾干燥,得到的粉体在旋转炉中550oC焙烧4h,制得Fe2O3/SiO2。将1gFe2O3/SiO2、9.5g乙二胺、3.5g三乙胺和1.9g水混合,搅拌均匀后装入水热釜内200oC晶化6天,晶化后样品经550oC空气气氛焙烧4h。将上述催化剂0.5g装入内径8mm的石英管中,先在500oC氦气气氛中预处理2h,然后通入N2O和He的混合气体进行反应,混合气体的气时空速为4800h-1,N2O浓度为5000ppm,反应温度450oC时,N2O分解率为28.2%,反应温度在500oC及以上时,N2O分解率达到100%。
实施例2
将6.5gFe(NO3)39H2O溶解于10g水中,接着加入重量浓度为15%氨水溶液直至PH为7,然后加入10g重量浓度为40%硅溶胶形成浆液,将浆液进行喷雾干燥,得到的粉体在旋转炉中500oC焙烧4h,制得Fe2O3/SiO2。将1gFe2O3/SiO2、7.5g乙二胺、2.5g三乙胺和2.5g水混合,搅拌均匀后装入水热釜内190oC晶化12天,晶化后样品经550oC空气气氛焙烧4h。反应评价条件同实施例1,反应温度450oC时,N2O分解率为38.5%,反应温度在500oC及以上时,N2O分解率达到100%。
实施例3
将6gNH4Fe(SO4)212H2O溶解于10g水中,接着加入重量浓度为25%氨水溶液直至PH为8,然后加入12g重量浓度为40%硅溶胶形成浆液,将浆液进行喷雾干燥,得到的粉体在旋转炉中550oC焙烧4h,制得Fe2O3/SiO2。将1gFe2O3/SiO2、9g乙二胺、3g三乙胺和2g水混合,搅拌均匀后装入水热釜内200oC晶化8天,晶化后样品经550oC空气气氛焙烧4h。反应评价条件同实施例1,反应温度450oC时,N2O分解率为35.6%,反应温度在500oC及以上时,N2O分解率达到100%。
对比例1
作为对比,用浸渍法制备Fe2O3/Silicalite-1。1g常规的Silicalite-1分散在80g水中,加入0.69gFe(NO3)39H2O,40oC旋转蒸发10h,制得的样品在100oC干燥12h,然后再经550oC空气气氛焙烧4h。反应评价条件同实施例1,反应温度500oC时,N2O分解率仅为5.2%。

Claims (2)

1.一种Fe2O3/Silicalite-1分子筛纳米线的合成方法,其特征在于具体步骤如下:
(1)化学沉淀和喷雾干燥法合成Fe2O3/SiO2前驱体
将一定量的Fe盐溶解于水中,接着加入重量浓度为10-25%氨水溶液,调节pH为6-8,然后加入重量浓度为10-40%硅溶胶,形成浆液,将浆液进行喷雾干燥,得到粉体,将所得放在旋转炉中,于350-550℃焙烧4-10h,得Fe2O3/SiO2前驱体;
(2)水热晶化法合成Fe2O3/Silicalite-1分子筛纳米线
以Fe2O3/SiO2前驱体为硅源,乙二胺和三乙胺为双模板剂,水为溶剂,混合后搅拌均匀,装入水热釜内,于150-200℃晶化4-20天,晶化后样品经500-600℃空气气氛焙烧4-7h,制得Fe2O3/Silicalite-1纳米线;
步骤(1)中,Fe盐为Fe(NO3)39H2O或NH4Fe(SO4)212H2O;
步骤(1)中,硅与铁的摩尔比为1:1-10:1;
步骤(2)中,乙二胺与三乙胺的摩尔比为1:1-5:1;
步骤(2)中,水与硅的摩尔比为6:1-12:1;
步骤(2)中,模板剂与硅的摩尔比为20:1-8:1。
2.利用权利要求1所述合成方法制备获得的Fe2O3/Silicalite-1分子筛纳米线在N2O分解中的应用,所述纳米线宽度为100-300nm,长度>5um,Fe2O3分散在Silicalite-1纳米线上,且Fe2O3粒径小于5nm;其特征在于以He为平衡气,通过调整N2O量控制其浓度,催化分解N2O的反应条件为:
(1)催化反应的温度为300-500℃;
(2)He为平衡气,N2O的浓度为1000-7000ppm;
(3)N2O和He混合气体的气时空速范围为4000-10000h-1
CN201410004146.3A 2014-01-06 2014-01-06 Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用 Active CN103752335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410004146.3A CN103752335B (zh) 2014-01-06 2014-01-06 Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410004146.3A CN103752335B (zh) 2014-01-06 2014-01-06 Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN103752335A CN103752335A (zh) 2014-04-30
CN103752335B true CN103752335B (zh) 2015-12-02

Family

ID=50519742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410004146.3A Active CN103752335B (zh) 2014-01-06 2014-01-06 Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN103752335B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104874359A (zh) * 2015-05-28 2015-09-02 吉林大学 一种杯芳烃修饰的磁性材料的制备方法
CN109694089B (zh) * 2017-10-20 2020-08-07 中国石油化工股份有限公司 一维纳米线vpi-8分子筛及其合成方法
CN109701636B (zh) * 2018-12-11 2019-09-24 中国矿业大学 一种介孔铁硅分子筛催化剂的制备方法及应用
CN113058634B (zh) * 2021-03-31 2023-07-07 陕西师范大学 一种Fe改性-Silicalite-1负载GaN催化剂及其催化应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285770A (zh) * 1997-12-03 2001-02-28 埃克森化学专利公司 由mfi结构类型的沸石粘合的沸石的制备方法及其用途
CN101696018A (zh) * 2009-10-27 2010-04-21 华南理工大学 一种silicalite-1分子筛膜的合成方法
CN102351212A (zh) * 2011-06-28 2012-02-15 深圳大学 具有mfi结构的铁硅分子筛的合成方法
CN102774851A (zh) * 2012-08-06 2012-11-14 黑龙江省科学院高技术研究院 一种纳米silicalite-1型全硅分子筛的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720240B2 (en) * 2000-03-29 2004-04-13 Georgia Tech Research Corporation Silicon based nanospheres and nanowires

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1285770A (zh) * 1997-12-03 2001-02-28 埃克森化学专利公司 由mfi结构类型的沸石粘合的沸石的制备方法及其用途
CN101696018A (zh) * 2009-10-27 2010-04-21 华南理工大学 一种silicalite-1分子筛膜的合成方法
CN102351212A (zh) * 2011-06-28 2012-02-15 深圳大学 具有mfi结构的铁硅分子筛的合成方法
CN102774851A (zh) * 2012-08-06 2012-11-14 黑龙江省科学院高技术研究院 一种纳米silicalite-1型全硅分子筛的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Selective growth of graphite micro-rods with SiO2 nanowire cores by chemical vapor deposition;Z. Zhang et al.;《Applied Physics Letters》;20061231;第88卷;论文第2页左栏最后一段,图3 *

Also Published As

Publication number Publication date
CN103752335A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
González-Prior et al. Catalytic removal of chlorinated compounds over ordered mesoporous cobalt oxides synthesised by hard-templating
He et al. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene
Jiang et al. Synthesis of highly efficient MnOx catalyst for low-temperature NH3-SCR prepared from Mn-MOF-74 template
Bai et al. Synthesis of three-dimensional ordered mesoporous MnO2 and its catalytic performance in formaldehyde oxidation
Xiong et al. Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst
Fang et al. Encapsulation of ultrafine metal-oxide nanoparticles within mesopores for biomass-derived catalytic applications
Zhang et al. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3
Dai et al. Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation
Pourkhalil et al. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3
CN103752335B (zh) Fe2O3/Silicalite-1分子筛纳米线及其合成方法和应用
Yue et al. Direct synthesis of hierarchical FeCu‐ZSM‐5 zeolite with wide temperature window in selective catalytic reduction of NO by NH3
Liu et al. A facile method for scalable preparation of mesoporous structured SmMnO3 perovskites sheets for efficient catalytic oxidation of toluene
CN105381812B (zh) 一种制备具有介孔结构的复合半导体材料的方法
CN106391094B (zh) 介孔碳-氧化硅负载纳米MoO3与纳米金属颗粒的复合材料的制备方法
Brandhorst et al. Cobalt-, copper-and iron-containing monolithic aluminosilicate-supported preparations for selective catalytic reduction of NO with NH3 at low temperatures
Wu et al. Nickel nanoparticles highly dispersed with an ordered distribution in MCM-41 matrix as an efficient catalyst for hydrodechlorination of chlorobenzene
Niu et al. High performance for oxidation of low-concentration methane using ultra-low Pd in silicalite-1 zeolite
Bai et al. Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature
He et al. Effect of calcination temperature on the structure and performance of CeO x–MnO x/TiO 2 nanoparticles for the catalytic combustion of chlorobenzene
Yi et al. Novel synthesis of MeOx (Ni, Cu, La)@ Nano-Co3O4 from combination of complexation and impregnation in ultrasonic intervention for low temperature oxidation of toluene under microwave radiation
Zhang et al. ZIF-67 Derived Hollow Structured Co 3 O 4 Nanocatalysts: Tunable Synthetic Strategy Induced Enhanced Catalytic Performance
Zhu et al. Natural manganese ore catalyst for low-temperature selective catalytic reduction of NO with NH 3 in coke-oven flue gas
CN108636410A (zh) 一种具有多孔结构的铁掺杂氧化铝中空微球的制备方法及其应用
Lee et al. Integrated sol-gel and hydrothermal synthesis of V2O5–TiO2 nanocatalysts for enhanced catalytic removal of H2S
Chen et al. Facile immobilization of LnVO4 (Ln= Ce, Nd, Gd) on silica fiber via a combined alcohol-thermal and carbon nanofibers template route

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHANGHAI SUOYI MOLECULAR SIEVE CO., LTD. JIANGSU S

Free format text: FORMER OWNER: SHANGHAI SUOYI MOLECULAR SIEVE CO., LTD.

Effective date: 20150121

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150121

Address after: 200433 Handan Road, Shanghai, No. 220, No.

Applicant after: Fudan University

Applicant after: SHANGHAI EASYSORB MOLECULAR SIEVE CO., LTD.

Applicant after: JIANGSU RUOYI NEW MATERIAL TECHNOLOGY CO., LTD.

Address before: 200433 Handan Road, Shanghai, No. 220, No.

Applicant before: Fudan University

Applicant before: SHANGHAI EASYSORB MOLECULAR SIEVE CO., LTD.

C14 Grant of patent or utility model
GR01 Patent grant