CN103594541A - 用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法 - Google Patents

用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法 Download PDF

Info

Publication number
CN103594541A
CN103594541A CN201310474761.6A CN201310474761A CN103594541A CN 103594541 A CN103594541 A CN 103594541A CN 201310474761 A CN201310474761 A CN 201310474761A CN 103594541 A CN103594541 A CN 103594541A
Authority
CN
China
Prior art keywords
silicon
solar cell
preparation
monocrystalline silicon
heterojunction structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310474761.6A
Other languages
English (en)
Other versions
CN103594541B (zh
Inventor
黄海宾
周浪
崔冶青
高江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201310474761.6A priority Critical patent/CN103594541B/zh
Publication of CN103594541A publication Critical patent/CN103594541A/zh
Application granted granted Critical
Publication of CN103594541B publication Critical patent/CN103594541B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法。其结构为单晶硅片上一层掺杂类型相反的多晶硅薄膜作为发射极。多晶硅薄膜的结构及厚度、掺杂浓度分布均是可调的。其制备方法是:先低温气相沉积法沉积一层掺杂非晶或微晶硅薄膜,然后快速热处理晶化。本发明可获得更灵活的晶硅太阳能电池pn结结构和制备方法,为进一步改善晶硅太阳能电池器件结构和工艺,提高其转换效率提供了空间。

Description

用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法
技术领域
     本发明涉及一种太阳能电池材料的结构及制备方法,尤其涉及一种用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法。
背景技术
太阳能发电是人类最重要的可再生清洁能源的利用方式之一。其中晶硅太阳能电池以其丰富的原材料来源及相对成熟的制备技术受到人们的广泛关注,是太阳能电池的主流产品类别。
晶硅太阳能电池是目前太阳能光伏发电产品的主流类别,其结构根据光电转换核心-pn结的构成材料异同分为同质结结构和异质结结构。同质结结构是目前市场上的主流。现在同质结晶硅电池的pn结结构及制备工艺大概如下所述:晶硅片为p型,采用磷元素扩散及后继工艺-去磷硅玻璃制成,扩散层深度约200~300 nm。时至今日,该技术的发展遇到了瓶颈-无法进行更薄厚度的扩散层制备,且形成的扩散层掺杂浓度分布极不均匀。异质结结构晶硅太阳能电池正处于发展阶段,其典型代表为日本松下公司的HIT结构及制备工艺。该结构的太阳能电池的可适应大批量生产的面积的电池片的最高效率已经达到了24.7%。其问题在于工艺要求高,不宜掌握,至今未能打破常规扩散太阳能电池的垄断地位。
开发新的器件结构及制备工艺,打破现在器件结构及制造技术的瓶颈,才能使晶硅太阳能电池的性能进一步提高,产品成本进一步下降,加速太阳能电池的普及运用。
发明内容
本发明的目的在于提供一种用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法,以突破现有工艺对晶硅太阳能电池器件结构改进和工艺调节范围的限制,提高太阳能电池的性能,降低其制备难度,节约生产成本,最终获得更高转换效率的太阳能电池。
为了实现上述目的,本发明采用了下述技术方案。
一种用于太阳能电池的多晶硅/单晶硅异质结结构,其特征是单晶硅片作为基极和光吸收层,在其迎光面上是制作一层多晶硅薄膜作为发射极。单晶硅片与多晶硅薄膜的掺杂类型需相反,即,如果单晶硅片为p型,则多晶硅薄膜为n型;如果单晶硅片为n型,则多晶硅薄膜为p型。发射极的厚度为5~1000 nm,其掺杂浓度是可设计的,即可以均匀分布的,也可为有规律的不均匀分布的-梯度分布或者图形化的。
一种用于太阳能电池的多晶硅/单晶硅异质结结构的制备方法,其特征是首先采用低温薄膜制备技术,包括等离子体辅助化学气相沉积、热丝化学气相沉积、磁控溅射、离子束溅射等气相沉积方法,在硅片或者部分完成的晶硅太阳能电池上沉积掺杂非晶硅或者微晶硅薄膜。其中:1)硅薄膜的导电类型和掺杂浓度可由沉积薄膜所用原料的类别、成份比例以及薄膜沉积工艺参数来调节。 2)硅薄膜的厚度由沉积工艺和沉积时间进行调控。3)如需要多晶硅薄膜的掺杂浓度非均匀分布,则需要采用掩膜板或者改变沉积工艺的方法获得所需的图形化式样或者梯度分布。随后采用快速热处理的方法使得制备的非晶硅或者微晶硅薄膜晶化变成多晶硅,并激活薄膜中的掺杂元素,使得在掺杂元素不发生明显扩散的条件下获得所需性能的多晶硅薄膜。热处理过程中采用Ar、H2等气氛进行保护并改善薄膜质量。
本发明相比于常规的同质结及其高温扩散的制备方法,具有以下方面的优点,从而可进一步提高太阳能电池的性能和改善工艺:
1)多晶硅/单晶硅异质结结构为突变结,具有更高的光电响应速度和转换效率。
2)多晶硅薄膜的厚度、掺杂元素的种类和掺杂浓度的分布可有更广的选择范围。减少器件在高温的存放时间,减弱了热过程对器件性能的影响,并且可节省能源。
附图说明
图1为用于太阳能电池的均匀掺杂多晶硅薄膜/单晶硅异质结结构示意图
图2为用于太阳能电池的均匀掺杂多晶硅薄膜/单晶硅异质结结构中掺杂元素磷(P)和硼(B)的分布情况。
图3为用于太阳能电池的双层不同掺杂浓度的多晶硅薄膜/单晶硅异质结结构示意图
图4为用于太阳能电池的双层不同掺杂浓度的多晶硅薄膜/单晶硅异质结结构中掺杂元素磷(P)和硼(B)的分布情况。
图5为用于太阳能电池的图形化高掺杂浓度的多晶硅薄膜/低掺杂浓度的多晶硅薄膜/单晶硅异质结结构示意图。
图6为用于太阳能电池的图形化高掺杂浓度的多晶硅薄膜/低掺杂浓度的多晶硅薄膜/单晶硅异质结结构中掺杂元素磷(P)和硼(B)的分布情况。
在图中  1、均匀掺杂的多晶硅薄膜  2、单晶硅片  3、高掺杂浓度的多晶硅薄膜     4、低掺杂浓度的多晶硅薄膜  5、高掺杂浓度的图形化多晶硅薄膜。  
具体实施方式
为了便于理解,下面结合优选实施例对本发明进一步详细阐明。
实施例1
一种用于太阳能电池的均匀掺杂多晶硅薄膜/单晶硅异质结结构如图1所示,其中掺杂元素磷(P)和硼(B)的分布情况如图2所示,此处以p型硅片为例进行说明,但硅片并不仅限于此,也可采用n型硅片,但需对发射极掺杂类型、工艺方法等进行调整。下面对该结构及其制备方法进行必要的举例说明:
1)        对于发射极均匀掺杂的多晶硅薄膜1,该层的掺杂浓度为2×1018 cm-3,厚度可在10~500 nm间调节,此处选定为100 nm。
2)        该层的制备方法可采用如下工艺流程,但不仅限于此。首先将需要沉积薄膜的单晶硅片2的一面进行必要的清洗;然后采用PECVD法沉积厚度略厚于100nm的磷(P)元素掺杂浓度为2×1018cm-3的均匀掺杂的多晶硅薄膜1;随后将沉积结束的电池片放入快速热处理设备中采用Ar保护,1100 oC, 20秒的热处理。最后去除表面的自然氧化层。
实施例2
一种用于太阳能电池的双层不同掺杂浓度的多晶硅薄膜/单晶硅异质结结构如图3所示,其中掺杂元素磷(P)和硼(B)的分布情况如图4所示。此处以p型硅片为例进行说明,但硅片并不仅限于此,也可采用n型硅片,但需对发射极掺杂类型、工艺方法等进行调整。下面对该结构及其制备方法进行必要的举例说明:
1)        高掺杂浓度的多晶硅薄膜3的掺杂浓度为2×1019 cm-3,厚度可在3~50 nm间变化,此处选定为10 nm;低掺杂浓度的多晶硅薄膜4的掺杂浓度为1×1018cm-3,厚度可在20~500 nm间变化,此处选定为100 nm;
2)        该双层多晶硅发射极的制备方法可采用如下工艺流程,但不仅限于此。首先将需要沉积薄膜的单晶硅片2的一面进行必要的清洗;然后采用PECVD法沉积厚度略厚于100nm的磷(P)元素掺杂浓度为1×1018cm-3的低掺杂浓度的多晶硅薄膜4;再改变掺杂源气体的比例,沉积厚度略厚于10 nm的掺磷(P)元素浓度为2×1019cm-3的高掺杂浓度的多晶硅薄膜3;随后将沉积结束的电池片放入快速热处理设备中采用Ar保护,1100 oC, 20秒的热处理。最后去除表面的自然氧化层。
实施例3
一种用于太阳能电池的图形化高掺杂浓度的多晶硅薄膜/低掺杂浓度的多晶硅薄膜/单晶硅异质结结构如图5所示,其中中掺杂元素磷(P)和硼(B)的分布情况如图6所示。此处以p型硅片为例进行说明,但硅片并不仅限于此,也可采用n型硅片,但需对发射极掺杂类型、工艺方法等进行调整。下面对该结构及其制备方法进行必要的举例说明:
1)        高掺杂浓度的图形化多晶硅薄膜5的掺杂浓度为2×1019 cm-3,厚度可在3~50 nm间变化,此处选定为10 nm;低掺杂浓度的多晶硅薄膜4的掺杂浓度为1×1018 cm-3,厚度可在20~500 nm间变化,此处选定为100 nm;
该图形化高掺杂浓度的多晶硅薄膜/低掺杂浓度的多晶硅薄膜结构的制备方法可采用如下工艺流程,但不仅限于此。首先将需要沉积薄膜的单晶硅片2的一面进行必要的清洗;然后采用磁控溅射法沉积厚度略厚于100 nm的磷(P)元素掺杂浓度为1×1018 cm-3的低掺杂浓度的多晶硅薄膜4;再在沉积表面上加盖不锈钢材质的掩膜板,改换掺杂元素浓度不同的靶材,沉积厚度略厚于10 nm的掺磷(P)元素浓度为2×1019 cm-3的高掺杂浓度的图形化多晶硅薄膜5;随后将沉积结束的电池片放入快速热处理设备中采用Ar保护,1100 oC, 20秒的热处理。最后去除薄膜表面的自然氧化层。
上述实施例对本发明的实施方式作了详细说明,但并不能理解为对本发明保护范围的限制,在本领域的普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (6)

1.一种用于太阳能电池的多晶硅/单晶硅异质结结构,其特征是单晶硅片作为基极和光吸收层,在其迎光面上是制作一层或多层多晶硅薄膜作为发射极。
2.根据权利要求1所述的一种用于太阳能电池的多晶硅/单晶硅异质结结构,其特征是单晶硅片与多晶硅薄膜的掺杂类型需相反。
3.根据权利要求1所述的一种用于太阳能电池的多晶硅/单晶硅异质结结构,其特征是发射极的厚度为5~500 nm,其掺杂浓度是均匀分布、梯度分布或图形化不均匀分布。
4.一种根据权利要求1至3所述的用于太阳能电池的多晶硅/单晶硅异质结结构的制备方法,其特征是首先采用低温薄膜制备方法在硅片或者部分完成的晶硅太阳能电池上沉积掺杂非晶硅或者微晶硅薄膜;随后采用快速热处理的方法使得制备的非晶硅或者微晶硅薄膜晶化变成多晶硅,并激活薄膜中的掺杂元素,使得在掺杂元素不发生明显扩散的条件下获得所需性能的多晶硅薄膜。
5.根据权利要求4所述的一种用于太阳能电池的多晶硅/单晶硅异质结结构的制备方法,其特征是热处理过程中采用Ar、H2气氛进行保护。
6.根据权利要求4所述的一种用于太阳能电池的多晶硅/单晶硅异质结结构的制备方法,其特征是采用掩膜板或者改变沉积工艺的方法获得所需的图形化式样或者梯度分布。
CN201310474761.6A 2013-10-12 2013-10-12 用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法 Active CN103594541B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310474761.6A CN103594541B (zh) 2013-10-12 2013-10-12 用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310474761.6A CN103594541B (zh) 2013-10-12 2013-10-12 用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法

Publications (2)

Publication Number Publication Date
CN103594541A true CN103594541A (zh) 2014-02-19
CN103594541B CN103594541B (zh) 2017-01-04

Family

ID=50084608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310474761.6A Active CN103594541B (zh) 2013-10-12 2013-10-12 用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法

Country Status (1)

Country Link
CN (1) CN103594541B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505418A (zh) * 2014-11-27 2015-04-08 湖南共创光伏科技有限公司 具有过渡层的晶硅及锗化硅薄膜复合型单结pin太阳能电池及其制备方法
CN105405924A (zh) * 2014-11-28 2016-03-16 南昌大学 一种晶体硅基太阳电池用的高方阻掺杂晶硅层的制备方法
CN105702809A (zh) * 2016-04-07 2016-06-22 南昌大学 一种低温气相沉积固态扩散源制备用于太阳电池的掺杂硅的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740358A (zh) * 2009-12-02 2010-06-16 中国科学院半导体研究所 在玻璃衬底上制备p型多晶硅薄膜的方法
CN101976710A (zh) * 2010-10-15 2011-02-16 上海交通大学 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
CN101999176A (zh) * 2008-04-09 2011-03-30 应用材料股份有限公司 太阳能电池的氮化势垒层
CN201812825U (zh) * 2008-02-20 2011-04-27 太阳能公司 具有形成的发射极的前触点太阳能电池
CN102148284A (zh) * 2010-12-13 2011-08-10 浙江晶科能源有限公司 一种制备多晶硅太阳能电池发射极的扩散方法
CN102683468A (zh) * 2012-06-06 2012-09-19 南昌大学 一种晶硅异质结太阳电池的发射极结构
WO2013096500A1 (en) * 2011-12-21 2013-06-27 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201812825U (zh) * 2008-02-20 2011-04-27 太阳能公司 具有形成的发射极的前触点太阳能电池
CN101999176A (zh) * 2008-04-09 2011-03-30 应用材料股份有限公司 太阳能电池的氮化势垒层
CN101740358A (zh) * 2009-12-02 2010-06-16 中国科学院半导体研究所 在玻璃衬底上制备p型多晶硅薄膜的方法
CN101976710A (zh) * 2010-10-15 2011-02-16 上海交通大学 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
CN102148284A (zh) * 2010-12-13 2011-08-10 浙江晶科能源有限公司 一种制备多晶硅太阳能电池发射极的扩散方法
WO2013096500A1 (en) * 2011-12-21 2013-06-27 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
CN102683468A (zh) * 2012-06-06 2012-09-19 南昌大学 一种晶硅异质结太阳电池的发射极结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李亚丹: "硅太阳能电池关键技术研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505418A (zh) * 2014-11-27 2015-04-08 湖南共创光伏科技有限公司 具有过渡层的晶硅及锗化硅薄膜复合型单结pin太阳能电池及其制备方法
CN104505418B (zh) * 2014-11-27 2017-08-11 湖南共创光伏科技有限公司 具有过渡层的晶硅及锗化硅薄膜复合型单结pin太阳能电池及其制备方法
CN105405924A (zh) * 2014-11-28 2016-03-16 南昌大学 一种晶体硅基太阳电池用的高方阻掺杂晶硅层的制备方法
CN105702809A (zh) * 2016-04-07 2016-06-22 南昌大学 一种低温气相沉积固态扩散源制备用于太阳电池的掺杂硅的方法

Also Published As

Publication number Publication date
CN103594541B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
US8211739B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
JP2009503848A (ja) 組成傾斜光起電力デバイス及び製造方法並びに関連製品
CN102446991A (zh) 基于晶硅的薄膜太阳能电池及其制造方法
US8211738B2 (en) Polycrystalline silicon solar cell having high efficiency and method for fabricating the same
CN103563091B (zh) 具有改善的隧道结的串列太阳能电池
CN103594541A (zh) 用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法
CN106449850B (zh) 一种高效硅基异质结双面电池及其制备方法
CN103594550A (zh) 一种太阳能电池用的图形化掺杂晶硅薄膜制备方法
JP2010533384A (ja) 太陽電池及びその製造方法
JP2004273887A (ja) 結晶薄膜半導体装置及び太陽電池素子
KR20140128374A (ko) 태양 전지와 그 제작방법
JP6567705B2 (ja) 太陽電池の製造方法
US9911892B2 (en) Method for the low-temperature production of radial-junction semiconductor nanostructures, radial junction device, and solar cell including radial-junction nanostructures
CN103107240B (zh) 多晶硅薄膜太阳能电池及其制作方法
CN109037392A (zh) 一种石墨烯/硅结构太阳能电池的生产工艺
CN101459206A (zh) 高效多结太阳能电池的制造方法
KR101643132B1 (ko) 탄소 기판을 이용한 태양 전지 제조 방법
CN105405924A (zh) 一种晶体硅基太阳电池用的高方阻掺杂晶硅层的制备方法
TW200933908A (en) A silicon-based thin film solar-cell
CN103107227B (zh) 非晶硅薄膜太阳能电池及其制作方法
CN202977493U (zh) 多晶硅薄膜太阳能电池
KR101084650B1 (ko) 미세 결정질 반도체층을 이용하여 결정화된 태양전지 및 그 제조방법
TWI436493B (zh) 簡化電極設計之太陽能電池及其製造方法
KR101039150B1 (ko) 태양전지 제조방법
TW201125139A (en) Solar cell crystallized using microcrystalline semiconductor layer and method for fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant