CN103747870B - 用热稳定金属合金纳米颗粒结构化的基材表面,制备其的方法及其特别是作为催化剂的用途 - Google Patents

用热稳定金属合金纳米颗粒结构化的基材表面,制备其的方法及其特别是作为催化剂的用途 Download PDF

Info

Publication number
CN103747870B
CN103747870B CN201280037616.5A CN201280037616A CN103747870B CN 103747870 B CN103747870 B CN 103747870B CN 201280037616 A CN201280037616 A CN 201280037616A CN 103747870 B CN103747870 B CN 103747870B
Authority
CN
China
Prior art keywords
metal
nano
substrate surface
particle
granule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280037616.5A
Other languages
English (en)
Other versions
CN103747870A (zh
Inventor
J·P·施帕茨
S·莱希纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Original Assignee
Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Planck Gesellschaft zur Foerderung der Wissenschaften eV filed Critical Max Planck Gesellschaft zur Foerderung der Wissenschaften eV
Publication of CN103747870A publication Critical patent/CN103747870A/zh
Application granted granted Critical
Publication of CN103747870B publication Critical patent/CN103747870B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inert Electrodes (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明涉及一种制备用热稳定金属合金纳米颗粒结构化的基材表面的方法,其包括:-提供两性分子在适当的溶剂中的胶束溶液;-用第一金属盐的金属离子装载所述胶束溶液的胶束;-用至少一种第二金属盐的金属离子装载所述胶束溶液的胶束;-将负载金属离子的胶束溶液沉积在基材表面上,以形成包含区域的有序阵列的薄膜;-通过等离子体处理来共还原沉积区域中所包含的金属离子,以形成由用于在基材表面上装载胶束的金属的合金构成的纳米颗粒的有序阵列。本发明还提供由所述方法得到的纳米结构化基材表面,以及所述纳米结构化基材表面作为催化剂的用途。

Description

用热稳定金属合金纳米颗粒结构化的基材表面, 制备其的方法及其特别是作为催化剂的用途
背景技术
鉴于各种来源,特别是汽车尾气的废气排放对环境的严重的遍及世界越来越多的污染,在过去的几十年中,更严格的尾气排放法规越来越多地开始生效。为了遵守这些法规,已经开发出各种用于废气净化,特别是汽车尾气净化的催化转换器,以及燃料电池。
由于对于非均相催化而言,大催化活性表面的可用性是主要问题,因此在燃料电池和用于汽车尾气的催化转换器中,通常在由无机氧化物,典型地为γ-Al2O3构成的涂层上提供催化活性贵金属,如Pt、Pd、Rh。为了达到和保持高性能催化剂,至关重要的是所述催化活性贵金属以高分散形式存在。
在汽车的驾驶操作期间产生的高温可通过退火过程使得催化活性纳米颗粒产生不可逆的凝聚。这样,在500℃的操作温度下,已经可以发现催化活性纳米颗粒簇尺寸的增大—其最初显示为纳米分散分布。该效应被称为奥斯特瓦尔德熟化(Ostwald Ripening)。例如,铂催化剂在例如超过700℃的温度下的热老化导致平均粒径显著增大。分散性的损失可超过80%,相应地,催化剂会严重丧失其活性。
因此,本发明的一个目的是提供包含分散的热稳定的金属纳米颗粒,优选贵金属纳米颗粒的基材表面,所述纳米颗粒适用于催化剂中,特别是用于汽车尾气净化和燃料电池中,该催化剂是热稳定的、高活性的以及涉及昂贵的贵金属的非常经济的使用。
该目的通过提供根据本发明的制备纳米结构基材表面的方法、通过本发明的制备纳米结构基材表面的方法得到的热稳定金属合金纳米颗粒的阵列的基材表面以及所述纳米结构基材表面作为催化剂的用途而提供。本发明的相关方面和/或优选实施方案是其他权利要求的主题。
发明内容
本发明提供一种制备用热稳定金属合金纳米颗粒结构化的基材表面的方法,其包括:
-提供两性分子在适当的溶剂中的胶束溶液;
-用第一金属盐的金属离子装载所述胶束溶液的胶束;
-用至少一种第二金属盐的金属离子装载所述胶束溶液的胶束;
-将负载金属离子的胶束溶液沉积在基材表面上,形成包含区域(domain)的有序阵列的薄膜;
-通过等离子体处理来共还原沉积区域中所包含的金属离子,形成由用于在基材表面上装载胶束的金属的合金构成的纳米颗粒的有序阵列。
更具体而言,本发明提供一种制备由热稳定金属合金纳米颗粒构成的基材表面的方法,该方法包括:
-提供有机二嵌段或多嵌段共聚物在适当的溶剂中的胶束溶液;
-用第一金属盐的金属离子装载所述胶束溶液的胶束;
-用至少一种第二金属盐的金属离子装载所述胶束溶液的胶束;
-将负载金属离子的胶束溶液沉积在基材表面上,以形成包含聚合物区域的有序阵列的聚合物薄膜;
-通过等离子体处理来共还原聚合物薄膜的沉积区域中所包含的金属离子,形成由用于在基材表面上装载胶束的金属的合金构成的纳米颗粒的有序阵列。
理论上,基材表面的材料尤其不受限制,可以是任何材料,特别是任何适用于通过胶束纳米刻蚀形成纳米结构的材料。更具体而言,所述表面选自金属、金属氧化物、碳和碳基材料、二氧化硅、玻璃、有机或无机聚合物、陶瓷。特别地,对于高温应用,如在汽车尾气排放的催化转换器中或在燃料电池中,表面必须是在操作温度范围内热稳定的。例如,使用在超过450℃,优选超过700℃的温度下稳定的基材表面。更具体而言,本领域内已知的用于催化转换器的基材表面是适合的,例如无机氧化物,如Al2O3、SiO2、TiO2、ZnO。在一个优选实施方案中,使用具有天然氧化物层的Si表面(以下称为Si/SiOx)作为基材表面。
表面可以是平面或者弯曲的,例如在催化转换器中存在的。在本发明的一个特定实施方案中,表面包含胶体颗粒(微粒)表面或由其构成,所述胶体颗粒具有微米范围的直径,如0.1–999μm,更特别的是1-999μm,优选5-900μm。该纳米结构胶体颗粒的悬浮液可以施加在扩展的宏观表面/界面上。在另一个特定实施方案中,表面包含纤维表面或由其构成,特别是纤维网,其中所述纤维例如由玻璃、AlxOy、FexOy、TixOy、碳和其他材料制成。在另一个特定实施方案中,基材表面包含介孔材料或由介孔材料构成,该材料通常包含颗粒或颗粒聚集体,介孔材料优选是二氧化硅、氧化铝或二氧化硅/氧化铝。
根据本发明制备纳米结构基材表面的方法包括通过胶束纳米蚀刻(BCLM)用有序阵列的纳米颗粒或纳米簇装饰基材表面。在该方法中,使用有机模板,例如嵌段共聚物和接枝共聚物,其在适合的溶剂中与胶束核壳系统缔合。所述核壳结构用于定位无机前体,具有可控尺寸的无机颗粒可以由所述无机前体沉积,所述无机颗粒彼此通过聚合物外壳空间分离。核壳系统或胶束可以作为高度有序的单分子膜通过简单的沉积程序例如旋涂或浸涂施加在不同的基材上。随后通过气体-等离子加工或通过高温分解去除有机基质而不留残余物,从而将无机纳米颗粒固定在基材上,其中无机纳米颗粒通过有机模板定位。无机纳米颗粒的尺寸通过给定的无机前体化合物的重量份和通过结构的颗粒间的横向距离决定,尤其是通过有机基质的分子量决定。结果,基材具有相应于用于在其表面上沉积的核壳系统的有序周期性图案的无机纳米簇或纳米颗粒,如金颗粒。
两性分子可以是本领域内已知的任何两性分子,特别是能够通过形成核壳系统(由有机壳封装的金属核)而稳定金属纳米颗粒的两性分子。
更具体而言,两性分子选自通式为R-X的化合物,其中X是极性或带电官能团,特别是COOH、OH、SH、NHR`(R`为烷基)、NH2、PHR`(R`为烷基)、PH2、P=O、SO2H、SO3H、SO4H及其盐,而R是直链或支链碳链,具有5个或更多个C原子,如6、7、8、9、10或更多个碳原子,例如十二烷基硫酸钠(SDS)、三辛基氧化膦(TOPO)、十六烷基三甲基溴化铵(CTAB)、十四烷基三甲基溴化铵(TTAB);通式为Y-R-X的双官能能化合物,其中X和Y彼此不同,为极性或带电官能团,特别是COOH、OH、SH、NHR`(R`为烷基)、NH2、PHR`(R`为烷基)、PH2、P=O、SO2、SO3H、SO4H及其盐,而R是直链或支链碳链,具有5个或更多个C原子,优选为通式为HS-R-X的双官能能化合物;树枝状高分子,特别是羟基和/或巯基官能化的第四代聚酰胺胺树枝状高分子(G4-PAMAM);有机二嵌段或多嵌段共聚物;巯基化寡核苷酸和聚乙二醇类。
在该方法中适合的嵌段共聚物的一些非限制性实例为聚苯乙烯-聚环氧乙烷共聚物、聚苯乙烯-聚(2-乙烯基吡啶)共聚物、聚苯乙烯-聚(4-乙烯基吡啶)共聚物或其混合物。优选使用聚乙烯-聚(2-乙烯基吡啶)共聚物。
该基础胶束嵌段共聚物纳米蚀刻法例如在以下专利和专利申请中进行了详细描述:DE 199 52 018、DE 197 47 813、DE 297 47 815、和EP专利号1027157。
本发明的方法代表了对现有技术的改进,改进之处在于其通过对已知的BCLM法的一个或多个关键步骤的改进而能够生产热稳定的金属合金纳米颗粒。
在此使用的术语“热稳定”表示在至少高达450℃的温度范围内,优选在至少700℃下,更优选在至少750℃下,如700-750℃下,产生的纳米颗粒基本上保持固定在表面上,即,既不从表面脱离,又不聚集。更具体而言,在指定的范围内,甚至在潮湿大气中,包括酸性或碱性潮湿大气中,纳米颗粒是热稳定的。
在所要求保护的方法中,胶束是带电的/负载有至少两种不同的金属离子,并且例如通过浸涂沉积。随后,通过等离子体处理实施金属离子的共还原。气体等离子体可以是任何适于还原金属离子的等离子体,特别是包含至少一种活性组分的等离子体,所述活性组分选自氢气、氧气、氮气。
优选的是,通过包含氢气的气体等离子体实施金属离子的共还原。更具体而言,气体等离子体选自纯氢气以及氢气/惰性气体的混合物,特别是氢气/稀有气体,如氢气/氩气。氢气:惰性气体的比率可以为1:99-99:1,优选10:90-90:10,如20:80-80:20。
在本发明的方法中,等离子体处理的实施不仅用于还原金属离子和去除有机组分,如聚合物,而且另外用于将得到的金属纳米颗粒固定在表面上,例如通过将金属纳米颗粒嵌入到天然氧化物层中。因此,等离子体处理的持续时间可以比现有技术的BCML法的等离子体处理时间长很多。更具体而言,实施等离子体处理的持续时间为至少60分钟,优选至少70、80或90分钟,典型地为60-150分钟,如60-120分钟或80-120分钟。典型地,等离子体处理在0.1-1mbar例如约0.4mbar活性气体的反应条件下,使用100-600W的微波等离子体来实施。
对金属合金纳米颗粒的金属组分没有特别限制,可以是任何能够在相应的反应和/或操作条件下提供稳定的金属合金的金属。更具体而言,所述金属选自贵金属,如Au、Pt、Pd、Rh、Ag,和其他金属,特别是催化活性金属,例如过渡金属。催化活性金属的一些非限制性实例为In、Fe、Zr、Al、Co、Ni、Ga、Sn、Zn、Ti。
各种相应的金属盐(例如在WO 2008/116616中公开的)是可用的,并可以用于本发明。一些非限制性实例为HAuCl4、MeAuCl4(Me=碱金属)、H2PtCl6、其他金属卤化物、Pd(Ac)2、Rh(Ac)2、Ni(NO3)2等。
在本发明的优选实施方案中,第一金属是Au或另一种贵金属,优选Au或Rh,或Ni,而至少一种第二金属选自贵金属,特别是Pt、Pd、Rh,优选Pt,或过渡金属,特别是Ni。
在所要求保护的方法中,第一金属对至少一种第二金属的摩尔比可以在很宽的范围内变化,典型的范围为9:1-1:9,尤其是8:2-2:8。
令人惊奇的是,已经发现,甚至在相应于在操作温度下的各自双金属宏观固体的混溶隙的两个不同金属的摩尔比下,用本发明的方法得到的双金属纳米颗粒对分离或聚集有高度抵抗性。在图5中,该发现由Au80Pt20合金颗粒和Au20Pt80合金颗粒证明。该有利的效果显著扩大了应用范围,即,可以得到通过传统方式所不能得到的特定的稳定的合金,这是本发明的另外的益处。
本发明的密切相关方面是包含热稳定金属合金纳米颗粒,特别是双金属纳米颗粒的纳米结构表面,其可以通过以上概述的方法得到。
本发明的包含热稳定金属合金纳米颗粒,特别是双金属纳米颗粒的纳米结构表面可以,例如,有利地用于催化应用中。
因此,本发明的另一方面涉及所述纳米结构表面作为催化剂,特别是用于处理/净化汽车尾气的催化剂,或用于燃料电池的催化剂的用途。
更具体而言,催化剂催化CO氧化为CO2,或者催化氢与氧反应形成水。
本发明的另一方面涉及对基材表面进行纳米结构化的方法,所述基材表面是直径为微米范围的小球或颗粒、介孔材料、或纤维材料,例如纤维网,所述方法包括:
a)提供如上所限定的两性分子,特别是有机二嵌段或多嵌段共聚物的分子,在适当的溶剂中的胶束溶液,并用至少一种金属盐的金属离子装载所述胶束溶液的胶束;
b)将所述负载金属离子的胶束溶液加压通过提供在多孔载体上而不粘附所述载体的小球、颗粒、介孔材料或者纤维的层,从而使负载金属离子的胶束溶液与所述小球、颗粒、介孔材料或纤维接触,随后将所述小球、颗粒、介孔材料或纤维干燥,从而在小球、颗粒或纤维的表面上形成包含(聚合物)区域的有序阵列的(聚合物)薄膜;
C)优选通过等离子体处理还原在沉积的(聚合物)薄膜区域中包含的金属离子,以在小球、微粒、介孔材料或纤维基材表面上形成纳米颗粒的有序阵列。
在该方法的更特别的实施方案中,相继使用至少两种不同的胶束溶液,用不同于第一金属的至少一种第二金属的盐重复步骤a)和b)至少一次,而步骤c)包括不同的金属离子的共还原,以在相同的基材表面上形成不同金属纳米颗粒。
在该方法的另一个特别实施方案中,在步骤a)中,一种胶束溶液的胶束用第一金属的盐和不同于第一金属的至少一种第二金属的盐装载,而步骤c)包括不同金属离子的共还原,以形成合金纳米颗粒,特别是双金属合金纳米颗粒。
典型地,在所述合金纳米颗粒中的第一金属是贵金属,优选Au和Rh,或Ni,而至少一种第二金属选自贵金属,特别是Pt、Pd、Rh,优选Pt,和过渡金属,特别是Ni。更具体而言,合金纳米颗粒是Au/Pt纳米颗粒、Rh/Pt纳米颗粒或Ni/Pt纳米颗粒。
在图6中描述了对小球和(微胶体)颗粒的涂布和纳米结构化方法的总体方案,其特定实施方案在实施例3中更详细地描述。
典型地,提供小球、微颗粒、介孔材料、或纤维作为多孔载体上的层,而不粘附在其上,加压/迫使负载有期望的金属盐的胶束聚合物溶液通过该层,例如通过惰性气体流(例如施加轻微压力或真空)。所述多孔载体可以是色谱柱的玻璃料或任何其他适合的过滤系统的组分,例如用PTFE、玻璃或陶瓷材料制成的玻璃料。在特定实施方案中,小球、微粒、介孔材料、或纤维可以与负载有两种或更多种期望的金属的盐的胶束聚合物溶液接触(产生合金纳米颗粒),或者,相继与两种不同的负载有不同金属的盐的胶束聚合物溶液接触(在相同的表面上产生两种不同的纳米颗粒)。
优选在惰性气流中对涂覆胶束聚合物薄膜的小球或微粒干燥后,将胶束中的金属离子还原或共还原,优选通过类似于上述的和用于扩展表面的实施例2中的气体等离子体处理。优选的是,所用的气体等离子体是氢气或氢气/惰性气体混合物,典型地为氢气/稀有气体,如氢气/氩气或氢气/氮气,优选按以上所述的比例混合。
然而,在适当时,反应条件可以根据特定的基材表面而改变。反应条件的最优化可以由技术人员通过常规试验实施。
例如,在介孔材料或颗粒的情况下,特别是由Al2O3、SiO2或其混合物构成的介孔颗粒的情况下,颗粒优选首先与金属盐的胶束溶液混合,超声处理5分钟,随后在氩气流中过滤,并根据上述方法干燥。随后,对介孔材料或颗粒进行如上所述的等离子体处理。
本发明将进一步通过以下非限制性实施例和附图进行说明。
附图说明
图1简要说明了根据本发明的方法的基材表面的结构。
图2显示了类似于本发明的方法产生的用纯金纳米颗粒进行纳米结构化的基材表面的SEM图像,a)在人工老化步骤之前;和b)在人工老化步骤(在750℃和大气环境下7h)后;和c)在人工老化步骤并将其嵌入进环氧树脂中,以及垂直于其表面平面切割基材后,对Si晶片的侧视透视电子显微照片。
图3显示了类似于本发明的方法产生的用纯铂纳米颗粒进行纳米结构化的基材表面的SEM图像,a)在人工老化步骤之前;和b)在人工老化步骤(在750℃和大气环境下7h)后。
图4显示了根据本发明的方法产生的用双金属金/铂纳米颗粒(上排为Au80Pt20合金颗粒;下排为Au20Pt80合金颗粒)进行纳米结构化的基材表面的SEM和相应的TEM图像,a)在人工老化步骤之前;和b)在人工老化步骤(在750℃和大气环境下7h)后。
图5显示了Au80Pt20合金颗粒(上排)和Au20Pt80合金颗粒(下排)的高角度环形暗场(HAADF)TEM图像(左)和相应的HRTEM EDX光谱(右)。
图6说明了根据本发明的方法的微胶体颗粒的结构化。
图7显示了用金纳米颗粒结构化的微胶体颗粒的不同放大倍数的SEM图像。
图8显示了用根据本发明的方法产生的Rh50Pt50纳米颗粒进行纳米结构化的基材表面的SEM图像,a)在人工老化步骤之前;和b)在人工老化步骤(在750℃和大气环境下7h)后;c)在人工老化步骤并将其嵌入进环氧树脂中,以及垂直于其表面平面切割基材后,对Si晶片的侧视透视电子显微照片。
图9显示了用根据本发明的方法产生的双金属Ni50Pt50纳米颗粒进行纳米结构化的基材表面的SEM和相应的TEM图像,a)在人工老化步骤之前;和b)在人工老化步骤(在750℃和大气环境下7h)后。
图10显示了用Au50Pt50纳米颗粒进行结构化的介孔氧化铝颗粒的不同放大倍数的a)SEM、b)SEM-ESB、c)TEM和电子衍射(插入图c)图像。
图11显示了用Au50Pt50纳米颗粒进行结构化的介孔二氧化硅颗粒的不同放大倍数的a)SEM、b)SEM-ESB、c)TEM和电子衍射(插入图c)图像。
图12显示了用Au50Pt50纳米颗粒进行结构化的介孔二氧化硅/氧化铝(60%Al2O3/40%SiO2)颗粒的不同放大倍数的a)SEM、b)SEM-ESB、c)TEM和电子衍射(插入图c)图像。
图13显示了用根据本发明的方法产生的双金属Au10Pt90纳米颗粒进行纳米结构化的基材表面的SEM和相应的TEM图像,a)在人工老化步骤之前;和b)在人工老化步骤(在750℃和大气环境下7h)后。
实施例1
用Au/Pt合金颗粒进行纳米结构化的样品的制备
基材的纳米结构化是通过以下在本发明人的研究组中开发的通用程序达到的。
合成合金颗粒的方法基于前述BCML技术,以不同的比率使用至少两种不同的金属盐。通过电池的尺寸和金属盐的装载来确定粒径。
在本发明的方法的示例性实施方案中,制备PS(1056)-b-P2VP(495)以期望的浓度在甲苯中的胶束,随后用比率为1:9-9:1的HAuCl4和H2PtCl6装载。在用第一金属盐HAuCl4装载胶束后,搅拌溶液24h,随后添加第二金属盐H2PtCl6。在添加所述第二金属盐后,再搅拌溶液72h。
通过将基材浸渍到胶束溶液中而将负载了金属离子的胶束沉积到Si/SiOx基材表面上,并且通过空气干燥挥发掉溶剂,然后对涂布了包含负载了金属离子的胶束的聚合物薄膜的基材表面进行氢气等离子体处理,在300-400W和0.1-0.5mbar下用W10气体(10%氢气,90氩气)处理90-150分钟。
为了产生Au80Pt20颗粒,制备在甲苯中浓度为5mg/ml的PS(1056)-b-P2VP(495)胶束,搅拌24小时,随后负载经计算可以得到胶束负载率为L=0.4的量的HAuCl4x 3H2O,所述胶束负载率为L=0.4即指胶束的10个金属离子键合位中的4个被Au离子占据。在继续搅拌24h后,以计算可以得到胶束负载率为L=0.1的量的第二金属盐H2PtCl6装载胶束。该程序使得总胶束负载率为约0.5,Au:Pt比为4:1。已经在卡罗酸中放置24h,随后用超纯水(Millipore)清洗并在超声浴中处理15分钟的硅晶片(20×20mm,p点),将该硅晶片浸渍在胶束溶液中,以恒定速率(16mm/min)移出。空气干燥该基材后,对涂布了包含负载有金属离子的胶束的聚合物薄膜的基材表面进行氢气等离子体处理,在350W和0.4mbar下用W10气体(10%氢气,90氩气)处理120分钟。
通过该等离子体处理,达到金属离子的共还原,去除聚合物薄膜,在表面上以准六边形图案产生的双金属纳米颗粒被固定在基材表面的SiOx层中。
实施例2
纳米结构化表面的表征和测试
用不同类型的纳米颗粒进行纳米结构化的基材表面的制备详见实施例1,对其进行人工老化过程,以模拟例如在汽车尾气排放的催化转换器中的高操作温度。
人工老化过程如下进行:
在马弗炉中,在空气中以10℃/min加热样品至目标温度,保持该温度7小时。而后,使样品冷却(不施加特定的温度梯度)。
硅晶片典型地为p点,具有传导性,并可以在SEM中用Inlens检测器直接观察而无需进一步加工(如溅射)。
对于TEM分析,相应地制备样品。具体而言,切割样品(μm截面),以使电子可以透射样品。在HRTEM(高分辨TEM)中用EDAX检测器进行EDX测量。每次测量记录30个检测点。
图2和3证明了固定在基材表面上的纯金颗粒在750℃的大气条件下7小时后是热稳定的(图2),而在相同类型的基材上的纯铂颗粒在相同的老化处理后显示出较大的损失(图3)。
图4证明了不同金/铂比的Au/Pt合金颗粒,特别是Au80Pt20和Au20Pt80,在750℃的大气条件下7h后是热稳定的。特别的,右侧一组a)和b)的TEM图像分别清楚地证明了粒径保持基本相同。图8证明了根据本发明的方法制备的Rh50Pt50纳米颗粒类似的热稳定性。图9证明了根据本发明的方法制备的Ni50Pt50纳米颗粒类似的热稳定性。
双金属体系中常常观察到的不期望的效果是特定合金组分的偏析以及向体系表面的迁移。如果有的话,该效果在本体系中可以通过高分辨透射电子显微能量色散X射线测量(HRTEM-EDX)检测到。由图5和表1证明,对于Au80Pt20和Au20Pt80颗粒,都未观察到显著的偏析,虽然已知这些金属在指定的混合比和上至750℃的温度范围下,在宏观固体中具有偏析隙。
下表1显示了在老化加工后,双金属AuPt纳米颗粒的期望的和实际的颗粒组合物。
表1
实施例3
用本发明的方法涂布微胶体
根据图6描述的方案已对微胶体颗粒进行了涂布和纳米结构化。
具体而言,将具有不同直径,典型地为10-100μm的玻璃微球浸没在卡罗酸中24h,在用MilliQ水重复冲洗和超声处理后,干燥。为了用金属纳米颗粒涂布玻璃微球,用微球装填具有PTFE玻璃料的柱。随后,用具有一定的聚合物浓度并负载了期望的金属盐的胶束聚合物的甲苯溶液填充柱。通过施加惰性气流,如氩气,用轻微超压使得金属盐胶束溶液穿过玻璃微球层。
在用金纳米颗粒对颗粒表面进行纳米结构化的特定实施方案中,用HAuCl4装载PS(1056)-b-P2VP(495)聚合物浓度为5mg/ml的胶束的甲苯溶液,负载比为0.5。在第二步中,通过氩气流使得所述胶束的甲苯溶液穿过玻璃微球层。
随后,在氩气流中干燥玻璃微球。最后,对用负载了金属离子的胶束涂布的玻璃微球,用纯氢气等离子体(150-400W,优选约300W,0.4mbar)或W10气体(10%氢气,90%氩气)在300W和0.4mbar下进行处理45分钟(负载有HAuCl4的胶束,以制备金纳米颗粒)或120分钟(负载有HAuCl4和H2PtCl6的胶束,以制备杂化纳米颗粒)。用购自Diener electronicGmbH&CoKG的等离子体装置Typ Femto 8(具有旋转等离子体腔)进行等离子体处理。

Claims (11)

1.一种对基材表面进行纳米结构化的方法,所述基材表面是直径为微米级的小球或颗粒、包含颗粒或颗粒聚集体的介孔材料、或纤维材料,所述方法包括:
a)提供两性分子在适当的溶剂中的胶束溶液,并用至少一种金属盐的金属离子装载所述胶束溶液的胶束;
b)将负载金属离子的胶束溶液加压通过提供在多孔载体上但不粘附所述载体的小球、颗粒、介孔材料或者纤维的层,从而使负载金属离子的胶束溶液与所述小球、颗粒、介孔材料或纤维接触,随后将所述小球、颗粒、介孔材料或纤维干燥,从而在所述小球、颗粒、介孔材料或纤维的表面上形成包含区域的有序阵列的薄膜;
c)通过使用气体等离子体进行等离子体处理来还原在薄膜的沉积区域中所包含的金属离子,以在所述小球、微粒、介孔材料或纤维基材表面上形成纳米颗粒的有序阵列,所述气体等离子体为纯氢气或氢气/惰性气体的混合物,
其中在步骤a)中,用第一金属的盐和至少一种不同于所述第一金属的第二金属的盐装载胶束,以及步骤c)包括不同的金属离子的共还原,以形成合金纳米颗粒,以及其中在所述合金纳米颗粒中,所述第一金属是贵金属或Ni;以及所述至少一种第二金属选自贵金属和Ni。
2.根据权利要求1的方法,其中所述第一金属是Au、Rh或Ni,所述至少一种第二金属是贵金属,以及所述基材表面选自用天然氧化物层涂布的Si、SiO2、玻璃、或二氧化硅/氧化铝。
3.根据权利要求2的方法,其中所述合金纳米颗粒是Au/Pt纳米颗粒、Rh/Pt纳米颗粒或Ni/Pt纳米颗粒。
4.根据权利要求1的方法,其中所述纤维材料包括纤维网。
5.根据权利要求1的方法,其中所述两性分子包括有机二嵌段或多嵌段共聚物。
6.根据权利要求1的方法,其中所述区域为聚合物区域。
7.根据权利要求1的方法,其中所述薄膜为聚合物薄膜。
8.根据权利要求1的方法,其中作为所述第一金属的所述贵金属是Au或Rh。
9.根据权利要求1的方法,其中作为所述第二金属的所述贵金属是Pt、Pd、Rh。
10.根据权利要求9的方法,其中所述贵金属为Pt。
11.根据权利要求2的方法,其中所述贵金属为Pt或Pd。
CN201280037616.5A 2011-07-27 2012-07-27 用热稳定金属合金纳米颗粒结构化的基材表面,制备其的方法及其特别是作为催化剂的用途 Expired - Fee Related CN103747870B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11006196.7 2011-07-27
EP11006196 2011-07-27
PCT/EP2012/003210 WO2013013831A1 (en) 2011-07-27 2012-07-27 A substrate surface structured with thermally stable metal alloy nanoparticles, a method for preparing the same and uses thereof, in particular as a catalyst

Publications (2)

Publication Number Publication Date
CN103747870A CN103747870A (zh) 2014-04-23
CN103747870B true CN103747870B (zh) 2016-11-16

Family

ID=46598457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280037616.5A Expired - Fee Related CN103747870B (zh) 2011-07-27 2012-07-27 用热稳定金属合金纳米颗粒结构化的基材表面,制备其的方法及其特别是作为催化剂的用途

Country Status (6)

Country Link
US (1) US9352278B2 (zh)
EP (1) EP2736635A1 (zh)
JP (1) JP2014529354A (zh)
KR (1) KR20140053136A (zh)
CN (1) CN103747870B (zh)
WO (1) WO2013013831A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848336B1 (en) * 2012-05-11 2017-04-26 LG Chem, Ltd. Method for manufacturing hollow metal nanoparticles
EP3052449A4 (en) * 2013-10-04 2017-06-21 Corning Incorporated Melting glass materials using rf plasma
US20150364772A1 (en) * 2014-05-30 2015-12-17 GM Global Technology Operations LLC Method to prepare alloys of platinum-group metals and early transition metals
DE102014222240A1 (de) * 2014-10-30 2016-05-04 Continental Automotive Gmbh Ventilvorrichtung für ein Kraftfahrzeug
JP6472131B2 (ja) * 2014-11-27 2019-02-20 国立研究開発法人産業技術総合研究所 金属複合粒子担持触媒の製造方法およびco酸化触媒
PL3389862T3 (pl) 2015-12-16 2024-03-04 6K Inc. Sferoidalne metale podlegające odwodornieniu oraz cząstki stopów metali
CN105911033B (zh) * 2016-04-08 2019-07-26 广东工业大学 一种金/氧化锌双纳米颗粒阵列及其制备方法与应用
WO2018022776A1 (en) * 2016-07-27 2018-02-01 Imra America, Inc. Gold-platinum alloy nanoparticles in colloidal solutions and biological applications using the same
CN108568518B (zh) * 2017-03-09 2020-04-14 苏州大学 一种制备合金纳米颗粒的方法
CN107321971B (zh) * 2017-06-16 2019-03-01 广州湘龙金属加工有限公司 一种超细微粒纳米活性合金氧化锌
FR3080372B1 (fr) 2018-04-18 2021-11-12 Centre Nat Rech Scient Procede de bio-fonctionnalisation de surface.
CN108675261B (zh) * 2018-06-01 2019-12-27 徐州医科大学 金纳米片修饰的碳纤维sers基底材料及其制备方法和应用
CN108971516B (zh) * 2018-07-02 2022-05-03 湖北大学 一种铂纳米颗粒及其制备方法
JP7126195B2 (ja) * 2018-09-05 2022-08-26 日本メナード化粧品株式会社 金ナノ粒子担持粉体の製造方法
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
CN110787795B (zh) * 2019-09-11 2022-04-19 浙江工业大学 一种多层级双孔结构复合光催化剂及其制备与应用
CN112705722A (zh) * 2019-10-25 2021-04-27 中国科学院广州能源研究所 一种有序结构铂纳米颗粒尺寸大小的控制方法
KR20220100861A (ko) 2019-11-18 2022-07-18 6케이 인크. 구형 분말을 위한 고유한 공급원료 및 제조 방법
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN111607786B (zh) * 2020-05-26 2022-03-29 复旦大学 一种材料表面金属纳米阵列图案化改性方法
AU2021297476A1 (en) 2020-06-25 2022-12-15 6K Inc. Microcomposite alloy structure
CN111940755B (zh) * 2020-07-27 2022-11-01 武汉勿幕科技有限公司 一种金纳米粒子的制备方法
JP2023542955A (ja) 2020-09-24 2023-10-12 シックスケー インコーポレイテッド プラズマを始動させるためのシステム、装置、および方法
EP4237174A1 (en) 2020-10-30 2023-09-06 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN112535886B (zh) * 2020-11-12 2022-07-12 杭州苏铂科技有限公司 去除金纳米棒溶液中的ctab的方法
CN116726938B (zh) * 2023-08-16 2024-01-12 天河(保定)环境工程有限公司 一种协同脱除co的scr脱硝催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2308302A1 (en) * 1997-10-29 1999-05-06 Universitat Ulm Nanometric structures
CN101148710A (zh) * 2006-09-20 2008-03-26 中国科学院半导体研究所 一种制备六角有序FePt纳米颗粒阵列的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19843411A1 (de) * 1998-09-19 2000-03-23 Univ Ulm Koerperschaft Des Oef Nanostrukturierte Substrate mit verbesserten katalytischen Eigenschaften
DE19747813A1 (de) 1997-10-29 1999-05-06 Univ Ulm Nanostrukturierung von Oberflächen
DE19747815A1 (de) 1997-10-29 1999-05-06 Univ Ulm Nanostrukturierung von Oberflächen
DE19952018C1 (de) 1999-10-28 2001-08-23 Martin Moeller Verfahren zur Herstellung von im Nanometerbereich oberflächendekorierten Substraten
US7560285B2 (en) * 2004-03-04 2009-07-14 Intel Corporation Micelle-controlled nanoparticle synthesis for SERS
DE102004043908A1 (de) * 2004-09-10 2006-03-30 GRÄTER, Stefan Oberflächenstrukturierte polymere Substrate und ihre Herstellung
US7507495B2 (en) * 2004-12-22 2009-03-24 Brookhaven Science Associates, Llc Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles
CN101432224B (zh) * 2006-04-19 2012-06-20 独立行政法人科学技术振兴机构 表面排列有微细金属块的基板的制造方法
DE102007014538A1 (de) 2007-03-27 2008-10-02 Carl Zeiss Ag Verfahren zur Erzeugung einer Antireflexionsoberfläche auf einem optischen Element sowie optische Elemente mit einer Antireflexionsoberfläche
EP2260995A1 (en) * 2009-06-12 2010-12-15 Max-Planck-Gesellschaft zur Förderung der Wissenschaften E.V. Surface-structured polyurethane substrates and methods for producing the same
US8309489B2 (en) * 2009-06-18 2012-11-13 University Of Central Florida Research Foundation, Inc. Thermally stable nanoparticles on supports

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2308302A1 (en) * 1997-10-29 1999-05-06 Universitat Ulm Nanometric structures
CN101148710A (zh) * 2006-09-20 2008-03-26 中国科学院半导体研究所 一种制备六角有序FePt纳米颗粒阵列的方法

Also Published As

Publication number Publication date
CN103747870A (zh) 2014-04-23
JP2014529354A (ja) 2014-11-06
US9352278B2 (en) 2016-05-31
EP2736635A1 (en) 2014-06-04
US20140193745A1 (en) 2014-07-10
WO2013013831A1 (en) 2013-01-31
KR20140053136A (ko) 2014-05-07
WO2013013831A8 (en) 2013-04-18

Similar Documents

Publication Publication Date Title
CN103747870B (zh) 用热稳定金属合金纳米颗粒结构化的基材表面,制备其的方法及其特别是作为催化剂的用途
US8318250B2 (en) Anchored nanostructure materials and method of fabrication
Liu et al. Polydopamine-coated halloysite nanotubes supported AgPd nanoalloy: An efficient catalyst for hydrolysis of ammonia borane
Yang et al. Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction
WO2006093317A1 (ja) 固/液界面に形成された吸着ミセル膜を反応場として形成される単結晶質の貴金属超薄膜ナノ粒子及びその製造方法
Li et al. Carbon and nitrogen co-doped bowl-like Au/TiO2 nanostructures with tunable size for enhanced visible-light-driven photocatalysis
Tuama et al. An overview on characterization of silver/cuprous oxide nanometallic (Ag/Cu2O) as visible light photocatalytic
Wang et al. A redox interaction-engaged strategy for multicomponent nanomaterials
Zheng et al. Facile synthesis of Pd nanochains with enhanced electrocatalytic performance for formic acid oxidation
CN109364903B (zh) 一种高比表面积纳米二氧化钛光催化涂层及制备方法
Li et al. Preparation and photocatalytic activity of eccentric Au–titania core–shell nanoparticles by block copolymer templates
Dobrzańska-Danikiewicz et al. Carbon nanotubes decorating methods
Tang et al. Metallic nanoparticles as advanced electrocatalysts
Jiang et al. Synergism of multicomponent catalysis: one-dimensional Pt-Rh-Pd nanochain catalysts for efficient methanol oxidation
CN101538736A (zh) 一种树枝状金纳米材料及其制备方法
US11154843B1 (en) Methods of forming nano-catalyst material for fabrication of anchored nanostructure materials
Li et al. Green fabrication of AuNPs/CMTKP/g-C3N4 nanocomposites with enhanced photocatalytic activity for the removal of nitric oxide under visible-light irradiation
Ma et al. Formation of gold nanoparticles supported on carbon nanotubes by using an electroless plating method
JP4958109B2 (ja) ナノホールを有するシート状白金ナノ粒子及びその製造法
US8974719B2 (en) Composite materials formed with anchored nanostructures
Li et al. (Hollow Au–Ag nanoparticles)–TiO 2 composites for improved photocatalytic activity prepared from block copolymer-stabilized bimetallic nanoparticles
US9878307B2 (en) Method of producing catalytic material for fabricating nanostructures
Fu et al. Development of Ag dendrites-reduced graphene oxide composite catalysts via galvanic replacement reaction
Wang et al. Facile electrochemical route to directly fabricate hierarchical spherical cupreous microstructures: Toward superhydrophobic surface
CN105347345A (zh) 一种硅微纳米结构的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161116

Termination date: 20170727

CF01 Termination of patent right due to non-payment of annual fee