CN103630528B - 一种利用茶叶中元素含量鉴别茶叶产地的方法 - Google Patents
一种利用茶叶中元素含量鉴别茶叶产地的方法 Download PDFInfo
- Publication number
- CN103630528B CN103630528B CN201210307144.2A CN201210307144A CN103630528B CN 103630528 B CN103630528 B CN 103630528B CN 201210307144 A CN201210307144 A CN 201210307144A CN 103630528 B CN103630528 B CN 103630528B
- Authority
- CN
- China
- Prior art keywords
- tealeaves
- model
- tea
- data
- constituent content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种利用茶叶中元素含量鉴别茶叶产地的方法,利用光谱分析技术测定并建立茶叶的元素含量数据库,利用EXCEL的VBA代码,基于偏最小二乘法建立了茶叶的多元素含量产地判别模型,通过测定实际茶叶中21种元素含量,数据输入软件预报模块进行计算,若某种茶叶的判断值大于0.8,则可判定为属于该产地茶叶,否则不属于。本发明的分析结果只由软件预报值决定,排除了人为判定的主观性与不确定性,判别准确率高,能够有效应用于不同类别不同产地茶叶的产地鉴别,具有广阔的应用前景。
Description
技术领域
本发明涉及一种利用茶叶中元素含量鉴别茶叶产地的方法,属于光谱分析技术领域。
背景技术
茶叶是我国重要的经济作物,但目前市场上茶叶商品质量混乱,产地信息不明,以假充真、以次充好的现象普遍存在。因此,研究不同产地茶叶之间的差异,发展茶叶的真实属性表征技术对于茶叶的质量控制,保护原产地域产品和消费者权益,市场的规范运作,帮助我国茶叶走向国际市场都具有积极意义。目前茶叶最常见的鉴别方法还是感官鉴别法。然而,感官评定易受各种因素影响而出现偏差。因此,利用各种现代分析仪器技术展开茶叶鉴别的研究一直是茶叶鉴别发展方向。
茶叶化学成分受品种、海拔、气候、土质、树龄以及施肥情况、采摘方法和时间等因素影响很大。茶叶的加工对其有机成分的影响较大,而茶叶中的矿物质元素主要受土壤中矿物质元素含量的影响。植物中矿质元素的含量与其生长环境(如土壤、水、大气)密切相关,一般来说,植物易吸收溶解在土壤中的以离子、螯合物或复合物形态存在的微量元素,植物中元素的富集程度与环境中矿质元素的含量呈一定的相关性,因此,有可能利用不同产地茶叶中矿质元素的含量差异将其区分,已有文献报道利用微量元素为判定指标区分不同产地中药及食品的可行性。
现代分析技术的一个共同特点就是对每一个样品测量所得到的分析结果都是多参量数据,对多参量数据进行分析,仅用肉眼判断或简单的数据比较来处理是难以奏效的。因此,通常使用模式识别方法来分析数据,以便最大限度提取信息。偏最小二乘法(PLS)由于具有较强的提供信息的能力而成为备受推崇的多变量校正法,在分析化学中得到了广泛的应用。
发明内容
本发明的目的是建立一种可行的利用茶叶中元素含量鉴别茶叶产地的方法,利用Excel下VBA代码,基于偏最小二乘法对不同产地茶叶元素含量进行分析并建立模型软件,提取试样后利用模型客观、准确的判定茶叶产地。
本发明的技术方案是这样实现的,该利用茶叶中元素含量鉴别茶叶产地的方法,包括如下步骤:
A、建立不同产地茶叶元素含量数据库
分别在不同茶叶原产地采集茶叶样品,利用电感耦合等离子体质谱测定茶叶中的铅、砷、镉、铬、钒、镍、钴、铜、锶、铯、钡等微量元素,利用电感耦合等离子体发射光谱测定茶叶中的钾、钙、镁、铝、锰、铁、锌、铷、钛等常量元素,利用原子荧光光谱测定茶叶中的硒元素,分别测定不同产地茶叶中21种元素含量,根据不同产地茶叶元素含量依次按列发布,保存于EXCEL电子表格中作为数据库;
B、建立不同产地茶叶偏最小二乘模型
以Excel的VBA代码为源代码,利用步骤A所得数据库建立偏最小二乘判别软件模型,已知的不同产地元素含量矩阵用X数据表示,样品分类信息用Y数据表示,先对X数据两两相除进行扩维,使其自变量数由21个增加至247个,而后使用变量筛选计算方法去除冗余变量,最终获取约30个变量用于建立模型;
C、实际样品预报
按A所述的元素测定方法测定实际茶叶样品中的21种元素含量,在偏最小二乘模型的“样品预测”中进行扩维及预报,根据预报值即可鉴别茶叶产地。
本发明建立了茶叶的元素含量数据库,利用EXCEL的VBA代码,基于偏最小二乘法建立了茶叶的多元素含量产地判别模型,为茶叶的产地鉴别提供了一种可靠的判别方法。该方法具有以下优点:
①、分析结果只由软件预报值决定,排除了人为判定的主观性与不确定性;
②、判别准确率高,能够有效应用于中国六种名茶的产地鉴别。
附图说明
图1利用茶叶中元素含量判定茶叶产地流程图;
图2茶叶PLS模型样品预测界面图。
具体实施方式
下面结合附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,依据本发明的教导所作的任何变更或替换,均属于本发明的保护范围。
实施例:对杭州西湖龙井、苏州洞庭碧螺春、安徽黄山毛峰、江西庐山云雾、福建武夷岩茶和福建安溪铁观音等六种不同产地的茶叶,通过对所含元素含量进行数学建模鉴别产地。主要步骤如下:
1、建立茶叶元素含量数据库
①、分别在原产地搜集所述6种茶叶样本;
②、茶叶样品处理
硒的样品处理参考《食品安全国家标准食品中硒的测定》GB5009.93-2010;
其余元素需称取0.5g左右试样(精确至0.001g)于微波消解罐中,加2mL水润湿样品,加5mL硝酸,静置反应2小时左右,加1mL过氧化氢,盖好消解罐放入微波消解仪中,根据仪器条件设定最优程序进行消解。冷却后转移定容至25mL,待测。若样液中待测物质浓度过大,可适当稀释或适当减少取样量。同时做试剂空白试验。微波消解参考条件见表1;
表1.微波消解参考条件
步骤 | 功率 | 升温时间 | 温度 | 保持时间 |
1 | 1600 W | 10 min | 120 ℃ | 15 min |
2 | 1600 W | 10 min | 150 ℃ | 15 min |
3 | 1600 W | 10 min | 190 ℃ | 30 min |
③、茶叶样品检测:
硒的测定参考《食品安全国家标准食品中硒的测定》GB5009.93-2010。
铅、砷、镉、铬、钒、镍、钴、铜、锶、铯、钡的测定使用ICP-MS,测量参数为:射频功率:1200W;驻留时间:10ms;测量通道:3;扫描次数:120;泵速:30rpm;冷却气流量:14L/min;辅助气流量:0.9L/min;雾化气流量:0.88L/min。其它仪器条件按仪器调谐最佳状态时设置;
钾、钙、镁、铝、锰、铁、锌、铷、钛的测定使用ICP-AES,器主要参考条件:功率1.20KW;等离子气流量:15.0L/min;辅助气流量:1.50L/min,雾化气压力:220KPa;读数时间:5s;泵速:15rpm。各元素参考分析谱线见表2;
表2.分析谱线波长(nm)
元素 | 检测波长 | 元素 | 检测波长 |
K | 769.897 | Fe | 234.350 |
Al | 237.312 | Zn | 206.200 |
Ca | 315.887 | Mn | 259.372 |
Mg | 279.800 | Rb | 780.026 |
④、建立茶叶样品数据库:
分别测定6种茶叶中21种元素含量,根据不同产地茶叶的元素含量依次按列分布,根据不同产地茶叶元素含量依次按列发布,保存于EXCEL电子表格中作为数据库。
2、建立不同产地茶叶偏最小二乘模型
偏最小二乘法(PLS)是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系:
Y=b0+b1X1+b2X2+...+bpXp
在方程中,b0是截距,bi的值是数据点1到p的回归系数。
偏最小二乘判别模型的源代码为Excel下VBA代码,已知的X数据(不同产地元素含量矩阵),和Y数据(样品分类信息,相应的茶叶类别Y=1,否则为0),先对X数据两两相除进行扩维,使其自变量数由21个增加至247个,而后使用变量筛选计算方法去除冗余变量,最终获取约30个变量用于建立模型。模型的交叉验证相关系数值大于0.9则意味着模型可靠性高。
变量筛选主要通过误差方程计算出每删除特定变量引起的误差变化的大小来选择变量,重新建立预报模型。方法在删除那些对所研究问题影响不大的变量的同时,保证模型的总误差值的增长最小。
误差方程:ΔEi=bi 2/1i TR(TTT)-1RT1i
ΔEi表示删除第i个变量时,模型总误差的增加值,通过不断删除ΔE(i)值为最小的变量达到变量筛选优化的效果。公式中:bi为线性模型第I个变量的回归系数矢量;1i为第i个分量为1,其余分量为0的一种特殊矢量;T为正交矩阵;矩阵(TTT)-1为对角矩阵;R是PLS正交分解得到的矩阵。
具体建模步骤如下:
①、将已知类别的6种茶叶样品X数据填入工作表“database”相应的位置,注意样品数据填入起始位置为工作表中的B11,不能改变;茶叶样品X数据为样品中21种元素的含量;
②、点击“扩维”按钮,得到扩维数据;
③、将茶叶样品类别Y数据填入工作表“谱数据说明”相应的位置,注意数据填入起始位置为工作表中的L6(该工作表中有6个类别样品数据)。对不同类别分别建模,将要建模的类别数据(一列数据),拷入起始位置J6。类别Y数据是根据类别自己编写的。本程序对不同类别,分别建模,依次得到对应的回归系数b(向量),并构成模型系数矩阵B;
④、进入工作表“变量筛选”后,点击“变量筛选1”按钮,再点击“继续筛选”按钮,得到第一行数据分别是:模型中的变量总数,和模型的相关系数(Cr反映模型预报能力)。第四列(从第二行开始)为ΔE(i)(表示删除第i个变量时,模型总误差的增加值,PLS变量筛选法主要根据该值来删除变量的,删除ΔE(i)值为最小的变量);
⑤、再按“自动2”按钮,会看到,模型中的变量总数在不断减少,模型的相关系数也在变化,最终目的是找到变量总数为最小,而模型的相关系数又不减小或减小不多的模型。当变量总数减少到30左右时,可手动筛选(继续减少变量总数),观察ΔE(i)的值,找到ΔE(i)的值最小对应的变量,将前一列的值,1改为0,按“继续筛选”按钮,得到模型;
⑥、当确认得到最后模型后,再点击“线性模型”按钮,得到线性模型系数,模型系数b向量也在第四列(从第二行开始,第一个为常数项),再将模型系数拷贝到“模型系数”工作表中得对应的位置;
⑦、再继续下一Y变量,“谱数据说明”工作表中,将要建模的类别数据(向量或一列数据),拷入起始位置J6,再从步骤④开始,直到完成六类茶叶模型系数矩阵B;
⑧、在“谱数据说明”工作表中设置有“数据库中样品预测”按钮,可用来检验模型的预测效果,当模型的交叉验证相关系数大于0.9时,模型有效,能满足鉴别要求;当模型交叉验证相关系数大于0.95时,可进行精准校验。
本实施例所建立茶叶模型的基本参数见表3。
3、实际样品预报
①、按1所描述的测定方法测定实际茶叶样品中21中元素含量;
②、打开工作薄文件后,进入“样品预测”工作表;
③、将茶叶21种元素数据填入相应的位置,注意软件中数据位置或起始位置(要预测样品数据填入起始位置为工作表中的B11)不能改变,可以按顺序填入若干个数据样本;
④、点击“扩维”按钮;
表3.茶叶鉴别模型基本参数表
⑤、点击“预报”按钮,得到的预报值出现在B2起始位置;
⑥、预报值大于0.8时,可判定为属于该产地,否则不属于。
综上所述,根据相应的偏最小二乘线性模型,只要测定茶叶的21种元素含量,就可以利用软件的预报功能对茶叶的产地进行判断。本发明列举的实施例旨在更进一步阐明本茶叶鉴别方法中的元素测定的具体操作过程及软件建模及预报功能的详细使用方法,而不对本发明的范围构成任何限制。
Claims (5)
1.一种利用茶叶中元素含量鉴别茶叶产地的方法,其特征包括如下步骤:
A、建立不同产地茶叶元素含量数据库
分别在不同茶叶原产地采集茶叶样品,利用电感耦合等离子体质谱测定茶叶中的铅、砷、镉、铬、钒、镍、钴、铜、锶、铯、钡,利用电感耦合等离子体发射光谱测定茶叶中的钾、钙、镁、铝、锰、铁、锌、铷、钛,利用原子荧光光谱测定茶叶中的硒元素,分别测定不同产地茶叶中21种元素含量,根据不同产地茶叶元素含量依次按列发布,保存于EXCEL电子表格中作为数据库;
B、建立不同产地茶叶偏最小二乘模型
以Excel的VBA代码为源代码,利用步骤A所得数据库建立偏最小二乘判别软件模型,已知的不同产地元素含量矩阵用X数据表示,样品分类信息用Y数据表示,先对X数据两两相除进行扩维,使其自变量数由21个增加至247个,而后使用变量筛选计算方法去除冗余变量,最终获取30个变量用于建立模型;
C、实际样品预报
按A所述的元素测定方法测定实际茶叶样品中的21种元素含量,在偏最小二乘模型的“样品预测”中进行扩维及预报,根据预报值即可鉴别茶叶产地。
2.根据权利要求1所述利用茶叶中元素含量鉴别茶叶产地的方法,其特征在于:所述步骤B包括如下步骤:
①、将已知类别的茶叶样品X数据填入工作表“database”相应的位置,茶叶样品X数据为样品中21种元素的含量;
②、点击“扩维”按钮,得到扩维数据;
③、将茶叶样品类别Y数据填入工作表“谱数据说明”相应的位置,程序对不同类别分别建模,依次得到对应的回归系数b,并构成模型系数矩阵B;
④、进入工作表“变量筛选”后,点击“变量筛选1”按钮,再点击“继续筛选”按钮,得到第一行数据分别是:模型中的变量总数,和模型的相关系数,第四列为删除第i个变量时模型总误差的增加值ΔE(i);
⑤、再按“自动2”按钮,模型中的变量总数在不断减少,模型的相关系数也在变化,当变量总数减少到30左右时,改为手动筛选,观察ΔE(i)的值,找到ΔE(i)的最小值对应的变量,将前一列的值,1改为0,按“继续筛选”按钮,得到模型;
⑥、当确认得到最后模型后,再点击“线性模型”按钮,得到线性模型系数,模型系数b向量也在第四列,再将模型系数拷贝到“模型系数”工作表中的对应位置;
⑦、再继续下一Y变量,“谱数据说明”工作表中,将要建模的类别数据拷入起始位置,再从步骤④开始,直到完成模型系数矩阵B;
⑧、在“谱数据说明”工作表中设置有“数据库中样品预测”按钮,可用来检验模型的预测效果,当模型的交叉验证相关系数大于0.9时,模型有效,能满足鉴别要求。
3.根据权利要求1或2所述利用茶叶中元素含量鉴别茶叶产地的方法,其特征在于:所述步骤A还包括如下步骤:
①、茶叶样品处理
每种茶叶样品称取0.5g左右试样,于微波消解罐中,加2mL水润湿样品,加5mL硝酸,静置反应2小时左右,加1mL过氧化氢,盖好消解罐放入微波消解仪中,根据仪器条件设定最优程序进行微波消解;冷却后转移定容至25mL,留待测定;
②、样品检测参数设定
铅、砷、镉、铬、钒、镍、钴、铜、锶、铯、钡的测定使用电感耦合等离子体质谱,测量的主要参数为:射频功率:1200W;驻留时间:10ms;测量通道:3;扫描次数:120;泵速:30rpm;冷却气流量:14L/min;辅助气流量:0.9L/min;雾化气流量:0.88L/min;
钾、钙、镁、铝、锰、铁、锌、铷、钛的测定使用电感耦合等离子体发射光谱,测量的主要参数为:功率1.20KW;等离子气流量:15.0L/min;辅助气流量:1.50L/min,雾化气压力:220KPa;读数时间:5s;泵速:15rpm。
4.根据权利要求1所述的利用茶叶中元素含量鉴别茶叶产地的方法,其特征在于:所述步骤C中软件模型的预报值大于0.8时,可判定为属于该产地,否则不属于。
5.根据权利要求2所述利用茶叶中元素含量鉴别茶叶产地的方法,其特征在于:步骤⑧所获得的模型交叉验证相关系数大于0.95。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210307144.2A CN103630528B (zh) | 2012-08-27 | 2012-08-27 | 一种利用茶叶中元素含量鉴别茶叶产地的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210307144.2A CN103630528B (zh) | 2012-08-27 | 2012-08-27 | 一种利用茶叶中元素含量鉴别茶叶产地的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103630528A CN103630528A (zh) | 2014-03-12 |
CN103630528B true CN103630528B (zh) | 2016-01-13 |
Family
ID=50211803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210307144.2A Expired - Fee Related CN103630528B (zh) | 2012-08-27 | 2012-08-27 | 一种利用茶叶中元素含量鉴别茶叶产地的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103630528B (zh) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104101570B (zh) * | 2014-05-06 | 2016-05-11 | 浙江省海洋开发研究院 | 一种红外光谱法检测带鱼产地的方法 |
CN104122241B (zh) * | 2014-07-03 | 2017-02-15 | 广西壮族自治区药用植物园 | 一种快速测定三叶青中硒含量的方法 |
CN104198575B (zh) * | 2014-09-23 | 2016-08-17 | 华中科技大学 | 具有溯源功能的电感耦合等离子质谱信号分析方法 |
CN104897709A (zh) * | 2015-06-15 | 2015-09-09 | 江苏大学 | 一种基于x-射线荧光分析的农产品元素定量检测模型构建方法 |
CN106628609A (zh) * | 2015-10-30 | 2017-05-10 | 邓全 | 防伪包装的制作方法、装置、验证方法及防伪土样包用途 |
CN105628780B (zh) * | 2015-12-22 | 2018-11-13 | 中国农业科学院茶叶研究所 | 一种扁形茶的产地识别方法 |
CN106560692A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 联合四种检验技术的武夷岩茶产地鉴别方法 |
CN106560702A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 联合电子舌和色谱分离技术的武夷岩茶产地鉴别方法 |
CN106560691A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 具有深度学习功能的武夷岩茶产地鉴别方法 |
CN106560698A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 基于多种检测技术的植物产地鉴别方法 |
CN106560699A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 用于武夷岩茶产地鉴别的联合检测方法 |
CN106560700A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 能自动鉴别武夷岩茶产地的机器学习方法 |
CN106560694A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 基于多种检验技术的武夷岩茶产地智能鉴别方法 |
CN106324075B (zh) * | 2016-10-20 | 2019-07-12 | 黄河三角洲京博化工研究院有限公司 | 电感耦合等离子体质谱法测定富硒蔬菜中有机硒含量的方法 |
CN106560696A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 联合近红外和稳定同位素检验的武夷岩茶产地鉴别方法 |
CN106560701A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 基于五隐藏层的武夷岩茶产地深度学习系统 |
CN106560697A (zh) * | 2016-10-20 | 2017-04-12 | 中国计量大学 | 联合近红外光谱和微量元素的武夷岩茶产地鉴别方法 |
CN106770604A (zh) * | 2016-11-11 | 2017-05-31 | 吉林省产品质量监督检验院 | 利用同位素指纹分析溯源大米原产地的方法 |
CN106855546B (zh) * | 2017-02-21 | 2019-09-24 | 中国农业科学院茶叶研究所 | ASE提取IC-ICP-MS联用测定茶叶中Cr的方法及应用 |
CN109632770A (zh) * | 2018-12-14 | 2019-04-16 | 湖北省兴发磷化工研究院有限公司 | 一种测定草甘膦废母液中金属离子含量的方法 |
CN109916991A (zh) * | 2019-04-09 | 2019-06-21 | 新疆大学 | 一种基于金属元素结合pls-da模型判别啤酒花品种和产地的方法 |
CN112710722A (zh) * | 2019-10-26 | 2021-04-27 | 复旦大学 | 一种基于机器学习的生物标志物扩维筛选方法 |
CN114708001A (zh) * | 2022-03-19 | 2022-07-05 | 中国地质大学(武汉) | 基于spss因子分析和判别分析的祖母绿产地溯源方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101158657A (zh) * | 2007-11-12 | 2008-04-09 | 浙江大学 | 基于x射线荧光技术的茶叶产地鉴别方法 |
KR20080075761A (ko) * | 2007-02-13 | 2008-08-19 | 순천대학교 산학협력단 | 근적외선 분광광도계를 이용한 한국산과 일본산 녹차제품의 지리적 원산국 판별 방법 |
CN101303296A (zh) * | 2008-06-20 | 2008-11-12 | 中国农业科学院茶叶研究所 | 地理标志保护的西湖龙井的真伪鉴别方法 |
CN101413883A (zh) * | 2008-11-20 | 2009-04-22 | 河北大学 | 一种用红外光谱技术鉴别茶叶产地的方法 |
-
2012
- 2012-08-27 CN CN201210307144.2A patent/CN103630528B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080075761A (ko) * | 2007-02-13 | 2008-08-19 | 순천대학교 산학협력단 | 근적외선 분광광도계를 이용한 한국산과 일본산 녹차제품의 지리적 원산국 판별 방법 |
CN101158657A (zh) * | 2007-11-12 | 2008-04-09 | 浙江大学 | 基于x射线荧光技术的茶叶产地鉴别方法 |
CN101303296A (zh) * | 2008-06-20 | 2008-11-12 | 中国农业科学院茶叶研究所 | 地理标志保护的西湖龙井的真伪鉴别方法 |
CN101413883A (zh) * | 2008-11-20 | 2009-04-22 | 河北大学 | 一种用红外光谱技术鉴别茶叶产地的方法 |
Non-Patent Citations (4)
Title |
---|
利用矿质元素的测定数据判别茶叶的产地和品种;康海宁 等;《岩矿测试》;20060331;第25卷(第1期);第22-26页 * |
基于现代仪器分析技术实现茶叶产地鉴别的研究进展;王倩 等;《现代仪器》;20111130;第17卷(第6期);第1-3页 * |
应用FT-IR光谱指纹分析和模式识别技术溯源茶叶产地的研究;占茉莉 等;《核农学报》;20081231;第22卷(第6期);第829-833页 * |
绿茶矿质元素特征分析及产地判别研究;罗婷 等;《食品科学》;20081130;第29卷(第11期);第494-497页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103630528A (zh) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103630528B (zh) | 一种利用茶叶中元素含量鉴别茶叶产地的方法 | |
Turner et al. | Pervasive phosphorus limitation of tree species but not communities in tropical forests | |
Chudzinska et al. | Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity | |
Durante et al. | An analytical approach to Sr isotope ratio determination in Lambrusco wines for geographical traceability purposes | |
CN105259160B (zh) | 一种基于离子组学的西湖龙井茶产地识别方法 | |
Yücel et al. | Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics | |
CN105044198B (zh) | 一种基于矿质元素指纹鉴别葡萄酒原产地的方法 | |
Canizo et al. | Intra-regional classification of grape seeds produced in Mendoza province (Argentina) by multi-elemental analysis and chemometrics tools | |
CN104458891A (zh) | 一种利用电感耦合等离子体质谱进行茶叶产地溯源的方法 | |
CN107424003A (zh) | 一种基于稳定性同位素比率和多元素的杨梅产地溯源方法 | |
CN106560698A (zh) | 基于多种检测技术的植物产地鉴别方法 | |
Shen et al. | Determination of the geographic origin of rice by element fingerprints and correlation analyses with the soil of origin | |
CN106885851B (zh) | 一种基于手性定量分析技术的红茶产地判别方法 | |
Liu et al. | Combination of the 87Sr/86Sr ratio and light stable isotopic values (δ13C, δ15N and δD) for identifying the geographical origin of winter wheat in China | |
Damak et al. | Interregional traceability of Tunisian olive oils to the provenance soil by multielemental fingerprinting and chemometrics | |
CN108596246A (zh) | 基于深度神经网络的土壤重金属含量检测模型的建立方法 | |
CN106560692A (zh) | 联合四种检验技术的武夷岩茶产地鉴别方法 | |
CN106560697A (zh) | 联合近红外光谱和微量元素的武夷岩茶产地鉴别方法 | |
CN106560691A (zh) | 具有深度学习功能的武夷岩茶产地鉴别方法 | |
CN106560693A (zh) | 基于偏最小二乘判别的武夷岩茶产地鉴别方法 | |
Mahmood et al. | A critical review and database of biomass and volume allometric equation for trees and shrubs of Bangladesh | |
Hu et al. | Determination of rare earth elements in navel oranges from different geographical regions of China by inductively coupled plasma-mass spectrometry | |
CN110596080A (zh) | 一种基于矿质元素的金鲳鱼产地鉴别方法 | |
CN110412115A (zh) | 基于稳定同位素和多元素的未知年份绿茶原产地预测方法 | |
Amenta et al. | Traceability of ‘Limone di Siracusa PGI’by a multidisciplinary analytical and chemometric approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
CB03 | Change of inventor or designer information |
Inventor after: Chen Bo Inventor after: Jin Baohui Inventor after: Yan Zhi Inventor after: Xie Liqi Inventor after: Lin Yankui Inventor after: Tu Xiaoke Inventor after: Wang Bingtao Inventor after: Zhu Eryi Inventor before: Chen Bo |
|
COR | Change of bibliographic data | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160113 Termination date: 20200827 |
|
CF01 | Termination of patent right due to non-payment of annual fee |