CN103746027A - 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法 - Google Patents

一种在ito导电薄膜表面刻蚀极细电隔离槽的方法 Download PDF

Info

Publication number
CN103746027A
CN103746027A CN201310675887.XA CN201310675887A CN103746027A CN 103746027 A CN103746027 A CN 103746027A CN 201310675887 A CN201310675887 A CN 201310675887A CN 103746027 A CN103746027 A CN 103746027A
Authority
CN
China
Prior art keywords
ito conductive
conductive film
thin film
conductive thin
objective table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310675887.XA
Other languages
English (en)
Other versions
CN103746027B (zh
Inventor
王文君
刘鹏
梅雪松
王恪典
刘斌
赵万芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201310675887.XA priority Critical patent/CN103746027B/zh
Publication of CN103746027A publication Critical patent/CN103746027A/zh
Application granted granted Critical
Publication of CN103746027B publication Critical patent/CN103746027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • H01L31/1888Manufacture of transparent electrodes, e.g. TCO, ITO methods for etching transparent electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,首先在ITO导电薄膜玻璃基底的反面溅射金属铬;将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;最后,利用皮秒激光进行后向刻蚀ITO导电薄膜,皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,而且皮秒激光的焦点位置在整个加工过程中须保持在ITO导电薄膜层上,本发明有效缩小薄膜太阳能电池中ITO薄膜表面槽宽,又保证皮秒激光加工的效率,提升薄膜太阳能电池制造的整体水平。

Description

一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法
技术领域
本发明属于微制造技术领域,具体涉及一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法。
背景技术
目前,薄膜技术被应用到新型太阳能电池制造领域,成功解决晶体硅太阳能电池的高成本问题。由于在可见光区域内的透光率很高而且又具备很好的导电性,表面有电隔离槽的ITO导电薄膜被广泛用作薄膜太阳能电池的正表面电极。在薄膜太阳能电池的制作过程中,通常需要织构电隔离槽将整片ITO薄膜切割成若干单元,并且通过结构设计,使得各个单元之间形成串联结构,实现最佳的电压和电流配比。电隔离槽结构的尺度大小和精度等级是决定电池性能的重要因素,因此在精度可控的情况下,降低电隔离槽尺度显得非常必要。
现阶段薄膜太阳能电池槽结构的加工多是基于纳秒激光烧蚀或机械刻线两种方法来实现的。由于纳秒的脉冲宽度远大于材料的热扩散时间,因此在材料的烧蚀去除过程中,受热传导的影响,造成作用区域边缘状态的严重热影响和热损伤。将纳秒激光烧蚀加工用薄膜太阳能电池槽结构加工时,面临很多问题,例如加工出的微槽边缘出现突起,在局部到上层产生分流或短路;微槽边缘1‐2μm的范围内会存在微裂纹和局部材料的剥落,从而缩短太阳能电池的使用寿命;当激光脉冲迭加率过高时,由于热效应的累积,基底玻璃有可能被融化,势垒可能被破坏,以上问题严重阻碍了许多薄膜太阳能电池的正常商业化生产和使用。机械刻线的加工质量和效率比纳秒激光加工相比更差,刻出的微槽宽度很难达到50μm以下,微槽尺寸误差过大,同时伴有不规则的材料剥落,刻槽速度过低。纳秒激光烧蚀和机械刻划加工的上述问题使薄膜太阳能电池的高效高精度制造困难,已成为严重阻碍这种太阳电池发展的技术瓶颈。
发明内容
为了克服现有技术的不足,本发明的目的是提供一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,有效缩小薄膜太阳能电池中ITO薄膜表面槽宽,又保证皮秒激光加工的效率,提升薄膜太阳能电池制造的整体水平。
为了实现上述目的,本发明采取如下技术解决方案:
一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射40-50nm厚的金属铬;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为10‐12mw的皮秒激光,以0.3-0.4mm/s的速度进行后向刻蚀ITO导电薄膜,皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,而且皮秒激光的焦点位置在整个加工过程中须保持在ITO导电薄膜层上。
本发明的优点:利用皮秒激光能够使烧蚀材料直接到达高密度、高压和超热的等离子体状态的性质,克服了纳秒激光刻蚀中能量小的缺点。金属铬熔点较高而且熔沸点温度相差小,皮秒激光刻蚀后边缘几乎无熔化区域,再加上高温下金属铬氧化非常缓慢,铬膜可以很好的限制光斑直径,并且使透过光斑边缘非常整齐,从而使波长为532nm,重频1KHz,脉宽10ps,功率为10-12mw的皮秒激光在ITO导电薄膜刻蚀的极细电隔离槽能精度可控,使皮秒激光可刻蚀电隔离槽的宽度达到3μm以下,并同时具有高加工效率和加工质量,可进一步提高薄膜太阳能电池的材料利用率,改善了电池性能。
附图说明
图1为实施例1和实施例2中ITO导电薄膜的玻璃载体反面溅射铬膜示意图。
图2为实施例1和实施例例2中皮秒激光透过铬膜后向加工ITO导电薄膜示意图。
图3为实施例3中ITO导电薄膜的玻璃载体反面溅射铬膜示意图。
图4为实施例3中皮秒激光透过铬膜后向加工ITO导电薄膜示意图。
图5为实施例1中利用激光共聚焦显微镜放大1000倍拍摄的ITO导电薄膜极细电隔离槽三维结构图。
图6为实施例2中利用激光共聚焦显微镜放大1000倍拍摄的ITO导电薄膜极细电隔离槽三维结构图。
图7为实施例3中利用激光共聚焦显微镜放大1000倍拍摄的ITO导电薄膜极细电隔离槽三维结构图。
具体实施方式
下面结合附图和实施例对本发明做详细描述。
实施例1
一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射50nm厚的金属铬,如图1所示;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为12mw的皮秒激光,使用焦距为25mm聚焦透镜,以0.3mm/s的速度进行后向刻蚀ITO导电薄膜,并且皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,焦点位置在整个加工过程中须保持在ITO导电薄膜层上,如图2所示。图5为激光共聚焦显微镜放大1000倍拍摄的刻蚀出极细电隔离槽三维结构图,刻蚀极细槽槽宽在1.7μm,ITO层已经完全被槽分割为两部分。
实施例2
一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射50nm厚的金属铬,如图1所示;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为10mw的皮秒激光,使用焦距为25mm的透镜聚焦,以0.4mm/s的速度进行后向刻蚀ITO导电薄膜,并且皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,焦点位置在整个加工过程中须保持在ITO导电薄膜层上,如图2所示。图6是激光共聚焦显微镜放大1000倍拍摄的刻蚀出极细电隔离槽三维结构图,刻蚀细槽槽宽在1.6μm,ITO层已经完全被槽分割为两部分。
实施例3
一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射40nm厚的金属铬,如图3所示;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为12mw的皮秒激光,使用焦距为25mm聚焦透镜,以0.3mm/s的扫描速度进行后向刻蚀ITO导电薄膜,并且皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,焦点位置在整个加工过程中须保持在ITO导电薄膜层上,如图4所示。图7为激光共聚焦显微镜放大1000倍拍摄的刻蚀出极细电隔离槽结构三维图,刻蚀极细槽槽宽为2.3μm,ITO层已经完全被槽分割为两部分。

Claims (4)

1.一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,其特征在于,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射40-50nm厚的金属铬;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为10‐12mw的皮秒激光,以0.3-0.4mm/s的速度进行后向刻蚀ITO导电薄膜,皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,而且皮秒激光的焦点位置在整个加工过程中须保持在ITO导电薄膜层上。
2.根据权利要求1所述的一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,其特征在于,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射50nm厚的金属铬;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为12mw的皮秒激光,使用焦距为25mm聚焦透镜,以0.3mm/s的速度进行后向刻蚀ITO导电薄膜,并且皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,焦点位置在整个加工过程中须保持在ITO导电薄膜层上。
3.根据权利要求1所述的一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,其特征在于,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射50nm厚的金属铬;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为10mw的皮秒激光,使用焦距为25mm的透镜聚焦,以0.4mm/s的速度进行后向刻蚀ITO导电薄膜,并且皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,焦点位置在整个加工过程中须保持在ITO导电薄膜层上。
4.根据权利要求1所述的一种在ITO导电薄膜表面刻蚀极细电隔离槽的方法,其特征在于,包括以下步骤:
1)首先,在ITO导电薄膜玻璃基底的反面溅射40nm厚的金属铬;
2)其次,将ITO导电薄膜玻璃基底固定在载物台上,有金属铬的一面在激光发射区域一侧,保持ITO导电薄膜一侧需要刻槽的区域不接触载物台;
3)最后,利用波长为532nm,重频1KHz,脉宽10ps,功率为12mw的皮秒激光,使用焦距为25mm聚焦透镜,以0.3mm/s的扫描速度进行后向刻蚀ITO导电薄膜,并且皮秒激光光束中心线必须与ITO导电薄膜表面保持垂直,焦点位置在整个加工过程中须保持在ITO导电薄膜层上。
CN201310675887.XA 2013-12-11 2013-12-11 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法 Active CN103746027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310675887.XA CN103746027B (zh) 2013-12-11 2013-12-11 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310675887.XA CN103746027B (zh) 2013-12-11 2013-12-11 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法

Publications (2)

Publication Number Publication Date
CN103746027A true CN103746027A (zh) 2014-04-23
CN103746027B CN103746027B (zh) 2015-12-09

Family

ID=50503034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310675887.XA Active CN103746027B (zh) 2013-12-11 2013-12-11 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法

Country Status (1)

Country Link
CN (1) CN103746027B (zh)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409329A (zh) * 2014-09-24 2015-03-11 友达光电股份有限公司 形成具有沟槽的透明基材的方法及形成元件基板的方法
CN104475979A (zh) * 2014-10-31 2015-04-01 苏州图森激光有限公司 一种透明导电薄膜的激光刻蚀方法
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305577A (ja) * 2002-04-11 2003-10-28 Sharp Corp レーザ加工装置、それを用いた半導体素子の製造方法およびそれを用いた太陽電池素子の製造方法
US20100243630A1 (en) * 2008-03-27 2010-09-30 Walter Psyk Method for patterning the zinc oxide front electrode layer of a photovoltaic module
CN102026770A (zh) * 2008-05-13 2011-04-20 旭硝子株式会社 带有氧化物层的基体及其制造方法
CN102105993A (zh) * 2008-11-05 2011-06-22 三菱重工业株式会社 光电转换装置的制造方法及光电转换装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305577A (ja) * 2002-04-11 2003-10-28 Sharp Corp レーザ加工装置、それを用いた半導体素子の製造方法およびそれを用いた太陽電池素子の製造方法
US20100243630A1 (en) * 2008-03-27 2010-09-30 Walter Psyk Method for patterning the zinc oxide front electrode layer of a photovoltaic module
CN102026770A (zh) * 2008-05-13 2011-04-20 旭硝子株式会社 带有氧化物层的基体及其制造方法
CN102105993A (zh) * 2008-11-05 2011-06-22 三菱重工业株式会社 光电转换装置的制造方法及光电转换装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNA RISCH 等: ""Laser scribing of gallium doped zinic oxide thin films using picosecond laser"", 《APPLIED SURFACE SCIENCE》 *
杨成娟 等: ""金铬薄膜的飞秒激光烧蚀加工"", 《红外与激光工程》 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850159B2 (en) 2012-11-20 2017-12-26 Corning Incorporated High speed laser processing of transparent materials
US11028003B2 (en) 2013-01-15 2021-06-08 Corning Laser Technologies GmbH Method and device for laser-based machining of flat substrates
US11345625B2 (en) 2013-01-15 2022-05-31 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US10421683B2 (en) 2013-01-15 2019-09-24 Corning Laser Technologies GmbH Method and device for the laser-based machining of sheet-like substrates
US11713271B2 (en) 2013-03-21 2023-08-01 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US10280108B2 (en) 2013-03-21 2019-05-07 Corning Laser Technologies GmbH Device and method for cutting out contours from planar substrates by means of laser
US9850160B2 (en) 2013-12-17 2017-12-26 Corning Incorporated Laser cutting of display glass compositions
US10392290B2 (en) 2013-12-17 2019-08-27 Corning Incorporated Processing 3D shaped transparent brittle substrate
US11148225B2 (en) 2013-12-17 2021-10-19 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
US10144093B2 (en) 2013-12-17 2018-12-04 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US10173916B2 (en) 2013-12-17 2019-01-08 Corning Incorporated Edge chamfering by mechanically processing laser cut glass
US10179748B2 (en) 2013-12-17 2019-01-15 Corning Incorporated Laser processing of sapphire substrate and related applications
US10183885B2 (en) 2013-12-17 2019-01-22 Corning Incorporated Laser cut composite glass article and method of cutting
US10233112B2 (en) 2013-12-17 2019-03-19 Corning Incorporated Laser processing of slots and holes
US10611668B2 (en) 2013-12-17 2020-04-07 Corning Incorporated Laser cut composite glass article and method of cutting
US10597321B2 (en) 2013-12-17 2020-03-24 Corning Incorporated Edge chamfering methods
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US9676167B2 (en) 2013-12-17 2017-06-13 Corning Incorporated Laser processing of sapphire substrate and related applications
US9815730B2 (en) 2013-12-17 2017-11-14 Corning Incorporated Processing 3D shaped transparent brittle substrate
US9701563B2 (en) 2013-12-17 2017-07-11 Corning Incorporated Laser cut composite glass article and method of cutting
US10442719B2 (en) 2013-12-17 2019-10-15 Corning Incorporated Edge chamfering methods
US9815144B2 (en) 2014-07-08 2017-11-14 Corning Incorporated Methods and apparatuses for laser processing materials
US11697178B2 (en) 2014-07-08 2023-07-11 Corning Incorporated Methods and apparatuses for laser processing materials
US10335902B2 (en) 2014-07-14 2019-07-02 Corning Incorporated Method and system for arresting crack propagation
US10526234B2 (en) 2014-07-14 2020-01-07 Corning Incorporated Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block
US10611667B2 (en) 2014-07-14 2020-04-07 Corning Incorporated Method and system for forming perforations
US11648623B2 (en) 2014-07-14 2023-05-16 Corning Incorporated Systems and methods for processing transparent materials using adjustable laser beam focal lines
CN104409329A (zh) * 2014-09-24 2015-03-11 友达光电股份有限公司 形成具有沟槽的透明基材的方法及形成元件基板的方法
CN104409329B (zh) * 2014-09-24 2017-04-12 友达光电股份有限公司 形成具有沟槽的透明基材的方法及形成元件基板的方法
CN104475979A (zh) * 2014-10-31 2015-04-01 苏州图森激光有限公司 一种透明导电薄膜的激光刻蚀方法
US10047001B2 (en) 2014-12-04 2018-08-14 Corning Incorporated Glass cutting systems and methods using non-diffracting laser beams
US11014845B2 (en) 2014-12-04 2021-05-25 Corning Incorporated Method of laser cutting glass using non-diffracting laser beams
US10252931B2 (en) 2015-01-12 2019-04-09 Corning Incorporated Laser cutting of thermally tempered substrates
US10525657B2 (en) 2015-03-27 2020-01-07 Corning Incorporated Gas permeable window and method of fabricating the same
US11186060B2 (en) 2015-07-10 2021-11-30 Corning Incorporated Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same
US11111170B2 (en) 2016-05-06 2021-09-07 Corning Incorporated Laser cutting and removal of contoured shapes from transparent substrates
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US10522963B2 (en) 2016-08-30 2019-12-31 Corning Incorporated Laser cutting of materials with intensity mapping optical system
US10730783B2 (en) 2016-09-30 2020-08-04 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US11130701B2 (en) 2016-09-30 2021-09-28 Corning Incorporated Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots
US10752534B2 (en) 2016-11-01 2020-08-25 Corning Incorporated Apparatuses and methods for laser processing laminate workpiece stacks
US10688599B2 (en) 2017-02-09 2020-06-23 Corning Incorporated Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US10626040B2 (en) 2017-06-15 2020-04-21 Corning Incorporated Articles capable of individual singulation
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness

Also Published As

Publication number Publication date
CN103746027B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN103746027B (zh) 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法
CN104993013B (zh) 一种大面积铜铟镓硒薄膜太阳能电池组件的全激光刻划方法
JP4439477B2 (ja) 光起電力素子及びその製造方法
US8841157B2 (en) Method and structure for using discontinuous laser scribe lines
CN106571410A (zh) 一种柔性不锈钢衬底太阳能电池组件的全激光刻划方法
KR20120096052A (ko) 레이어 스택의 층의 적어도 일부 영역을 제거하는 방법
WO2012051574A2 (en) Ablative scribing of solar cell structures
CN101771102B (zh) 在薄膜光伏电池板制造上的激光刻膜工艺方法
CN111571006A (zh) 电池片的分割方法
Heise et al. Demonstration of the monolithic interconnection on CIS solar cells by picosecond laser structuring on 30 by 30 cm2 modules
CN108767066B (zh) 薄膜太阳能电池制备方法及其边缘隔离方法
JP2008060205A (ja) 太陽電池セル及びその製造方法
CN101982285A (zh) 太阳能电池板激光刻划系统及刻划方法
CN102569519B (zh) 去除带有背场结构mwt太阳能电池的背场的方法
CN104396015A (zh) 激光蚀刻薄层的堆叠用于光伏电池的连接
JP2011251317A (ja) 薄膜の加工方法、薄膜の加工装置、及び光電変換装置の作製方法
Bovatsek et al. Effects of pulse duration on the ns-laser pulse induced removal of thin film materials used in photovoltaics
Heise et al. Ultrafast lasers improve the efficiency of CIS thin film solar cells
CN102248289A (zh) 晶硅太阳能电池的激光划线绝缘设备
CN202199936U (zh) 太阳电池前电极激光加工装置
Bosio et al. Polycrystalline CdTe thin film mini-modules monolithically integrated by fiber laser
CN103094408B (zh) 太阳能电池及其制造方法以及太阳能电池图案
Niyibizi Laser material processing in crystalline silicon photovoltaics
CN103956400A (zh) 用于背接触太阳能组件的芯板及其制备方法
CN201824059U (zh) 太阳能电池板激光刻划系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant