CN103609013B - 利用不对称电压消除技术控制lcl变换器的方法和设备 - Google Patents

利用不对称电压消除技术控制lcl变换器的方法和设备 Download PDF

Info

Publication number
CN103609013B
CN103609013B CN201280017691.5A CN201280017691A CN103609013B CN 103609013 B CN103609013 B CN 103609013B CN 201280017691 A CN201280017691 A CN 201280017691A CN 103609013 B CN103609013 B CN 103609013B
Authority
CN
China
Prior art keywords
control variables
point
circuit
inductor
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280017691.5A
Other languages
English (en)
Chinese (zh)
Other versions
CN103609013A (zh
Inventor
K·D·西利
B·T·莎帕
H·吴
A·吉尔克里斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utah State University
Original Assignee
Utah State University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utah State University filed Critical Utah State University
Publication of CN103609013A publication Critical patent/CN103609013A/zh
Application granted granted Critical
Publication of CN103609013B publication Critical patent/CN103609013B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Networks Using Active Elements (AREA)
  • Feedback Control In General (AREA)
CN201280017691.5A 2011-03-11 2012-03-12 利用不对称电压消除技术控制lcl变换器的方法和设备 Expired - Fee Related CN103609013B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161451823P 2011-03-11 2011-03-11
US61/451,823 2011-03-11
PCT/US2012/028829 WO2012125590A2 (en) 2011-03-11 2012-03-12 Method and apparatus for controlling lcl converters using asymmetric voltage cancellation techniques

Publications (2)

Publication Number Publication Date
CN103609013A CN103609013A (zh) 2014-02-26
CN103609013B true CN103609013B (zh) 2016-03-09

Family

ID=46831292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280017691.5A Expired - Fee Related CN103609013B (zh) 2011-03-11 2012-03-12 利用不对称电压消除技术控制lcl变换器的方法和设备

Country Status (7)

Country Link
US (1) US9246409B2 (enExample)
EP (1) EP2684286A2 (enExample)
JP (1) JP2014508499A (enExample)
KR (1) KR20140041461A (enExample)
CN (1) CN103609013B (enExample)
BR (1) BR112013023212A2 (enExample)
WO (1) WO2012125590A2 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696571A (zh) * 2020-12-31 2022-07-01 致茂电子(苏州)有限公司 电压控制方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ587357A (en) 2010-08-13 2013-03-28 Auckland Uniservices Ltd Control circuit for pick-up in inductive power transfer system selectively shunts diodes in rectifier bridge to reduce transient disturbances to primary current
US9494631B2 (en) * 2012-05-04 2016-11-15 Det International Holding Limited Intelligent current analysis for resonant converters
US20140152250A1 (en) * 2012-11-30 2014-06-05 General Electric Company System and method for controlling output power in a contactless power transfer system
JP2014233187A (ja) * 2013-05-30 2014-12-11 トヨタ自動車株式会社 送電装置およびそれを備える電力伝送システム
CN108429359B (zh) * 2013-09-04 2021-05-04 恩智浦美国有限公司 具有宽输入电压范围的无线电力发射器及其操作方法
WO2015156689A1 (en) 2014-04-09 2015-10-15 Auckland Uniservices Limited Inductive power transfer converters and system
RU2565664C1 (ru) * 2014-07-15 2015-10-20 Самсунг Электроникс Ко., Лтд. Способ управления в системах беспроводной передачи мощности
US9276413B1 (en) 2014-09-25 2016-03-01 Navitas Semiconductor, Inc. Soft switched single stage wireless power transfer
US9876442B2 (en) * 2014-10-10 2018-01-23 The Regents Of The University Of California Robust single-phase DC/AC inverter for highly varying DC voltages
CN104539031B (zh) * 2014-12-29 2018-01-30 哈尔滨工业大学 基于无线能量传输系统的无线充电方法
US10046660B2 (en) 2015-06-19 2018-08-14 Qualcomm Incorporated Devices, systems, and methods using reactive power injection for active tuning electric vehicle charging systems
US10680457B2 (en) * 2015-07-27 2020-06-09 Witricity Corporation Systems, methods, and apparatus implementing hybrid symmetric and asymmetric control for soft switching in wireless power transfer applications
US10418916B2 (en) * 2015-12-23 2019-09-17 Daming Zhang Circuits of voltage source DC/AC converter with LCCL or LCC filter and other modified forms, and operation of microgrid with such circuits
US9667157B1 (en) * 2016-04-27 2017-05-30 General Electric Company System and method for operating a power converter
WO2018048312A1 (en) 2016-09-06 2018-03-15 Powerbyproxi Limited An inductive power transmitter
DE102016219742A1 (de) * 2016-10-11 2018-04-12 Robert Bosch Gmbh Regelvorrichtung für einen Gleichspannungswandler, Gleichspannungswandler und Verfahren zur Regelung eines Gleichspannungswandlers
CN106685103B (zh) * 2016-12-23 2020-07-28 中国人民解放军海军工程大学 一种lccl谐振结构的参数设置方法
US10369891B2 (en) 2017-02-20 2019-08-06 Ford Global Technologies, Llc Wireless power transfer system parameter estimation
CN106991221B (zh) * 2017-03-24 2020-04-24 清华大学 一种基于igbt器件瞬态物理过程的分段折线建模方法
US10974608B2 (en) * 2017-07-19 2021-04-13 Hyundai Motor Company Method and apparatus for selectively performing full bridge control and half bridge control in wireless power transfer system using LCCL-S resonant network
WO2019126828A1 (en) 2017-12-22 2019-06-27 Wireless Advanced Vehicle Electrification, Inc. Wireless power transfer pad with multiple windings
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
US11437854B2 (en) 2018-02-12 2022-09-06 Wireless Advanced Vehicle Electrification, Llc Variable wireless power transfer system
CN108832832B (zh) * 2018-07-03 2020-11-24 华南理工大学 一种交错并联并网逆变器
GB2580117A (en) * 2018-12-21 2020-07-15 Bombardier Primove Gmbh An antenna arrangement and a method of operating an antenna arrangement
CN111669055B (zh) * 2019-03-08 2021-05-28 台达电子企业管理(上海)有限公司 电压转换电路及其控制方法
EP3809555A4 (en) 2019-03-27 2021-08-11 Huawei Technologies Co., Ltd. WIRELESS CHARGING TRANSMISSION APPARATUS, TRANSMISSION PROCESS AND WIRELESS CHARGING SYSTEM
DE102019124568A1 (de) * 2019-09-12 2021-03-18 Tdk Electronics Ag Verfahren zum Betreiben eines drahtlosen Ladegeräts und drahtloses Ladegerätsystem
EP4145692A4 (en) * 2020-05-29 2023-06-07 Huawei Digital Power Technologies Co., Ltd. SWITCH INDUCTOR POWER CONVERTER, COMMUNICATION SYSTEM AND METHOD
TWI783340B (zh) * 2020-12-31 2022-11-11 致茂電子股份有限公司 電壓控制方法
EP4282053A4 (en) * 2021-01-22 2025-01-22 Auckland Uniservices Limited Duty cycle control in polyphase wireless power transfer systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
CN1286521A (zh) * 2000-10-19 2001-03-07 南京航空航天大学 带钳位二极管的零电压开关三电平直流变换器
CN201213241Y (zh) * 2008-06-04 2009-03-25 中兴通讯股份有限公司 一种零电压开关三电平直流变换电路
CN101728961A (zh) * 2009-12-09 2010-06-09 艾默生网络能源有限公司 一种ac/dc变换器

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661897A (en) 1985-01-23 1987-04-28 Allied Corporation Phase modulated, resonant power converting high frequency link inverter/converter
FR2738417B1 (fr) 1995-08-30 1997-11-07 Gaia Converter Convertisseur de tension continue a commutation douce
AU752159B2 (en) 1997-05-06 2002-09-05 Auckland Uniservices Limited Inductive power transfer across an extended gap
JPH11224822A (ja) * 1998-02-04 1999-08-17 Hitachi Kiden Kogyo Ltd 非接触給電装置における高調波電流抑制方法
GB2336223B (en) * 1998-04-09 2000-04-19 Alstom Uk Ltd Improvements in or relating to the application of power-factor correction in AV power systems
US6160374A (en) * 1999-08-02 2000-12-12 General Motors Corporation Power-factor-corrected single-stage inductive charger
US6291968B1 (en) 2000-05-08 2001-09-18 Lear Corporation System for automatically charging the battery of a remote transmitter for use in a vehicle security system
US6448745B1 (en) 2002-01-08 2002-09-10 Dialog Semiconductor Gmbh Converter with inductor and digital controlled timing
JP3835409B2 (ja) * 2002-01-24 2006-10-18 三菱電機株式会社 電力変換装置の制御装置
US7148669B2 (en) * 2004-02-02 2006-12-12 The Regents Of The University Of Colorado, A Body Corporate Predictive digital current controllers for switching power converters
US7957164B2 (en) * 2004-04-21 2011-06-07 Mitsubishi Electric Corporation Power device for supplying AC voltage to a load having a discharge part
US7196916B2 (en) 2005-02-14 2007-03-27 University Of Central Florida Research Foundation Alternated duty cycle control method for half-bridge DC-DC converter
FR2884075A1 (fr) 2005-04-04 2006-10-06 Thomson Licensing Sa Convertisseur de tension continue a commutation douce
TWI327402B (en) 2006-08-14 2010-07-11 Ching Tsai Pan Power circuit component parameters design method for compensating the loosely coupled inductive power transfer system
JP4780195B2 (ja) 2006-09-29 2011-09-28 トヨタ自動車株式会社 電源装置、および電源装置を備える車両
WO2008051611A2 (en) 2006-10-25 2008-05-02 Farkas Laszio High power wireless resonant energy transfer system transfers energy across an airgap
US7652459B2 (en) 2007-02-23 2010-01-26 Intel Corporation Adaptive controller with mode tracking and parametric estimation for digital power converters
KR20150040373A (ko) 2007-05-10 2015-04-14 오클랜드 유니서비시즈 리미티드 멀티 전력을 공급받는 전기 자동차
RU2492567C2 (ru) 2008-01-07 2013-09-10 Эксесс Бизнес Груп Интернейшнл Ллс Индуктивный источник питания с контролем рабочего цикла
US8085024B2 (en) * 2008-04-29 2011-12-27 Exar Corporation Self-tuning digital current estimator for low-power switching converters
US20110049978A1 (en) 2008-10-02 2011-03-03 Toyota Jidosha Kabushiki Kaisha Self-resonant coil, non-contact electric power transfer device and vehicle
US9199516B2 (en) 2009-05-11 2015-12-01 Koninklijke Philips N.V. Inductive power transfer for wireless sensor systems inside a tire
GB2488086B (en) 2010-01-05 2014-11-05 Access Business Group Int Llc Inductive charging system for electric vehicle
EP2362515B1 (en) * 2010-02-19 2012-07-25 ABB Research Ltd Control method for single-phase grid-connected LCL inverter
KR101801998B1 (ko) 2010-04-30 2017-11-27 파워매트 테크놀로지스 엘티디. 확장된 구역에서 유도전력 전송을 하는 시스템과 방법
CA2801920A1 (en) 2010-06-10 2011-12-15 Access Business Group International Llc Coil configurations for inductive power transfer
WO2012001291A2 (fr) 2010-07-01 2012-01-05 Renault S.A.S. Charge sans contact d'une batterie de vehicule automobile
WO2012007942A2 (en) 2010-07-12 2012-01-19 Powermat Ltd. Power management system and method for an inductive power transfer system
TW201318320A (zh) * 2011-10-26 2013-05-01 Hon Hai Prec Ind Co Ltd 諧振頻率調整電路
US8885376B2 (en) * 2012-05-31 2014-11-11 Analog Devices, Inc. Switching regulator with integrated resonant circuit for ripple filtering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
CN1286521A (zh) * 2000-10-19 2001-03-07 南京航空航天大学 带钳位二极管的零电压开关三电平直流变换器
CN201213241Y (zh) * 2008-06-04 2009-03-25 中兴通讯股份有限公司 一种零电压开关三电平直流变换电路
CN101728961A (zh) * 2009-12-09 2010-06-09 艾默生网络能源有限公司 一种ac/dc变换器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Characteristics and Design of an Asymmetrical Duty-Cycle-Controlled LCL-T Resonant Converter;Mangesh B et al.;《IEEE TRANSACTIONS ON POWER ELECTRONICS》;20091031;第24卷(第10期);第2268-2275页 *
Detection of the Tuned Point of a Fixed-Frequency LCL Resonant Power Supply;Michael L et al.;《Detection of the Tuned Point of a Fixed-Frequency LCL Resonant Power Supply》;20090430;第24卷(第4期);第1140-1143页 *
Efficiency Optimization in ZVS Series Resonant Inverters With Asymmetrical Voltage-Cancellation Control;Luis A. Barragán et al.;《IEEE TRANSACTIONS ON POWER ELECTRONICS》;20050930;第20卷(第5期);第1036-1044页 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696571A (zh) * 2020-12-31 2022-07-01 致茂电子(苏州)有限公司 电压控制方法
CN114696571B (zh) * 2020-12-31 2025-08-26 致茂电子(苏州)有限公司 电压控制方法

Also Published As

Publication number Publication date
WO2012125590A3 (en) 2012-12-27
JP2014508499A (ja) 2014-04-03
BR112013023212A2 (pt) 2017-01-03
KR20140041461A (ko) 2014-04-04
WO2012125590A2 (en) 2012-09-20
US20130039099A1 (en) 2013-02-14
CN103609013A (zh) 2014-02-26
US9246409B2 (en) 2016-01-26
WO2012125590A9 (en) 2012-11-08
EP2684286A2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
CN103609013B (zh) 利用不对称电压消除技术控制lcl变换器的方法和设备
Mukherjee et al. A high power density wide range DC–DC converter for universal electric vehicle charging
Min et al. Bidirectional resonant CLLC charger for wide battery voltage range: Asymmetric parameters methodology
Liu et al. A parameter identification approach with primary-side measurement for DC–DC wireless-power-transfer converters with different resonant tank topologies
Burkhart et al. Design methodology for a very high frequency resonant boost converter
Liu et al. A modulation compensation scheme to reduce input current distortion in GaN-based high switching frequency three-phase three-level Vienna-type rectifiers
George Design and control of a bidirectional dual active bridge DC-DC converter to interface solar, battery storage, and grid-tied inverters
D'Antonio et al. Design optimization for weighted conduction loss minimization in a dual-active-bridge-based PV microinverter
Deng et al. Data-driven modeling and control considering time delays for WPT system
Zan et al. 100 MHz symmetric current-mode class D wireless power transfer
James et al. Adaptive modulation of resonant DAB converters for wide range ZVS operation with minimum reactive circulating power
Sun et al. Accurate rectifier characterization and improved modeling of constant power load wireless power transfer systems
Liu et al. A New Simplified Method and Design Guidelines for the Optimization of Push–Pull Class $\Phi _ {2} $ Converters for Wireless Power Transfer Applications
Huang et al. Load-Independent Push–Pull Class-$\Phi _ {2} $ Inverter With Single Compact Three-Winding Inductor
Pamungkas et al. Equivalent circuit approach for output characteristic design of capacitive power transfer
Lee et al. Design and analysis of resonant network for dual active bridge converter
Cochran et al. Modeling a 6.78 mhz synchronous wpt rectifier with reduced thd
Jolly et al. Multi-constraint optimization and co-design of a 2-MHz all-GaN based 700 W 95.6% efficient LLC converter
Zan et al. Inductive wireless power transfer at 100MHz with wide load range and constant output current
Lemmen et al. Advances in high-precision amplifiers—The extra L opposed current converter
CN110447163A (zh) 电力变换装置
CN117791897A (zh) 宽范围zvs的恒流/恒压双向ipt系统及其参数设计方法
Sengupta et al. Analysis and verification of the series resonant converter for constant power loads
Soh et al. Conduction loss analysis according to variation of resonant parameters in a zero-current switching boost converter
Nikiforidis et al. A 9 kW 3.47 MHz Wireless Power Transfer System with a Parallel Differential Class E Inverter for Industrial Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160309

Termination date: 20190312