CN103745992B - 基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法 - Google Patents

基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法 Download PDF

Info

Publication number
CN103745992B
CN103745992B CN201410030942.4A CN201410030942A CN103745992B CN 103745992 B CN103745992 B CN 103745992B CN 201410030942 A CN201410030942 A CN 201410030942A CN 103745992 B CN103745992 B CN 103745992B
Authority
CN
China
Prior art keywords
algan
layer
drain electrode
grid
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410030942.4A
Other languages
English (en)
Other versions
CN103745992A (zh
Inventor
冯倩
杜锴
杜鸣
张春福
梁日泉
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201410030942.4A priority Critical patent/CN103745992B/zh
Publication of CN103745992A publication Critical patent/CN103745992A/zh
Application granted granted Critical
Publication of CN103745992B publication Critical patent/CN103745992B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT

Abstract

本发明公开了一种基于复合漏极的AlGaN/GaN?MISHEMT高压器件及其制作方法,器件的结构从下至上依次包括:衬底、GaN缓冲层、本征GaN沟道层、AlN隔离层和AlGaN势垒层,AlGaN势垒层上设置有:源极、栅极和复合漏极,栅极与AlGaN势垒层之间设置有绝缘介质层;在栅极与复合漏极之间的AlGaN势垒层上方依次外延有线性AlGaN层、P型GaN外延层、基极。本发明的有益之处在于:器件导通时,栅漏间第一区域和第二区域的2DEG浓度增加,电阻减小;器件截止时,第一区域的2DEG减小,第二区域的2DEG与器件导通时相同,器件耗尽区的宽度增加,电场分布改变,器件击穿电压提高;复合漏极结构防止了漏极边缘出现电场峰值,提高了器件的击穿电压;绝缘栅结构避免了栅极泄漏电流,提高了器件性能。

Description

基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法
技术领域
本发明涉及一种高压器件及其制作方法,具体涉及一种基于复合漏极的AlGaN/GaN高压、低导通电阻的高压器件及其制作方法,可用于制作高压低导通电阻的AlGaN/GaNMISHEMT高电子迁移率晶体管,属于微电子技术领域。
背景技术
近年来以SiC和GaN为代表的第三代宽禁带隙半导体以其禁带宽度大、击穿电场高、热导率高、饱和电子速度大和异质结界面二维电子气浓度高等特性,受到广泛关注。在理论上,利用这些材料制作的高电子迁移率晶体管HEMT、发光二极管LED、激光二极管LD等器件比现有器件具有明显的优越特性,因此近些年来国内外研究者对其进行了广泛而深入的研究,并取得了令人瞩目的研究成果。
AlGaN/GaN异质结高电子迁移率晶体管HEMT在高温器件及大功率微波器件方面已显示出了得天独厚的优势,追求器件高频率、高压、高功率吸引了众多的研究。近年来,制作更高频率高压AlGaN/GaNHEMT成为关注的又一研究热点。由于AlGaN/GaN异质结生长完成后,异质结界面就存在大量二维电子气2DEG,并且其迁移率很高,因此我们能够获得较高的器件频率特性。在提高AlGaN/GaN异质结电子迁移率晶体管击穿电压方面,人们进行了大量的研究,发现AlGaN/GaNHEMT器件的击穿主要发生在栅靠漏端,因此要提高器件的击穿电压,必须使栅漏区域的电场重新分布,尤其
是降低栅靠漏端的电场,为此,人们提出了采用场板结构的方法:
1.采用场板结构。参见YujiAndo,AkioWakejima,YasuhiroOkamoto等的NovelAlGaN/GaNdual-field-plateFETwithhighgain,increasedlinearityandstability,IEDM2005,pp.576-579,2005(一种具有高增益、高线性度和稳定性的双场板场效应晶体管)。在AlGaN/GaNHEMT器件中同时采用栅场板和源场板结构,将器件的击穿电压从单独采用栅场板的125V提高到采用双场板后的250V,并且降低了栅漏电容,提高了器件的线性度和稳定性。
2.采用超级结结构。参见AkiraNakajima,YasunobuSumida,MaheshH的GaNbasedsuperheterojunctionfieldeffecttransistorsusingthepolarizationjunctionconcept(一种利用极化结的基于GaN的超结场效应晶体管)。在该器件结构中同时拥有2DEG和2DEH,当栅极正向偏置时,2DEG的浓度不发生任何变化,因此器件的导通电阻不会增加,当栅极反向偏置时,沟道中的2DEG会由于放电而耗尽,从而提高了器件的击穿电压(从110V提高至560V),而导通电阻为6.1mΩ·cm2
然而,具有上述两种结构的高压器件均存在导通电阻较大的不足之处。
发明内容
为解决现有技术的不足,本发明的目的在于提供一种可满足对高压、低导通电阻的应用要求的基于复合漏极的AlGaN/GaNMISHEMT高压器件的结构,以及具有良好的可控性和重复性的制作该基于复合漏极的AlGaN/GaNMISHEMT高压器件的方法。
为了实现上述目标,本发明采用如下的技术方案:
一种基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,从下至上依次包括:衬底、GaN缓冲层、本征GaN或AlGaN沟道层、AlN隔离层和AlGaN势垒层,AlGaN势垒层上沿水平方向依次有:源极、栅极和复合漏极,前述栅极与AlGaN势垒层之间还设置有绝缘介质层,前述复合漏极包括:漏极、由前述漏极同时向上和向栅极方向延伸形成的漏极场板,在栅极与复合漏极之间的AlGaN势垒层上方的部分区域外延有线性AlGaN层,线性AlGaN层上的部分区域外延有P型GaN或InGaN外延层,且P型GaN或InGaN外延层上制备有与栅极电连接的基极,线性AlGaN层、P型GaN或InGaN外延层的宽度依次减小,漏极场板在线性AlGaN层的上方且与P型GaN或InGaN外延层之间留有缝隙,前述AlGaN势垒层由下层的i型AlGaN层和上层的n型AlGaN层组成;前述源极、栅极、复合漏极和基极的上表面还形成有加厚电极,加厚电极的两侧均形成有钝化层。
前述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,前述底衬为蓝宝石、碳化硅、GaN或MgO。
前述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,前述AlGaN势垒层中,Al与Ga的组分比能够调节,Al、Ga、N的组分分别为x、1-x、1,0<x<1。
前述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,前述线性AlGaN层中,Al的组分由x线性增加到y,且Al与Ga的组分比能够调节,Al、Ga、N的组分分别为y、1-y、1,1>y>x>0。
前述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,前述绝缘介质层为SiN、Al2O3或HfO2
前述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,前述钝化层为SiN、Al2O3或HfO2
前述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,前述漏极场板在线性AlGaN层上的宽度<1μm。
制作前述的基于复合漏极的AlGaN/GaNMISHEMT高压器件的方法,其特征在于,包括以下步骤:
(1)对外延生长的p-GaN/线性AlGaN/AlGaN/GaN材料进行有机清洗,用流动的去离子水清洗并放入HCl:H2O=1:1的溶液中进行腐蚀30-60s,最后用流动的去离子水清洗并用高纯氮气吹干;
(2)对清洗干净的AlGaN/GaN异质结材料进行光刻和干法刻蚀,形成有源区台面;
(3)对制备好台面的AlGaN/GaN异质结材料进行光刻,形成P型GaN和线性AlGaN层的刻蚀区,放入ICP干法刻蚀反应室中刻蚀,将栅源之间全部区域以及栅极、源极和漏极上方的P型GaN外延层、线性AlGaN层均刻蚀掉;
(4)对器件进行光刻,然后放入电子束蒸发台中淀积欧姆接触金属Ti/Al/Ni/Au=20/120/45/50nm并进行剥离,最后在氮气环境中进行850℃35s的快速热退火,形成欧姆接触;
(5)将制备好欧姆接触的器件进行光刻,形成P型GaN外延层的刻蚀区,放入ICP干法刻蚀反应室中刻蚀,将栅漏之间部分区域的P型GaN外延层刻蚀掉,形成栅漏间第一区域和第二区域;
(6)将制备好的器件放入原子层淀积设备中,淀积5-10nm厚的Al2O3介质;
(7)对完成淀积的器件进行光刻,形成Al2O3介质的腐蚀区,然后放入HF:H2O=1:10的溶液中30s,去除栅极以外的Al2O3
(8)将制备好的器件进行光刻,形成基极区域,然后放入电子束蒸发台中淀积Ni/Au=20/20nm并进行剥离,最后在大气环境中进行550℃10min的退火,形成基极欧姆接触;
(9)对完成基极制备的器件进行光刻,形成栅极金属和漏极场板区域,然后放入电子束蒸发台中淀积Ni/Au=20/200nm并进行剥离,完成栅极和漏极场板的制备;
(10)将完成栅极和漏极场板制备的器件放入PECVD反应室淀积SiN钝化膜,钝化膜的淀积厚度为200nm-300nm;
(11)将器件再次进行清洗、光刻显影,形成SiN薄膜的刻蚀区,并放入ICP干法刻蚀反应室中刻蚀,将源极、漏极和栅极上面覆盖的SiN薄膜刻蚀掉;
(12)将器件进行清洗、光刻显影,并放入电子束蒸发台中淀积Ti/Au=20/200nm的加厚电极,完成整体器件的制备。
本发明的有益之处在于:
1、栅漏间第一区域和第二区域的形成使得:
器件导通时,第一区域和第二区域的2DEG浓度增加,电阻得到减小,达到了降低器件导通电阻的目的;
器件截止时,第一区域的2DEG得到减小,第二区域的2DEG与器件导通时相同,增加了器件耗尽区的宽度,改变了电场分布,达到了提高器件击穿电压的目的;
2、本发明采用复合漏极结构,防止了漏极边缘出现电场峰值,提高了器件的击穿电压;
3、本发明采用绝缘栅结构(栅极和下方的绝缘介质层),避免了栅极泄漏电流,提高了器件性能;
4、本发明的方法,具有良好的可控性和重复性。
附图说明
图1是本发明的高压器件的一个具体实施例的剖面结构示意图;
图2是本发明的高压器件的制作工艺流程图。
图中附图标记的含义:1-衬底,2-GaN缓冲层,3-本征GaN沟道层,4-AlN隔离层,5-AlGaN势垒层,501-i型AlGaN层,502-n型AlGaN层,6-源极,7-栅极,8-漏极,9-漏极场板,10-绝缘介质层,11-线性AlGaN层,12-P型GaN外延层,13-基极,14-加厚电极,15-钝化层,D1表示第一区域,D2表示第二区域。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
首先,介绍本发明的基于复合漏极的AlGaN/GaNMISHEMT高压器件的结构。
参照图1,本发明的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其结构从下至上依次包括:衬底1、GaN缓冲层2、本征GaN沟道层3(本征GaN沟道层3还可以用AlGaN沟道层替代)、AlN隔离层4和AlGaN势垒层5,AlGaN势垒层5由下层的i型AlGaN层501和上层的n型AlGaN层502组成,其中,AlGaN势垒层5上沿水平方向依次有:源极6、栅极7和复合漏极,并且栅极7与AlGaN势垒层5之间还设置有绝缘介质层10,绝缘介质层10优选采用SiN、Al2O3或HfO2等绝缘材料制成,复合漏极包括:漏极8、由漏极8同时向上和向栅极7方向延伸形成的漏极场板9。在栅极7与复合漏极之间的AlGaN势垒层5的上方的部分区域外延有线性AlGaN层11,线性AlGaN层11上的部分区域外延有P型GaN外延层12(P型GaN外延层12可以用InGaN外延层替代),P型GaN外延层12上制备有与栅极7电连接的基极13,其中,线性AlGaN层11、P型GaN外延层12的宽度依次减小。漏极场板9在线性AlGaN层11的上方,并且与P型GaN外延层12之间留有缝隙,漏极场板9在线性AlGaN层11上的宽度优选为<1μm。除此之外,源极6、栅极7、复合漏极和基极13的上表面还形成有加厚电极14,加厚电极14的两侧均形成有钝化层15,钝化层15优选采用SiN、Al2O3或HfO2等绝缘材料制成。
作为一种优选的方案,衬底为蓝宝石、碳化硅、GaN或MgO。
作为一种优选的方案,在AlGaN势垒层5中,Al与Ga的组分比能够调节,Al、Ga、N的组分分别为x、1-x、1,0<x<1,即AlxGa1-xN。
更为优选的是,在线性AlGaN层11中,Al的组分由x线性增加到y,且Al与Ga的组分比能够调节,Al、Ga、N的组分分别为y、1-y、1,1>y>x>0,即AlyGa1-yN。
假设,线性AlGaN层11的厚度为L,则距线性AlGaN层11的下表面的距离为L1处Al的重量含量为:(y-x)×L1/L。
如果线性AlGaN层11上外延的是InGaN层,In组分既可以恒定,也可以逐渐增加。
接下来,介绍制作上述基于复合漏极的AlGaN/GaNMISHEMT高压器件的方法。
参照图2,该制作方法包括以下步骤:
1、对外延生长的p-GaN/线性AlGaN/AlGaN/GaN材料进行有机清洗,用流动的去离子水清洗并放入HCl:H2O=1:1的溶液中进行腐蚀30-60s,最后用流动的去离子水清洗并用高纯氮气吹干。
2、对清洗干净的AlGaN/GaN异质结材料进行光刻和干法刻蚀,形成有源区台面。
3、对制备好台面的AlGaN/GaN异质结材料进行光刻,形成P型GaN(或InGaN)和线性AlGaN层的刻蚀区,放入ICP干法刻蚀反应室中,工艺条件为:上电极功率为200W,下电极功率为20W,反应室压力为1.5Pa,Cl2的流量为10sccm,N2的流量为10sccm,刻蚀时间为5min-8min,将栅源之间全部区域以及栅极、源极和漏极上方的P型GaN(或InGaN)外延层、线性AlGaN层均刻蚀掉。
4、对器件进行光刻,然后放入电子束蒸发台中淀积欧姆接触金属Ti/Al/Ni/Au=20/120/45/50nm并进行剥离,最后在氮气环境中进行850℃35s的快速热退火,形成欧姆接触。
5、将制备好欧姆接触的器件进行光刻,形成P型GaN(或InGaN)外延层的刻蚀区,放入ICP干法刻蚀反应室中,工艺条件为:上电极功率为200W,下电极功率为20W,反应室压力为1.5Pa,Cl2的流量为10sccm,N2的流量为10sccm,刻蚀时间为3min-5min,将栅漏之间部分区域的P型GaN(或InGaN)外延层刻蚀掉,形成栅漏间第一区域D1和第二区域D2。
6、将制备好的器件放入原子层淀积设备中,工艺条件为:生长温度为300℃,压力为2000Pa,H2O和TMAl的流量均为150sccm,淀积5-10nm厚的Al2O3介质。
7、对完成淀积的器件进行光刻,形成Al2O3介质的腐蚀区,然后放入HF:H2O=1:10的溶液中30s,去除栅极7以外的Al2O3
8、将制备好的器件进行光刻,形成基极区域,然后放入电子束蒸发台中淀积Ni/Au=20/20nm并进行剥离,最后在大气环境中进行550℃10min的退火,形成基极欧姆接触。
9、对完成基极制备的器件进行光刻,形成栅极金属和漏极场板区域,然后放入电子束蒸发台中淀积Ni/Au=20/200nm并进行剥离,完成栅极和漏极场板的制备。
10、将完成栅极和漏极场板制备的器件放入PECVD反应室淀积SiN钝化膜,具体工艺条件为:SiH4的流量为40sccm,NH3的流量为10sccm,反应室压力为1-2Pa,射频功率为40W,钝化膜的淀积厚度为200nm-300nm。
11、将器件再次进行清洗、光刻显影,形成SiN薄膜的刻蚀区,并放入ICP干法刻蚀反应室中,工艺条件为:上电极功率为200W,下电极功率为20W,反应室压力为1.5Pa,CF4的流量为20sccm,Ar气的流量为10sccm,刻蚀时间为10min,将源极、漏极和栅极上面覆盖的SiN薄膜刻蚀掉。
12、将器件进行清洗、光刻显影,并放入电子束蒸发台中淀积Ti/Au=20/200nm的加厚电极,完成整体器件的制备。
由此可见,本发明的方法具有良好的可控性和重复性。
由于本发明的高压器件其形成有:栅漏间第一区域D1和第二区域D2,从而使得:
(1)器件导通时,第一区域D1正下方和第二区域D2正下方的AlGaN/GaN界面处2DEG浓度的增加几乎完全相同,均大于沟道中的2DEG浓度,因此两个区域的电阻均有所减小,达到了降低器件导通电阻的目的;
(2)器件截止时(即栅极7电压≤阈值电压时),栅极7正下方的沟道内的2DEG被耗尽,与此同时由于基极13与栅极7电连接,因此第一区域D1正下方的2DEG浓度有所减小(甚至减小为50%),使得器件的耗尽区的宽度有所增加,所能承担高电场的区域得到加宽,达到了提高器件击穿电压的目的;此外,第二区域D2正下方的2DEG浓度与器件导通时完全相同,有利于电场的重新分布。
另外,由于本发明的高压器件采用了复合漏极结构,防止了漏极8边缘出现电场峰值,进一步提高了器件的击穿电压;绝缘栅结构(栅极7和下方的绝缘介质层10)避免了栅极7泄漏电流,提高了器件性能。
需要说明的是,上述实施例不以任何形式限制本发明,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (8)

1.基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,从下至上依次包括:衬底、GaN缓冲层、本征GaN或AlGaN沟道层、AlN隔离层和AlGaN势垒层,AlGaN势垒层上沿水平方向依次有:源极、栅极和复合漏极,所述栅极与AlGaN势垒层之间还设置有绝缘介质层,所述复合漏极包括:漏极、由所述漏极同时向上和向栅极方向延伸形成的漏极场板,在栅极与复合漏极之间的AlGaN势垒层上方的部分区域外延有线性AlGaN层,线性AlGaN层上的部分区域外延有P型GaN或InGaN外延层,且P型GaN或InGaN外延层上制备有与栅极电连接的基极,线性AlGaN层、P型GaN或InGaN外延层的宽度依次减小,漏极场板在线性AlGaN层的上方且与P型GaN或InGaN外延层之间留有缝隙,所述AlGaN势垒层由下层的i型AlGaN层和上层的n型AlGaN层组成;所述源极、栅极、复合漏极和基极的上表面还形成有加厚电极,加厚电极的两侧均形成有钝化层。
2.根据权利要求1所述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,所述衬底为蓝宝石、碳化硅、GaN或MgO。
3.根据权利要求1所述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,所述AlGaN势垒层中,Al与Ga的组分比能够调节,Al、Ga、N的组分分别为x、1-x、1,0<x<1。
4.根据权利要求3所述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,所述线性AlGaN层中,Al的组分由x线性增加到y,且Al与Ga的组分比能够调节,Al、Ga、N的组分分别为y、1-y、1,1>y>x>0。
5.根据权利要求1所述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,所述绝缘介质层为SiN、Al2O3或HfO2
6.根据权利要求1所述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,所述钝化层为SiN、Al2O3或HfO2
7.根据权利要求1所述的基于复合漏极的AlGaN/GaNMISHEMT高压器件,其特征在于,所述漏极场板在线性AlGaN层上的宽度<1μm。
8.制作权利要求1所述的基于复合漏极的AlGaN/GaNMISHEMT高压器件的方法,其特征在于,包括以下步骤:
(1)对外延生长的p型GaN/线性AlGaN/AlGaN/GaN材料进行有机清洗,用流动的去离子水清洗并放入HCl:H2O=1:1的溶液中进行腐蚀30-60s,最后用流动的去离子水清洗并用高纯氮气吹干;
(2)对清洗干净的AlGaN/GaN异质结材料进行光刻和干法刻蚀,形成有源区台面;
(3)对制备好台面的AlGaN/GaN异质结材料进行光刻,形成P型GaN外延层和线性AlGaN层的刻蚀区,放入ICP干法刻蚀反应室中刻蚀,将栅源之间全部区域以及栅极、源极和漏极上方的P型GaN外延层、线性AlGaN层均刻蚀掉;
(4)对器件进行光刻,然后放入电子束蒸发台中淀积欧姆接触金属Ti/Al/Ni/Au=20/120/45/50nm并进行剥离,最后在氮气环境中进行850℃35s的快速热退火,形成欧姆接触;
(5)将制备好欧姆接触的器件进行光刻,形成P型GaN外延层的刻蚀区,放入ICP干法刻蚀反应室中刻蚀,将栅漏之间部分区域的P型GaN外延层刻蚀掉,形成栅漏间第一区域和第二区域;
(6)将制备好的器件放入原子层淀积设备中,淀积5-10nm厚的Al2O3介质;
(7)对完成淀积的器件进行光刻,形成Al2O3介质的腐蚀区,然后放入HF:H2O=1:10的溶液中30s,去除栅极以外的Al2O3
(8)将制备好的器件进行光刻,形成基极区域,然后放入电子束蒸发台中淀积Ni/Au=20/20nm并进行剥离,最后在大气环境中进行550℃10min的退火,形成基极欧姆接触;
(9)对完成基极制备的器件进行光刻,形成栅极金属和漏极场板区域,然后放入电子束蒸发台中淀积Ni/Au=20/200nm并进行剥离,完成栅极和漏极场板的制备;
(10)将完成栅极和漏极场板制备的器件放入PECVD反应室淀积SiN钝化膜,钝化膜的淀积厚度为200nm-300nm;
(11)将器件再次进行清洗、光刻显影,形成SiN薄膜的刻蚀区,并放入ICP干法刻蚀反应室中刻蚀,将源极、漏极和栅极上面覆盖的SiN薄膜刻蚀掉;
(12)将器件进行清洗、光刻显影,并放入电子束蒸发台中淀积Ti/Au=20/200nm的加厚电极,完成整体器件的制备。
CN201410030942.4A 2014-01-22 2014-01-22 基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法 Expired - Fee Related CN103745992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410030942.4A CN103745992B (zh) 2014-01-22 2014-01-22 基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410030942.4A CN103745992B (zh) 2014-01-22 2014-01-22 基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法

Publications (2)

Publication Number Publication Date
CN103745992A CN103745992A (zh) 2014-04-23
CN103745992B true CN103745992B (zh) 2016-05-25

Family

ID=50503000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410030942.4A Expired - Fee Related CN103745992B (zh) 2014-01-22 2014-01-22 基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法

Country Status (1)

Country Link
CN (1) CN103745992B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393043B (zh) * 2014-11-18 2017-04-19 西安电子科技大学 氮化镓基直角漏场板高电子迁移率晶体管
CN106409993A (zh) * 2016-10-27 2017-02-15 江苏新广联半导体有限公司 具有电磁波防护结构的GaN基半导体器件的外延结构及制作方法
CN114256343A (zh) * 2020-09-24 2022-03-29 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
CN112490287B (zh) * 2020-11-05 2022-04-12 复旦大学 具有双工作模式的氮化镓集成场效应晶体管及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973163A2 (en) * 2007-03-23 2008-09-24 Cree, Inc. High temperature performance capable gallium nitride transistor
CN101312207A (zh) * 2007-05-21 2008-11-26 张乃千 一种增强型氮化镓hemt器件结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795642B2 (en) * 2007-09-14 2010-09-14 Transphorm, Inc. III-nitride devices with recessed gates
US8680535B2 (en) * 2011-12-23 2014-03-25 Taiwan Semiconductor Manufacturing Company, Ltd. High electron mobility transistor structure with improved breakdown voltage performance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973163A2 (en) * 2007-03-23 2008-09-24 Cree, Inc. High temperature performance capable gallium nitride transistor
CN101312207A (zh) * 2007-05-21 2008-11-26 张乃千 一种增强型氮化镓hemt器件结构

Also Published As

Publication number Publication date
CN103745992A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
CN105355659A (zh) 槽栅AlGaN/GaN HEMT器件结构及制作方法
CN104037221B (zh) 一种基于极化效应的复合场板高性能AlGaN/GaN HEMT器件结构及制作方法
CN103904114B (zh) 加源场板增强型AlGaN/GaN HEMT器件结构及其制作方法
CN105448964A (zh) 复合阶梯场板槽栅AlGaN/GaN HEMT高压器件结构及其制作方法
CN104037218A (zh) 一种基于极化效应的高性能AlGaN/GaN HEMT高压器件结构及制作方法
CN103745992B (zh) 基于复合漏极的AlGaN/GaN MISHEMT高压器件及其制作方法
CN105448975A (zh) 复合阶梯场板槽栅hemt高压器件及其制作方法
CN103745990B (zh) 耗尽型AlGaN/GaN MISHEMT高压器件及其制作方法
CN103904111A (zh) 基于增强型AlGaN/GaN HEMT器件结构及其制作方法
CN103779406B (zh) 加源场板耗尽型绝缘栅AlGaN/GaN器件结构及其制作方法
CN103762234B (zh) 基于超结漏场板的AlGaN/GaN MISHEMT高压器件及其制作方法
CN104064595A (zh) 一种基于槽栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN103794643B (zh) 一种基于槽栅高压器件及其制作方法
CN104037217B (zh) 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法
CN104037222B (zh) 一种基于有机聚合物极化效应的高压槽栅AlGaN/GaN HEMT器件结构及制作方法
CN104037215B (zh) 一种基于聚合物的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN104037220B (zh) 一种基于偶极子层浮栅结构的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN103904110B (zh) 加栅场板耗尽型绝缘栅AlGaN/GaN器件结构及其制作方法
CN103779411B (zh) 基于超结槽栅的高压器件及其制作方法
CN103779409B (zh) 基于耗尽型AlGaN/GaN HEMT器件结构及其制作方法
CN103745993B (zh) 基于超结的AlGaN/GaN MISHEMT高压器件及其制作方法
CN103745991B (zh) 基于超结的AlGaN/GaN高压器件及其制作方法
CN103839996A (zh) 基于复合漏极的槽栅高压器件及其制作方法
CN103762235B (zh) 基于超结漏场板的AlGaN/GaN高压器件及其制作方法
CN103779407B (zh) 加源场板耗尽型AlGaN/GaN HEMT器件结构及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160525

Termination date: 20210122