CN103601483B - 镧锰掺杂锶铁氧体磁性粉体的合成方法 - Google Patents
镧锰掺杂锶铁氧体磁性粉体的合成方法 Download PDFInfo
- Publication number
- CN103601483B CN103601483B CN201310635351.5A CN201310635351A CN103601483B CN 103601483 B CN103601483 B CN 103601483B CN 201310635351 A CN201310635351 A CN 201310635351A CN 103601483 B CN103601483 B CN 103601483B
- Authority
- CN
- China
- Prior art keywords
- strontium ferrite
- lanthanum
- manganese
- magnetic powder
- coercive force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052746 lanthanum Inorganic materials 0.000 title claims abstract description 12
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 239000006247 magnetic powder Substances 0.000 title claims description 8
- 238000010189 synthetic method Methods 0.000 title claims 2
- HHZHOPJRSHTPOP-UHFFFAOYSA-N [O--].[O--].[Fe++].[Sr++] Chemical compound [O--].[O--].[Fe++].[Sr++] HHZHOPJRSHTPOP-UHFFFAOYSA-N 0.000 title 1
- 239000000654 additive Substances 0.000 title 1
- 230000000996 additive effect Effects 0.000 title 1
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 30
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 28
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 23
- 238000003756 stirring Methods 0.000 claims abstract description 12
- -1 salt compounds Chemical class 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 5
- 239000008367 deionised water Substances 0.000 claims abstract description 4
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 4
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 30
- 239000011572 manganese Substances 0.000 claims description 15
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 150000003841 chloride salts Chemical class 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 229910001415 sodium ion Inorganic materials 0.000 claims description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 claims 1
- 238000010304 firing Methods 0.000 claims 1
- 150000002823 nitrates Chemical class 0.000 claims 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims 1
- 239000000843 powder Substances 0.000 abstract description 10
- 239000011858 nanopowder Substances 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 7
- 238000000975 co-precipitation Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 239000002244 precipitate Substances 0.000 abstract description 6
- 238000001308 synthesis method Methods 0.000 abstract description 5
- 238000001556 precipitation Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 abstract description 2
- 229910002651 NO3 Inorganic materials 0.000 abstract description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 abstract 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract 1
- 239000000696 magnetic material Substances 0.000 abstract 1
- 238000003760 magnetic stirring Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 12
- 230000005415 magnetization Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 238000013313 FeNO test Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- AUFVVJFBLFWLJX-UHFFFAOYSA-N [Mn].[La] Chemical compound [Mn].[La] AUFVVJFBLFWLJX-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
Landscapes
- Compounds Of Iron (AREA)
- Hard Magnetic Materials (AREA)
- Magnetic Record Carriers (AREA)
Abstract
本发明涉及一种磁矫顽力可调的镧锰掺杂锶铁氧体纳米粉末的配方及合成方法,属于化学共沉淀法制备及磁性材料制备技术领域。该方法是以铁、锶、锰、镧的可溶性盐类化合物(如氯化盐、硝酸盐、硫酸盐、醋酸盐),按照一定摩尔比溶解于去离子水中,外加磁力搅拌,然后加入三乙胺溶液中,边倾倒边搅拌,直至没有沉淀析出,将沉淀过滤,在烘箱中120℃除水,再次研磨,经900℃烧结制备出镧锰掺杂锶铁氧体纳米粉体。粉体经XRD表征,证明锶铁氧体保持原结构。使用扫描电镜观察其微观结构主要为棒状及六角片状半透明晶体。通过改变镧锰掺杂量,可以有效调节锶铁氧体的矫顽力,适应不同磁记录材料的需求,有利于扩大锶铁氧体的应用范围。
Description
技术领域
本发明涉及锶铁氧体磁性粉体纳米结构的合成方法,特别是使用三乙胺作为沉淀剂的共沉淀法,可使矫顽力在一定范围内可调。
背景技术
永磁铁氧体具有原材料广泛、化学稳定性好、价格便宜和矫顽力高等优点,因此其至今仍是应用最广泛、产量最高的永磁材料。但随着科学技术的发展,对永磁铁氧体也提出了更高的要求。为了获得高性能的铁氧体超微粉末,大多数研究都是从合成方法和元素掺杂两方面加以考虑。目前制备方法主要有陶瓷法、化学共沉法、水热法、溶胶-凝胶法等等。
(1)水热法通过高温高压制备磁性粉体有反应速度快,可以制备常温不易制备的特殊材料的作用。但是不适合工业生产,对设备要求较高,有些原料易产生分解等问题。
(2)陶瓷法是工业最常用制备磁性粉体的方法。该方法最大的优点是前处理简单,生产规模较大。但是金属氧化物活性较低,因此常常需要较高的反应温度,产品中容易出现杂相,并且不均匀。
(3)溶胶-凝胶法也是一种常用方法,产品质量较为均匀,粉体形貌较易控制。但是该方法成本较高,另外对反应体系有要求,不是每种体系均可使用。此外,产品中容易出现杂质,副产物不易分离。
(4)化学共沉淀法利用沉淀剂将金属等阳离子在较短时间内共沉淀,实现了原料在纳米级别的混合,这有利于提高产物的均匀性,同时设备简单,适合大规模生产,而且能耗较低。
上述几种方法虽然均可制备稀土掺杂纳米锶铁氧体,但是对于杂质分离、产品均匀性方面均不如共沉淀法。通过我们的实验表明,我们制备的稀土掺杂锶铁氧体磁性粉体产品高度晶化,颗粒均匀,矫顽力在一定范围可调,适合作为磁记录材料等。
发明内容
本发明的目的是提供一种工艺简单、成本低、制备过程便于操作和控制的镧锰掺杂锶铁氧体纳米磁性粉体的新型合成方法。通过在低温常压条件下利用La、Mn替代M型锶铁氧体中Sr、Fe离子,经煅烧直接制备Sr1-xFe12-xLaxMnxO19(x=0~0.35)纳米粉体。本方法中提出使用三乙胺作为沉淀剂,将消除产品中钠等杂离子。使用烘箱在120℃除水后再次研磨,保证多种金属离子混合更加均匀,经多次实验发现900℃烧结制备出稀土及锰掺杂锶铁氧体纳米粉体纯度最好。
1、使用镧(稀土离子)、锰(过渡金属离子)对锶铁氧体进行掺杂,通过对锶铁氧体的电子数量和自旋结构的调整实现对材料磁性的调节。
2、使用三乙胺做沉淀剂,提高产品纯度,改善其磁性。
3、将前驱体研磨并在900℃焙烧,使得产品结晶纯度较高。
在上述制备方法中,所述的可溶性盐类化合物为氯化盐、硝酸盐、硫酸盐、醋酸盐中的一种或几种,所用的沉淀剂为三乙胺、碳酸钠、碳酸盐的一种或几种。一定的搅拌条件为磁力搅拌器或手动搅拌均可。搅拌过程中边倾倒边搅拌,直至没有气泡逸出,过滤,固液分离。均匀混合所需的一定条件为一定反应温度、浓度、混合方法和混合速率。所述的一定反应温度为10-80℃,搅拌时间为30-60min,所述的盐类浓度为0.01~10 mol/L。过滤装置为布氏漏斗、抽滤装置的一种或几种。
利用本发明的合成方法制备锶铁氧体保持原结构,并可以在常压下直接从溶液中沉淀出粉体,经烧结后可直接制备出直径约200nm,长径比10:1的纳米棒材和直径约500纳米厚度50纳米的六角形片状颗粒。比饱和磁化强度和比剩余磁化强度均比未掺杂样品的强度随镧锰掺杂量可调,有利于扩大锶铁氧体在磁记录方面的应用。
本方法通过改善沉淀剂,改变镧锰掺杂量可以方便地控制镧锰等稀土和过渡元素掺杂到锶铁氧体中,实现纳米粉体形貌可控,相对于溶胶凝胶降低了成本,相对于陶瓷法,提高了产品纯度。相对于其它共沉淀法,由于使用三乙胺作为沉淀剂,有效的去除了产品中微量的钠离子,并使得掺杂元素更加均匀的分布,实现了对磁性调节的可控。
附图说明
图1 为实施例1所述的稀土不同掺杂量预烧粉末经900℃退火的XRD图谱。
图2 为实施例2所述的掺杂量x=0.2的磁性纳米粉体的SEM照片。
图3 为实施例2所述的掺杂量x=0及x=0.2样品的磁滞回线。
图4 为实施例3所述的样品的比饱和磁化强度(Ms)和比剩余磁化强度(Mr)随掺杂量x的变化。
图5 为实施例3所述的样品的内禀矫顽力随掺杂量x的变化。
图6 为实施例2所述的磁性纳米粉体的能谱分析数据。
具体实施方式
下面结合具体实施例对本发明进行详细描述,需要说明的是,本发明的保护范围并不仅限于下述实施例。
实施例1
先将FeCl3、La(NO3)·6H2O、SrCl2·4H2O、MnCl2·4H2O溶解于去离子水中,在搅拌器上搅拌,然后倒至三乙胺溶液,边倾倒边搅拌,直至没有沉淀析出,然后在加热型搅拌器上70℃搅拌1h,用布氏漏斗抽滤,将沉淀物置于干燥箱中120℃干燥,研磨成粉,放入马弗炉中900℃焙烧并保温2h。图1为稀土不同掺杂量预烧粉末在900℃退火后的XRD图谱,表明样品在900℃退火后晶格没有发生变化,形成了单一的锶铁氧体相,这说明La3+、Mn2+离子已经以填隙的形式完全融入了锶铁氧体晶格结构中。根据XRD图谱,利用谢乐公式计算的样品晶粒尺寸约为280nm,远小于锶铁氧体的单畴临界尺寸。这说明采用该方法制备工艺可以在较低的温度下获得单相单畴铅石结构的锶铁氧体。
实施例2
先将FeNO3、La(NO3)3·6H2O、SrCl2·4H2O、MnCl2·4H2O溶解于三乙胺中,将La-Mn替代M型锶铁氧体Sr1-xFe12-xLaxMnxO19(x=0~0.35)作为先驱体,在搅拌器上搅拌,然后倒至三乙胺溶液,边倾倒边搅拌,直至没有沉淀析出,然后在加热型搅拌器上70℃搅拌1h,用布氏漏斗抽滤,将沉淀物置于干燥箱中120℃干燥,研磨成粉,放入马弗炉中900℃焙烧并保温2h。图2为可控成分x=0.2的扫描电镜照片,SEM表明产物直径约200nm,长径比10:1的纳米棒材及直径为500纳米的六角片状粉体。由图6可以看出样品只含有Sr、La、Mn、Fe、O元素,这也可以说明所制备的样品不含有任何杂质。通过对掺杂La、Mn化合物的成分可知,掺杂量为0.2的样品的剩磁、矫顽力均比未掺杂样品高,这表明适量La-Mn掺杂可以有效控制锶铁氧体的磁性,见图3。
实施例3
先将FeCl3、LaCl3·6H2O、SrCl2·4H2O、MnCl2·4H2O溶解于去离子水中,将La-Mn替代M型锶铁氧体Sr1-xFe12-xLaxMnxO19(x=0~0.35)作为先驱体,在搅拌器上搅拌,然后倒至三乙胺溶液,边倾倒边搅拌,直至没有沉淀析出,然后在加热型搅拌器上50℃搅拌1h,用布氏漏斗抽滤,将沉淀物置于干燥箱中120℃干燥,研磨成粉,放入马弗炉中900℃焙烧并保温2h。图4为样品的比饱和磁化强度和比剩余磁化强度随掺杂量x的变化。当掺杂量x=0.15时,矫顽力较高,其它掺杂量时,矫顽力下降较快,这表明La-Mn掺杂量可以有效控制锶铁氧体的矫顽力,见图5。
Claims (1)
1.镧锰掺杂锶铁氧体磁性粉体的合成方法,其特征在于:该方法是将La-Mn替代M型锶铁氧体Sr1-xFe12-xLaxMnxO19中Sr及Fe原子,其中x=0~0.35,且x≠0,通过改变镧锰掺杂量,在较大范围调整磁性粉体矫顽力:
(1)将Sr、Fe、Mn、La的可溶性盐类化合物溶于去离子水,使用三乙胺作为沉淀剂,制备碱性前驱体,在反应温度为10~80℃、搅拌时间为30~60min的条件下,去除产品中影响性能的钠离子,固液分离;
(2)将前驱体在烘箱中120℃除水;
(3)将前驱体研磨并在900℃焙烧;
所述的Sr、Fe、Mn、La的可溶性盐类化合物为氯化盐、硝酸盐、硫酸盐、醋酸盐中的一种或几种,所述的可溶性盐类化合物的浓度为0.01~10 mol/L。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310635351.5A CN103601483B (zh) | 2013-12-03 | 2013-12-03 | 镧锰掺杂锶铁氧体磁性粉体的合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310635351.5A CN103601483B (zh) | 2013-12-03 | 2013-12-03 | 镧锰掺杂锶铁氧体磁性粉体的合成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103601483A CN103601483A (zh) | 2014-02-26 |
CN103601483B true CN103601483B (zh) | 2015-10-21 |
Family
ID=50119769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310635351.5A Active CN103601483B (zh) | 2013-12-03 | 2013-12-03 | 镧锰掺杂锶铁氧体磁性粉体的合成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103601483B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103964830A (zh) * | 2014-05-07 | 2014-08-06 | 宿州学院 | 一种低温烧结制备永磁铁氧体的方法 |
CN107311635A (zh) * | 2017-06-29 | 2017-11-03 | 中国医科大学附属第医院 | 一种镧锌掺杂锶铁氧体磁性粉体的合成方法 |
CN117142858B (zh) * | 2023-10-31 | 2024-03-08 | 矿冶科技集团有限公司 | 具有高强致密相变特性的智能热控涂层材料及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101372417A (zh) * | 2008-09-25 | 2009-02-25 | 中国科学院青海盐湖研究所 | 高比饱和磁化强度和高矫顽力锶铁氧体磁粉及其制备方法 |
CN102923785A (zh) * | 2012-11-19 | 2013-02-13 | 兰州理工大学 | CoFe2O4磁性纳米材料的制备方法 |
-
2013
- 2013-12-03 CN CN201310635351.5A patent/CN103601483B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101372417A (zh) * | 2008-09-25 | 2009-02-25 | 中国科学院青海盐湖研究所 | 高比饱和磁化强度和高矫顽力锶铁氧体磁粉及其制备方法 |
CN102923785A (zh) * | 2012-11-19 | 2013-02-13 | 兰州理工大学 | CoFe2O4磁性纳米材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103601483A (zh) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Ultrafast microwave hydrothermal synthesis of BiFeO 3 nanoplates | |
Ati et al. | Structural and magnetic properties of Co–Al substituted Ni ferrites synthesized by co-precipitation method | |
Zare et al. | Synthesis, structural and magnetic behavior studies of Zn–Al substituted cobalt ferrite nanoparticles | |
Liu et al. | Fabrication of octahedral magnetite microcrystals | |
Ravi et al. | Effect of calcination temperature on La0. 7Sr0. 3MnO3 nanoparticles synthesized with modified sol-gel route | |
Lin et al. | The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nanocrystals | |
Liu et al. | Preparation of different shaped α-Fe 2 O 3 nanoparticles with large particles of iron oxide red | |
Rahman et al. | Investigation of structural, morphological and magnetic properties of nanostructured strontium hexaferrite through co-precipitation technique: Impacts of annealing temperature and Fe/Sr ratio | |
Köseoğlu | Rapid synthesis of room temperature ferromagnetic Fe and Co co-doped ZnO DMS nanoparticles | |
CN102260071B (zh) | 高分散准球状的m型钡铁氧体的制备方法 | |
CN102010190A (zh) | 一维棒状尖晶石铁氧体制备方法 | |
CN102923785A (zh) | CoFe2O4磁性纳米材料的制备方法 | |
Khemprasit et al. | Effects of calcining temperature on structural and magnetic properties of nanosized Fe-doped NiO prepared by diol-based sol− gel process | |
CN102485692A (zh) | 一种二维片状钡铁氧体的制备方法 | |
CN103601483B (zh) | 镧锰掺杂锶铁氧体磁性粉体的合成方法 | |
CN102643082A (zh) | 一种w型钡铁氧体的制备方法 | |
CN106467315B (zh) | 一锅沉淀法制备Ce0.8Sm0.2O1.9‑La1‑xSrxFe1‑yCoyO3‑δ超细粉体的方法 | |
CN101486486B (zh) | 强磁场下ZnO及其稀磁半导体材料的制备方法与装置 | |
CN105006325A (zh) | 一种研磨制备具有交换耦合作用的复合铁氧体粉末的方法 | |
Yuping et al. | Effect of K2CO3 addition on the microstructure and magnetic properties of Sr-Ferrites | |
Azab et al. | Structural and magnetic properties of La1− xCexFe1− xCrxO3 orthoferrite prepared by co-precipitation method | |
Dhak et al. | Hydrothermal synthesis, structural analysis and room-temperature ferromagnetism of Y2O3: Co2+ nanorods | |
JP2007284716A (ja) | ニッケルナノワイヤー及びその製造方法 | |
Nguyen et al. | Synthesis and the study of magnetic characteristics of nano La 1-xSr XFeO 3 by co-precipitation method | |
CN102010189A (zh) | 一维棒状钡铁氧体及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201228 Address after: 224000 room 403-405, 4th floor, Yongning International Auto City, Yancheng City, Jiangsu Province (No. 2, Kaichuang Road, New District, Yandu District, Yancheng City) (b) Patentee after: Yancheng Dongfang automobile Square Investment Development Co.,Ltd. Address before: 110870, No. 111, Shen Xi Road, Shenyang economic and Technological Development Zone, Shenyang, Liaoning Patentee before: SHENYANG University OF TECHNOLOGY |
|
TR01 | Transfer of patent right |