CN103583037A - 红外相机系统和方法 - Google Patents

红外相机系统和方法 Download PDF

Info

Publication number
CN103583037A
CN103583037A CN201280027380.7A CN201280027380A CN103583037A CN 103583037 A CN103583037 A CN 103583037A CN 201280027380 A CN201280027380 A CN 201280027380A CN 103583037 A CN103583037 A CN 103583037A
Authority
CN
China
Prior art keywords
camera
subsystem
target
infrared
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280027380.7A
Other languages
English (en)
Other versions
CN103583037B (zh
Inventor
W·A·特雷
J·D·弗兰克
J·T·乌拉韦
A·A·理查兹
P·B·理查森
N·霍根斯特恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne Flir LLC
Original Assignee
Flir Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flir Systems Inc filed Critical Flir Systems Inc
Publication of CN103583037A publication Critical patent/CN103583037A/zh
Application granted granted Critical
Publication of CN103583037B publication Critical patent/CN103583037B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/04Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19617Surveillance camera constructional details
    • G08B13/1963Arrangements allowing camera rotation to change view, e.g. pivoting camera, pan-tilt and zoom [PTZ]
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19639Details of the system layout
    • G08B13/19641Multiple cameras having overlapping views on a single scene
    • G08B13/19643Multiple cameras having overlapping views on a single scene wherein the cameras play different roles, e.g. different resolution, different camera type, master-slave camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/62Control of parameters via user interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Abstract

对于一些实施例,本文公开的系统和方法提供红外相机和用于各种应用的目标位置获取技术。例如,在一个实施例中,系统可以包括具有目标测位器的便携式成像/查看子系统,并且也可以包括具有相机和相机定位器的固定安装相机子系统。通信链路可以被配置成将信号从目标测位器传输至相机定位器。该信号可以代表用便携式成像/查看子系统成像/查看的目标的位置。相机定位器可以响应于信号对准相机。例如,该目标可以是落水人员。因此,该系统在搜寻和救助操作方面可以是有用的。

Description

红外相机系统和方法
相关引用
本申请要求2011年4月11日提交的美国临时专利申请No.61/474,209的权益,其通过引用全部包含在本文中。
技术领域
本公开涉及红外成像系统,具体地,涉及红外相机系统和方法。
背景技术
红外相机被用于各种成像应用,以捕捉红外图像。例如,红外相机可以用于海事应用,以增强各种条件下海军船员的可见度。然而,用于红外相机的传统海洋实现方法通常有许多缺点。
传统红外相机的一个缺点是:在查看红外图像期间通常不允许用户在不同的处理技术之间切换,或者用户可能难以确定最佳设置。另一个缺点是:在已经进行初始处理之后,用户控制的处理可能会出现后期捕捉,这通常减轻了用户的输入和控制,并可能导致少于显示的希望图像。另一个缺点是:利用另一个相机(例如,任何类型的便携式查看/成像装置,如双筒望远镜或手持相机),很难将相机对准人正查看的目标。
结果,需要改进用于提供红外相机可选查看控制的技术。还需要改进用于陆地和/或海上应用(例如,用于不同类型的船舶,包括大型船,如货船和游船)的红外相机处理技术。还需要方便将相机(例如,固定安装相机)对准另一相机的视场内的目标的系统和方法。
发明内容
根据一个或多个实施例,本文公开的系统和方法提供用于将一个或多个相机(例如,固定安装相机)对准使用便携式查看/成像装置或子系统(例如,双筒望远镜、夜视装置或者手持相机)由人查看/成像的对象。例如,在一个实施例中,在用不太强大的手持式夜视装置发现落水的人后,可以将更强大的固定安装夜视相机系统对准落水的人。
更具体地,根据本公开的另一实施例,一种系统包括:固定安装相机子系统,具有相机、相机定位器和第一通信接口;和便携式成像/查看子系统,具有目标测位器和适用于与第一通信接口建立通信链路以从目标测位器向相机定位器传输信号的第二通信接口,该信号代表用该便携式成像/查看子系统成像/查看的目标的位置信息。固定安装相机子系统可配置为响应该信号,利用相机定位器使相机对准目标。
根据本公开的另一实施例,一种红外相机包括:适于捕捉场景的红外图像的图像捕捉组件;目标测位器,适于获取场景内目标的目标位置信息;和通信接口,配置为基于来自目标测位器的信息传输来自红外相机的信号,该信号代表用红外相机查看的目标的位置信息,其中通信接口进一步配置为接收来自其它装置的目标位置信息。该红外相机可进一步包括控制组件,其适于向用户提供可选择的处理模式,接收对应用户选择的处理模式的用户输入,并生成表示用户选择的处理模式的控制信号,其中可选择的处理模式包括处理经由通信接口接收的目标位置信息和处理来自目标测位器的位置信息,以经由通信接口提供;和处理组件,其适于接收从控制组件产生的控制信号,并基于用户选择的处理模式进行选择的处理功能。
根据本公开的另一实施例,一种方法包括捕捉在第一红外相机视场内的目标的红外图像;响应于用户命令确定目标的位置信息;在红外相机内存储目标的位置信息;以及将目标的位置信息无线通信到远程红外相机,以辅助远程红外相机指向目标。
根据本公开的一个实施例,一种系统可以包括具有目标测位器的便携式成像/查看子系统,还可以包括具有相机和相机定位器的相机子系统(例如,固定安装)。通信链路可以配置为使来自目标测位器的信号传送到相机定位器。该信号可以代表由便携式成像/查看子系统成像/查看的目标的位置。相机定位器可以配置为响应于该信号将相机对准该目标。
根据本发明的另一实施例,手持机可以包括具有目标测位器的便携式成像/查看子系统。通信链路可以配置为传输来自目标测位器的信号。该信号可以代表由便携式成像/查看子系统正在查看的目标的位置。
根据本公开的另一实施例,固定安装相机子系统可以包括至少一个相机、相机定位器和配置为接收表示目标位置的信号的通信链路。相机定位器可以配置为响应于该信号将相机对准目标。
根据本公开的另一实施例,一种方法可以包括用便携式成像/查看子系统成像/查看目标,用便携式成像/查看子系统的目标测位器确定目标的位置,并将表示目标位置的信息传输给相机子系统(例如,固定安装相机子系统)。例如,可以响应于该信号将固定安装相机子系统的相机对准目标。
本公开的范围由权利要求书定义,其通过引用合并到该章节中。通过考虑下面的详细描述的一个或多个实施例,将给本领域技术人员提供本公开实施例的更完整的理解以及其附加优点的实现。将参考首先简要描述的附图。
附图说明
图1A-1B示出了说明根据本公开的各种实施例的用于捕捉和处理红外图像的各种红外成像系统的框图。
图1C-1D示出了说明根据本公开的各种实施例的红外成像系统的各种构造的框图。
图1E-1F示出了说明根据本公开的各种实施例的红外成像系统的各种视图的框图。
图2示出了说明根据本公开实施例的用于捕捉和处理红外图像的方法的框图。
图3A-3F示出了说明根据本公开的各种实施例的红外处理技术的框图。
图4示出了说明根据本公开的各种实施例的红外处理技术的概述的框图。
图5示出了说明根据本公开实施例的用于在不同操作模式之间选择的红外成像系统的控制组件的框图。
图6示出了说明根据本公开实施例的红外成像系统的图像捕捉组件的实施例的框图。
图7示出了说明根据本公开实施例的用于监视红外成像系统的图像数据的方法的实施例的框图。
图8示出了根据本公开实施例的用于将固定安装相机子系统的相机对准用便携式成像/查看子系统查看的目标的成像系统的框图。
图9示出了根据本公开实施例的可以由便携式成像/查看子系统的用户查看的显示器。
图10示出了根据本公开实施例的便携式成像/查看子系统的框图。
图11示出了根据本公开实施例的固定安装相机子系统的框图。
图12示出了根据本公开实施例的用于利用便携式成像/查看子系统使固定安装相机子系统对准目标的方法的流程图。
图13示出了根据本公开实施例的用于确定目标相对于便携式成像/查看子系统的位置的方法的流程图。
通过参考如下的详细描述,将更好地理解本公开的实施例和它们的优点。应当意识到,类似的附图标记用于标识一个或多个图中所示的类似的元件。
具体实现
根据本公开的实施例,图1A示出了说明用于捕捉并处理红外图像的红外成像系统100A的框图。红外成像系统100A包括处理组件110、存储器组件120、图像捕捉组件130、显示组件140、控制组件150和可选择的传感组件160。
在各种实现中,红外成像系统100A可以代表红外成像装置,如红外相机,以捕捉图像,如图像170。红外成像系统100A可以代表任何类型的红外相机,其例如检测红外辐射并提供代表数据(例如,一个或多个快照或视频红外图像)。例如,红外成像系统100A可以代表指向近、中和/或远红外光谱的红外相机。红外成像系统100A可以包括便携式装置,并且例如可以合并到运输工具(例如,海上运输工具、陆基运输工具、航空器或航天器)或需要存储和/或显示红外图像的非移动装置中。
在一个实施例中,处理组件110包括:微处理器、单核处理器、多核处理器、微控制器、逻辑器件(例如,配置为执行处理功能的可编程逻辑装置)、数字信号处理(DSP)装置或一些其他类型的通常公知的处理器。处理组件110适于与组件120、130、140、150和160接口和通信,以执行本文所描述的方法和处理步骤。处理组件110可以包括一个或多个模式模块112A-112N,以用于在一个或多个操作模式中工作,这在本文中更详细地描述。在一种实现中,模式模块112A-112N限定可嵌入到处理组件110或存储在存储组件120中的预设显示功能,以用于通过处理组件110访问和执行。此外,处理组件110可以适于以本文所描述的方式执行各种其它类型的图像处理算法。
在各种实现中,应当意识到,每个模式模块112A-112N(其中“N”表示任意数字)可以集成在软件和/或硬件中作为处理组件110的一部分,或者用于与每种模式模块112A-112N相关的每种操作模式的代码(例如,软件或配置数据),其可以存储在存储器组件120中。本文公开的模式模块112A-112N(即,操作模式)的实施例可以通过分立的计算机可读介质(例如,存储器,如硬盘驱动器、光盘、数字视频盘或闪存存储器)存储,以被计算机(例如,逻辑或基于处理器的系统)执行,以进行本文公开的各种方法。在一个示例中,计算机可读介质可以是便携式和/或与红外成像系统100A分开布置的,其中通过将计算机可读介质耦合至红外成像系统100A和/或通过红外成像系统100A从计算机可读介质下载(例如,经由有线或无线链路)模式模块112A-112N,将存储的模式模块112A-112N提供给红外成像系统100A。如本文中更详细描述的,模式模块112A-112N提供用于改进用于实时应用的红外相机处理技术,其中当在显示组件140上查看图像和/或执行一个或多个方法时,用户或操作员可以改变模式。
在一个实施例中,存储组件120包括一个或多个存储器器件,以存储数据和信息。这一个或多个存储器器件可以包括不同类型的存储器,包括易失性和非易失性存储器,如RAM(随机存取存储器)、ROM(只读存储器)、EEPROM(电可擦除只读存储器)、闪存等。处理组件110适于执行存储在存储组件120中的软件,以用本文描述的方式执行方法、过程和操作模式。
在一个实施例中,图像捕捉组件130包括一个或多个红外传感器(例如,任意类型的红外探测器,如焦平面阵列),用于捕捉代表如图像170的图像的红外图像信号。在一种实现中,图像捕捉组件130的红外传感器提供用于将图像170的捕捉图像信号表示(例如,转换)为数字数据(例如,经由被包含作为红外线传感器的一部分或与红外传感器分开作为红外成像系统100A的一部分的模拟-数字转换器)。处理组件110可以适于从图像捕捉组件130接收红外图像信号,处理红外图像信号(例如,以提供处理的图像数据),在存储器组件120中存储红外图像信号或图像数据,和/或从存储组件120检索存储的红外图像信号。处理组件110可以适于处理存储在存储组件120中的红外图像信号,以向用于用户查看的显示组件140提供图像数据(例如,捕捉和/或处理的红外图像数据)。
在一个实施例中,显示组件140包括图像显示装置(例如,液晶显示器(LCD)),或各种其它类型的通常公知的视频显示器或监视器。处理组件110可以适于在显示组件140上显示图像数据和信息。处理组件110还可以适于检索来自存储组件120的图像数据和信息,并在显示组件140上显示任何检索的图像数据和信息。显示组件140可以包括显示电子设备,其可被处理组件110用来显示图像数据和信息(例如,红外图像)。显示组件140可以经由处理组件110直接从图像捕捉组件130检索图像数据和信息,或者图像数据和信息可通过处理组件110从存储组件120传输。在一种实现中,处理组件110可以首先处理捕捉的图像,并在一种对应于模式模块112A-112N的模式中呈现处理的图像,然后根据用户向控制组件150的输入,处理组件110可以将当前模式切换到不同的模式,以用于在不同的模式中查看在显示组件140上的处理的图像。这种切换可以称为应用用于实时应用的模式模块112A-112N的红外相机处理技术,其中当基于对控制组件150的用户输入在显示组件140上查看图像时,用户或操作者可以改变该模式。
在一个实施例中,控制组件150包括用户输入和/或接口器件,具有一个或多个用户致动组件,如一个或多个按钮、滑动杆、可旋转旋钮或键盘,适于产生一个或多个用户致动输入控制信号。控制组件150可以适于集成为显示组件140的一部分,以作为用户输入装置和显示装置,诸如,例如,适于接收来自显示屏幕的用户触摸的不同部分的输入信号的触摸屏装置。处理组件110可以适于感应来自控制组件150的控制输入信号,并响应于从其接收的任何感应的控制输入信号。处理组件110可以适于将控制输入信号解释为值,这将在本文中更详细地描述。
在一个实施例中,控制组件150可以包括具有一个或多个适于与用户接口并接收用户输入控制值的按钮的控制面板单元500(例如,有线或无线的手持式控制单元),如图5所示,且在本文中进一步描述。在各种实现中,可以利用控制面板单元500的一个或多个按钮在各种操作模式之间选择,如本文参考图2-4所述。例如,只有一个按钮可以实现,并且其被操作员使用,以循环通过不同的操作模式(例如,夜间停靠、人员落水、夜间巡航、白天巡航、有雾的条件和海岸线),其中所选模式显示在显示组件140上。在各种其他实现中,应当意识到,控制面板单元500可以适于包括一个或多个其它的按钮,以提供红外成像系统100A的各种其它控制功能,如自动对焦、菜单使能和选择、视场(FoV)、亮度、对比度、增益、偏移量、空间、时间和/或各种其他特征和/或参数。在另一种实现中,可以基于选择的操作模式,由用户或操作员调节可变增益值。
在另一实施例中,控制组件150可以包括图形用户界面(GUI),其可以集成为显示组件140的一部分(例如,用户致动触摸屏),例如,具有一个或多个适合于与用户接口并接收用户输入控制值的按钮的图像。
在一个实施例中,可选择的传感组件160包括一个或多个不同类型的传感器,包括环境传感器,这取决于期望的应用或实现要求,其向处理组件110提供信息。处理组件110可以适于与传感组件160(例如,通过接收来自传感组件160的传感器信息)和图像捕捉组件130(例如,通过接收来自图像捕捉组件130的数据,并向和/或从红外成像系统100A的其他组件提供和/或接收命令、控制或其他信息)通信。
在各种实现中,可选择的传感组件160可以提供有关环境条件的数据和信息,如外界温度、光照条件(例如,白天、夜晚、黄昏和/或黎明)、湿度水平、具体的天气条件(例如,日晒、雨淋和/或雪)、距离(例如,激光测距仪)和/或是否已经进入或退出隧道、码头或某种类型的场地。可选择的传感组件160可代表为本领域的技术人员熟知的传统传感器,用于监测可以影响由图像捕捉组件130提供的数据(例如,在图像的外观上)的各种条件(如环境条件)。
在一些实施例中,可选择的传感组件160(例如,一个或多个传感器106)可以包括经由无线通信向处理组件110转播信息的装置。例如,传感组件160可以适于接收来自卫星的信息,通过本地广播(例如,无线电频率)传输、通过移动或蜂窝网络和/或通过基础设施(例如,运输或高速公路信息基础设施)中的信息塔或各种其他有线或无线技术。
在各种实施例中,图像捕捉系统100A的组件可以如希望的那样或依据应用或需求组合和/或实现,其中图像捕捉系统100A代表系统的各种功能块(例如,便携式相机或分布式网络系统)。例如,处理组件110可以与存储组件120、图像捕捉组件130、显示组件140和/或传感组件160组合。在另一示例中,当其它处理功能在独立器件(例如,与处理组件110通信的网络上的计算机)上执行时,处理组件110可以与图像捕捉组件130组合,其中仅处理组件110的某些功能由图像捕捉组件130内的电路(例如,处理器、微处理器、微控制器、逻辑装置等)执行。在另一示例中,控制组件150可以与一个或多个其它组件组合,或通过控制线或网络(例如,无线或有线网络链路)远程连接到至少一个其它组件,如处理组件110,以向其提供控制信号。
根据本公开的另一实施例,图1B示出了说明用于捕捉并处理红外图像的红外成像系统100B的框图。在一个实施例中,红外成像系统100B包括处理组件110、接口组件118、存储组件120、一个或多个图像捕捉组件130A-130N、显示组件140、控制组件150和可选择的传感组件160。应当意识到,图1B的红外成像系统100B的各种组件可以与图1A的红外成像系统100A的组件在功能和范围上是类似的,并且本文将更详细地描述系统100A、100B之间的任何不同。
在各种实现中,红外成像系统100B可代表一个或多个红外成像装置,如一个或多个红外相机,以捕捉图像,如图像170A-170N。通常,红外成像系统100B可以利用多个红外相机,例如其检测红外辐射并提供有代表性的数据(例如,一个或多个快照或视频红外图像)。例如,红外成像系统100B可包括一个或多个指向近、中和/或远红外光谱的红外相机。如本文进一步讨论的,例如,红外成像系统100B可被纳入运输工具(例如,海上的运输工具或其它类型的船只、陆基运输工具、航空器或航天器)或需要存储和/或显示红外图像的非移动装置中。
处理组件110适于与包括系统100B的组件118、120、130A-130N、140、150和/或160的多个组件接口和通信,以执行如本文所描述的方法和处理步骤。处理组件110可以包括用于在一个或多个工作模式中工作的一个或多个模式模块112A-112N,这将在本文中更详细地描述。处理组件110可以适于用本文所述的方式执行各种其他类型的图像处理的算法。
在一个实施例中,接口组件118包括通信装置(例如,调制解调器、路由器、交换机、集线器或以太网卡),其允许在每个图像捕捉组件130A-130N和处理组件110之间通信。同样,处理组件110适于通过接口组件118接收来自每个图像捕捉组件130A-130N的红外图像信号。
在各种实施例中,每个图像捕捉组件130A-130N(其中“N”表示任何期望的数量)包括一个或多个红外传感器(例如,任何类型的红外探测器,如焦平面阵列,或任何类型的红外相机,如红外成像系统100A),用于捕捉代表如一个或多个图像170A-170N的图像的红外图像信号。在一种实现中,图像捕捉组件130A的红外传感器提供用来将例如图像170A的所捕捉的图像信号表示(例如,转换)为数字数据(例如,通过被包含作为红外线传感器的一部分或者与红外传感器分开作为红外成像系统100B的一部分的模拟-数字转换器)。同样,处理组件110可以适于通过接口组件118接收来自每个图像捕捉组件130A-130N的红外图像信号,处理该红外图像信号(例如,以提供处理的图像数据,或经处理的图像数据可以由每个图像捕捉组件130A-130N提供),在存储组件120中存储红外线图像信号或图像数据,和/或从存储器组件120检索存储的红外图像信号。处理组件110可以适于处理存储在存储器组件120中的红外图像信号,以向显示组件140(例如,一个或多个显示器)提供图像数据(例如,捕捉和/或处理的红外图像数据),以为用户查看。
作为示例,在一种实现中,主要参考图6,每个图像捕捉组件130A-130N可以包括一个或多个组件,包括第一相机组件132、第二相机组件134和/或探照灯组件136。在一个实施例中,如图6所示,第一相机组件132适于用本文中所描述的方式捕捉红外图像,第二相机组件134适于在可见光光谱中捕捉彩色图像,探照灯组件136适于将光束提供到一个或多个图像170的图像边界内(例如,在第一相机组件132和/或第二照相机组件134的视场内)的位置上。在本文中将更详细地描述涉及这些组件中的每一个的进一步的范围和功能。
图1C示出了根据本公开实施例的具有多个安装到船舶180的图像捕捉组件130A-130D(例如,红外相机)的红外成像系统100B的俯视图。在各种实现中,图像捕捉组件130A-130D可以包括任何类型的适于捕捉一个或多个红外图像的红外相机(例如,红外探测装置)。船舶180可以代表任何类型的船只(例如,船、游艇、船只、游轮、油轮、商船、军舰等)。
如图1C所示,多个图像捕捉组件130A-130D可以以围绕船舶180提供一个或多个视场的方式,被安装在船舶180上的不同位置的结构中。在各种实现中,可以安装图像捕捉组件130A,以在船舶180的船首182(例如,前面或前部)的前方和周围提供视场。如进一步所示,可以安装图像捕捉组件130B,以在船舶180的入口184(例如,当面向船首182时左侧)的侧面或周围提供视场。如进一步所示,可以安装图像捕捉组件130C,以在船舶180的右舷186(例如,当面向船首182时右侧)的侧面或周围提供视场。如进一步所示,可以安装图像捕捉组件130D,以在船舶180的船尾188(例如,后部或尾部)的后面或周围提供视场。
因此,在一种实现中,多个红外捕捉组件130A-130D(例如,红外相机)可围绕着船舶180的周围安装,以提供关于该船舶的视场。作为示例和如本文进一步讨论,船舶180可并入红外成像系统100B,以提供人员落水检测,以在各种操作模式(如船舶180的夜间停靠、夜间巡航和/或白天巡航期间)辅助和/或在烟雾状况期间提供各种信息(如提高的图像清晰度),或提供地平线和/或海岸线的可视指示。
图1D示出了根据本公开实施例的红外成像系统100B的俯视图,红外成像系统100B具有安装到船舶180的控制塔190(例如,船桥)的多个图像捕捉组件130E-130H(例如,红外相机)。如图1D所示,可以在船舶180的周围提供一个或多个视场的方式,将多个图像捕捉组件130E-130H安装在船舶180上不同位置的结构中的控制塔190。在各种实现中,可以安装图像捕捉组件130E,以提供船舶180的船首182的视场。如进一步所示,可以安装图像捕捉组件130F,以提供船舶180的入口184的视场。如进一步所示,可以安装图像捕捉组件130G,以提供船舶180的右舷186的视场。如进一步所示,可以安装图像捕捉组件130H,以提供船舶180的船尾188的视场。由此,在一种实现中,多个图像捕捉组件130E-130H(例如,红外相机)可以安装在船舶180的控制塔190的周围,以提供其周围的视场。此外,如图所示,图像捕捉组件130B和130C也可以安装在船舶180的控制塔190上。
图1E示出了根据本公开实施例的红外成像系统100B的左舷侧视图,红外成像系统100B具有安装到船舶180的图1B的左舷侧图像捕捉组件130B。参考图1E,图像捕捉组件130B提供了船舶180周围的左舷侧视场。
在一种实现中,图像捕捉组件130B可以提供船舶180的左舷侧图像的视场。在另一种实现中,可以将左舷侧视场分段成多个视图B1-B6。例如,图像捕捉组件130B可以适于提供左舷侧视场的一个或多个分段的窄视场,其包括一个或多个前方左舷侧视图B1-B3和一个或多个后方左舷侧视图B4-B6。在又一实现中,如图6所示,图像捕捉组件130B可以包括多个图像捕捉组件132(和可选择的多个图像捕捉组件134),以在船舶180的整个左舷侧视场内提供多个分段的或窄的视场B1-B6。
如图1E进一步所示的,船舶180的左舷侧视场B1-B6可以延伸通过从图像捕捉组件130B到邻近船舶180的水面198的查看范围。然而,在各种实现中,查看范围可以依据利用的红外检测器的类型(例如,红外相机的类型、红外光谱的期望波长或部分、和如将由本领域的技术人员将理解的其他相关因子)而包括水面198以下的部分。
图1F示出了根据本公开实施例的用于定位和标识安装在船舶180的左舷侧图像捕捉组件130B的左舷侧视场内的人员落水的示例。通常,图像捕捉组件130B可以用于识别和定位船舶180(例如,在窄的左舷侧视场B3内)的人员落水。一旦标识和定位出人员落水,红外成像系统100B的处理组件110就可以控制或提供信息(例如,旋转-排队(slew-to-queue)),以定位左舷侧视场B3内的探照灯组件136,以在人员落水的可视识别和救援中进行援助。应当理解,探照灯组件136可以与图像捕捉组件130B分开(例如,单独的机壳和/或控制),或者可以形成为图像捕捉组件130B的一部分(例如,在相同的壳体或外壳内)。在本文中将更详细地描述与此过程有关的进一步的范围和功能。
图2示出了根据本公开实施例的用于捕捉和处理红外图像的方法200。为了简化图2的讨论,作为可以执行方法200的系统、装置或设备的示例,可以参考图1A、1B的图像捕捉系统100A、100B。
参考图2,用红外成像系统100A、100B捕捉(方框210)图像(例如,红外图像信号)。在一种实现中,处理组件110促使(例如,致使)图像捕捉组件130捕捉图像,例如,图像170。在从图像捕捉组件130接收所捕捉的图像之后,处理组件110可任选地将所捕捉的图像存储在存储器组件120中,用于处理。
接下来,可以可选地预处理所捕捉的图像(方框215)。在一种实现中,预处理可以包括:获得与捕捉图像有关的红外传感器数据,应用修正项,和/或在进一步处理之前应用时间噪声降低以提高图像质量。在另一种实现中,处理组件110可以直接预处理所捕捉的图像或可选地检索存储在存储组件120中的捕捉的图像,然后预处理该图像。预处理的图像可以任选地存储在存储器组件120中,用于进一步处理。
接下来,可以获得选择的操作模式(方框220)。在一种实现中,所选择的操作模式可以包括:可从控制组件150(例如,图5的控制面板单元500)获得或接收的用户输入控制信号。在各种实现中,所选择的操作模式可以选自夜间停靠、人员落水、夜间巡航、白天巡航、烟雾状况和海岸线模式中的至少一个。同样,处理组件110可以与控制组件150通信,以获得作为用户输入的所选操作模式。这些操作模式在本文中将更详细地描述,并且可以包括使用一个或多个红外图像处理算法。
在各种实现中,操作模式是指对红外图像的预定处理和显示功能,并且红外成像仪和红外相机适于在向用户显示该数据之前处理红外传感器数据。通常,显示算法试图以有效的方式向用户呈现场景(即,视场)信息。在某些情况下,红外图像处理算法用来在各种条件下呈现良好的图像,并且红外图像处理算法提供用户一个或多个选项,来调整参数和以“手动模式”运转相机。在一个方面中,红外成像系统100A、100B可以通过隐藏先进的手动设置来简化。在另一个方面中,不同条件的预定图像处理的概念可以用海上应用实现。
接下来,参考图2,以本文更详细描述的方式,根据选择的操作模式(方框225),处理图像。在一种实现中,处理组件110可以在存储组件120中存储处理的图像,用于显示。在另一种实现中,处理组件110可以检索存储在存储器组件120中的处理的图像,并将处理的图像显示在显示组件150上,用于由用户查看。
接下来,以这里更详细描述的方式,确定是否在夜间模式下显示处理的图像(方框230)。如果确定是,则处理组件110配置显示组件140以对处理的图像应用黑夜调色板(方框235),并且在夜间模式下显示所处理的图像(方框240)。例如,在夜间模式中(例如,用于夜间停靠、夜间巡航或其他在夜间工作的模式),可以在红色调色板或绿色调色板上显示图像,以提高用户的夜视能力。否则,如果不需要夜间模式,则以非夜间模式的方式显示所处理的图像(例如,黑热或白热调色板)(方框240)。
在各种实现中,显示图像的夜间模式是指当调节到低光线条件时使用红色调色板或绿色调色板在黑暗中辅助用户或操作者。在图像捕捉系统100A、100B的夜间操作期间,人在黑暗中查看的视觉能力可能会被显示监视器上明亮图像的致盲效果损坏。因此,夜间模式设置将彩色调色板从标准黑热或白热调色板调色板改变为红色或绿色调色板显示。在一个方面中,红色或绿色彩色调色板是通常已知的,以对人类的夜视能力影响较小。在一个示例中,对于红-绿-蓝(RGB)类型的显示器,绿色和蓝色的像素会被禁用,以为红色调色板增加红颜色。在另一种实现中,夜间模式显示可以与红外成像系统100A、100B的任何其它操作模式结合,如本文所描述的,和在夜间红外成像系统100A、100B的缺省显示模式可以是夜间模式显示。
此外在各种实现中,可以对某些图像特征进行适当的标记(例如,颜色标记或上颜色,高亮显示,或用其他标记识别),如在图像处理期间(方框225)或显示处理的图像期间(方框240),以在查看显示的图像时帮助用户识别这些特征。例如,如本文中进一步讨论的,在人员落水模式期间,相对黑色和白色的调色板或夜间调色板(例如,红色调色板),可疑的人(例如,或其他温体动物或对象)可以用蓝颜色(或其它颜色或类型的标记)在显示的图像上标识。作为另一个示例,如本文进一步讨论的,在夜间或白天巡航模式和/或烟雾状况模式期间,水中潜在的危害可在显示图像中用黄颜色(或其它颜色或类型的标记)标明,以帮助用户查看显示。例如,在美国专利6,849,849中,可以发现关于图像彩色化的进一步的细节,其通过引用整体包含在本文。
在各种实现中,处理组件110可以实时切换捕捉图像的处理模式,并将显示的处理的图像从对应于模式模块112A-112N的一种模式改变成依据从控制组件150接收用户输入的不同模式。同样,处理组件110可以将当前模式的显示切换到不同模式的显示,用于由用户或操作者在显示组件140上查看处理的图像。这种切换可以针对将模式模块112A-112N的红外相机处理技术用于实时应用,其中当根据控制组件150的用户输入查看显示组件140上的图像时,用户或操作者可以改变显示的模式。
图3A-3E示出了说明根据本公开的各种实施例的红外处理技术的框图。如本文所描述的,红外成像系统100A、100B适于在不同的操作模式之间进行切换,从而提高提供给用户或操作员的红外图像和信息。
图3A示出了参考图2的方框225描述的红外处理技术300的一个实施例。在一种实现中,红外处理技术300包括用于海上应用的夜间停靠操作模式。例如,在夜间停靠期间,船舶或海船在港口、码头或海边空地附近,其具有包含码头、浮标、其它船舶、陆地上的其他建筑的近似建筑。热红外成像仪(例如,红外成像系统100A、100B)在寻找正确的入埠口时可以用作导航工具。红外成像系统100A、100B产生帮助用户或操作员停靠船舶的红外图像。在图像中存在高热点的可能性,如船坞灯、通风口和运转马达,这对如何显示场景可具有最小影响。
参考图3A,对输入图像直方图均衡并缩放(例如,0-511)以形成直方图均衡部分(方框302)。接下来,在使最高和最低饱和(例如,1%)时使输入图像线性缩放(例如,0-128)以形成线性缩放部分(方框304)。接下来,将直方图均衡部分和线性缩放部分加在一起,以形成输出图像(方框306)。接下来,线性映射输出图像的动态范围以适合显示组件140(方框308)。应当意识到,在不脱离本公开的范围的情况下,可以不同的顺序执行其中执行过程300的方框顺序。
在一个实施例中,夜间停靠模式目的是具有大量热簇(如海港、港口或者锚泊)的图像设置。该设置可以允许用户查看场景,而不会大量出现热对象。因此,例如,当停靠低能见度的船舶时,用于夜间停靠模式的红外处理技术300对于海上应用的情境感知是有用的。
在各种实现中,在处理图像期间当选择夜间停靠模式时,通过去除直方图中的“孔洞”使图像直方图均衡以压缩动态范围。直方图可以是高原有限的,以便大的均匀区域(如天空或水成分)不能提供太大的对比度。例如,可以保持输出图像的动态范围的约20%,以用于非直方图均衡图像的直线线性映射。在线性映射时,例如,最低1%的像素值被映射到零,最高1%的输入像素被映射到显示范围内的最大值(例如,235)。在一个方面中,最终输出的图像成为直方图均衡和线性(具有1%的“异常值”裁剪)映射图像的加权总和。
图3B示出了如参考图2的方框225所述的红外处理技术320的一个实施例。在一种实现中,红外处理技术320包括用于海上应用的人员落水模式。例如,在人员落水模式下,可以将图像捕捉系统100A、100B调整到在水中找到人的具体任务。水中的人和船舶之间的距离可以不是已知的,并且人在直径上可能是只有几个像素,或如果靠近船舶则可能大得多。在一个方面中,即使人会接近船舶,人也可以具有足够的热信号使得清晰可见,因此在不借助图像捕捉系统100A、100B的情况下,人员落水显示模式会对准人具有弱的热对比度且足够远使得不清晰可见的情况。
参考图3B,定位图像捕捉系统100A、100B的图像捕捉组件130(例如,红外相机)以辨析或识别地平线(方框322)。在一种实现中,移动红外相机,使得地平线在视场(FoV)的上部。在另一实现中,也可以与地平线一起标记海岸线。接下来,将高通滤波器(HPF)应用到图像,以形成输出图像(方框324)。接下来,线性映射输出图像的动态范围,以适合显示组件140(方框326)。应当意识到,在不脱离本公开的范围的情况下,可以不同的顺序执行其中执行过程320的方框顺序。
在一个示例中,地平线识别可以包括海岸线识别,并且地平线和/或海岸线可以沿着地平线和/或海岸线由叠加在热图像上的线(例如,红线或其它标记)标记,这可能对于用户或操作员确定船舶相对于海岸线的位置是有用的。地平线和/或海岸线识别可以通过利用实时霍夫变换或应用到图像流的其它等效类型的变换来实现,其中该图像处理变换找到图像中的线性区域(例如,线)。例如,当对比度低时,实时霍夫变换也可用于找到开放海洋中的地平线和/或海岸线。在清晰的条件下,地平线和/或海岸线很容易被识别。然而,在有烟雾天时,地平线和/或海岸线可能很难找到。
通常,知道地平线和/或海岸线对于情境感知是有用的。同样,在各种实现中,霍夫变换可以联合本文所描述的任何操作模式,以识别图像中的地平线和/或海岸线。例如,除任何处理模式之外,还可以包括海岸线识别(例如,地平线和/或海岸线),以在显示的图像上提供线(例如,任何类型的标记,如红线或其它标记)和/或可以使用该信息来定位红外相机的视场。
在人员落水模式的一个实施例中,可以增加信号增益,以消除海水的微小温差,如遭遇在接近人体温度的均匀海洋温度中寻找体温过低的物体时。当比较人体与海洋温度时,图像质量用来换检测小温度变化的能力。由此,例如,当寻找接近船舶的落水人员时,用于人员落水模式的红外处理技术320有助于海上应用的情境感知。
在各种实现中,在选择了人员落水模式处理图像期间,将高通滤波器应用到图像。例如,来自高斯核的图像卷积的信号被减去。剩余的高通信息被线性拉伸以适应显示范围,这会增加水中任何小目标的对比度。在一个人员落水增强模式中,可以标记水中的对象,并且系统给船舶发信号以将探照灯指向目标。对于具有可见光和热成像的系统,显示热成像。对于放大或多FoV系统,该系统设定为宽FoV。对于具有存储的地平线海拔设置的摇摄-倾斜控制系统,移动该系统,从而使在视场的上限正下方可以看到地平线。
在一个实施例中,人员落水模式可以激活定位程序以标识感兴趣的区域,放大感兴趣的区域并将探照灯定位在该感兴趣的区域。例如,人员落水模式可以激活定位程序,以标识水中的对象(例如,人)的位置,放大水中所标识对象的红外成像装置(例如,红外相机),然后再将探照灯指向水中的标识对象。在各种实现中,这些动作会被添加到图2的过程200和/或图3B的过程320,并进一步适于自动发生,以便使感兴趣的区域和/或感兴趣的对象的位置可以被快速标识并由乘务员获得。
图3C示出了如参考图2的方框225所述的红外处理技术340的一个实施例。在一种实现中,红外处理技术340包括用于海上应用的夜间巡航操作模式。例如,在夜间巡航期间,除了人工照明的对象(如其他船只)以外,限制使用可见通道。红外热像仪可用于穿透黑暗,并辅助标识浮标、岩石、其他船舶、岛屿和岸上的建筑物。红外热像仪也可以找到半浸水障碍物,其可能会直接位于船舶的过程中。在夜间巡航模式下,可以调整显示算法以寻找水中的对象,而不会将场景(即,视场)变形到对于航行行为变得没有用的程度。
在一个实施例中,夜间巡航模式目的是用于在开放的海洋中遇到的低对比度情形。场景(即,视场)可充满温度均匀的海洋,并且任何的助航或漂浮物会与海洋的均匀温度形成显著对比。因此,用于夜间巡航模式的红外处理技术340对于例如开放的海洋中的情境感知是有用的。
参考图3C,该图像被分离成背景图像部分和细节图像部分(方框342)。接下来,对背景图像部分直方图均衡(方框344)并缩放(例如,0-450)(方框346)。接下来,缩放细节图像部分(例如,0-511)(方框348)。接下来,将直方图均衡的背景图像部分和缩放的细节图像部分加在一起以形成输出图像(方框350)。接下来,线性映射输出图像的动态范围,以适合显示组件140(方框352)。应当意识到,在不脱离本公开的范围的情况下,可以不同的顺序执行其中执行过程340的方框顺序。
在各种实现中,在图像的处理期间当选择夜间巡航模式时,可以使用非线性边缘保持低通滤波器(LPF)如中值滤波器或通过各向异性扩散将输入图像分成和背景图像分量。背景图像分量包括低通分量,并且通过从输入图像减去背景图像部分来提取细节图像部分。为了增强小的对比度和可能弱的对象,可以缩放细节和背景图像分量,以便给出约60%的输出/显示动态范围的细节。在一个增强夜间巡航模式下,水中的对象会被跟踪,并且如果它们是在直接的碰撞过程中作为当前的船只过程,则它们被标记在图像中,并且会分别发出/或显示听觉和/或视觉报警信号。在一些实现中,对于可见的热成像仪系统,可以通过缺省显示热成像仪。
在一个实施例中,图像信号的第一部分可以包括背景图像部分,其包括图像的低空间频率高振幅部分。在一个实施例中,可以利用低通滤波器(例如,低通滤波器算法)来分离图像信号(例如,红外图像信号)的低空间频率高振幅部分。在另一个实施例中,图像信号的第二部分可以包括细节图像部分,其包括图像的高空间频率低振幅部分。在一个示例中,可以利用高通滤波器(例如,高通滤波器算法)来分离图像信号(例如,红外图像信号)的高空间频率低振幅部分。备选地,可以从图像信号和图像信号的第一部分得到第二部分,如通过从图像信号减去第一部分。
通常,例如,在合并两个图像部分之前可以分别缩放图像信号的两个图像部分(例如,第一和第二部分),以产生输出图像。例如,可以缩放第一或第二部分,或者可以缩放第一和第二部分。在一个方面中,这允许该系统输出甚至在高动态范围场景中精细细节可见且可调谐的图像。在某些情况下,作为一个示例,如果图像由于噪音显示出用处不大或降低一定程度,则可以抑制图像的一个部分,如细节部分,而不是扩大以抑制合并后的图像中的噪声,从而提高图像质量。
图3D示出了如参考图2的方框225所描述的红外处理技术360的一个实施例。在一种实现中,红外处理技术360包括用于海上应用的白天巡航操作模式。例如,在白天巡航期间,用户或操作员可以依赖于人类视觉用于直接定位在船舶周围。可以使用图像捕捉系统100A、100B来放大感兴趣的对象,其可以包含读取其他船舶的名称和搜索浮标、陆地上的建筑物等。
参考图3D,将图像分成背景图像部分和细节图像部分(方框362)。接下来,对背景图像部分直方图均衡(方框364)并缩放(例如,0至511)(方框366)。接下来,缩放0-255细节图像部分(方框368)。接下来,将直方图均衡的背景图像部分和缩放的细节图像部分加在一起以形成输出图像(方框370)。接下来,线性映射输出图像的动态范围以适合显示组件140(方框372)。应当意识到,在不脱离本公开的范围的情况下,可以以不同的顺序执行其中执行过程360的方框顺序。
在一个实施例中,如当太阳能加热会导致在未浸水或部分浸水的对象和海洋温度之间较大的温差时,白天巡航模式目的是用于高对比度情形。因此,用于白天巡航模式的红外处理技术360对于例如在海上应用的高对比度情形中的情境意识是有用的。
在各种实现中,在图像的处理期间当选择白天巡航模式时,分别利用非线性边缘保持低通滤波器如中值滤波器或通过各向异性扩散将输入图像分成其细节图像分量和背景图像分量。对于彩色图像,可以在图像的强度部分(例如,YCrCb格式中的Y)上实现该操作。背景图像部分包括低通分量,并且细节图像部分可以通过从输入图像减去背景图像部分来提取。为了增强小的对比度和可能弱的对象,可以缩放细节图像部分和背景图像部分,以便细节给出约35%的输出/显示动态范围。对于具有可见的热成像仪的系统,可见图像可以通过缺省显示。
图3E示出了如参考图2的方框225所述的红外处理技术380的一个实施例。在一种实现中,红外处理技术380包括用于海上应用的烟雾状况操作模式。例如,即使在白天操作期间,使用者或操作者也可以利用红外(MWIR、LWIR)或近红外(NIR)波段从成像仪实现更好的性能。根据水汽含量和颗粒大小,红外热像仪可以大大提高烟雾状况下的可见度。如果可见成像仪或热像仪能穿透雾,则图像捕捉系统100A、100B可以设置在烟雾状况模式下,在该模式下系统100A、100B试图提取从所选的红外传感器可得到的少量信息。在烟雾状况下,会存在不太高的空间频率信息(在一个方面中,例如,主要是由于颗粒散射)。图像中的信息可以从图像的低频部分获得,并且提高更高的频率会将图像淹没在噪声中(例如,时间和/或固定图形)。
参考图3E,将非线性边缘保持低通滤波器(LPF)应用到图像(方框382)。接下来,对该图像直方图均衡(方框384)并缩放(方框386),以形成直方图均衡输出图像。接下来,线性映射输出图像的动态范围以适合显示组件140(方框388)。应该理解,在不脱离本公开的范围的情况下,可以以不同的顺序执行其中执行过程380的方框顺序。
在各种实现中,在处理图像期间当选择烟雾状况模式时,将非线性的、边缘保持的低通滤波器如中值或通过各向异性扩散施加到该图像(即,热像仪或可见彩色图像的亮度分量)。在一个方面中,可以对来自低通滤波操作的输出直方图均衡并且缩放,以将动态范围映射到显示器并使显示器的对比度最大化。
图3F示出了如参考图2的方框225所述的红外处理技术390的一个实施例。在一种实现中,红外处理技术390包括用于海上应用的海岸线操作模式。
参考图3F,可以辨析海岸线(方框392)。例如如前面所讨论的,海岸线识别(例如,地平线和/或海岸线)可以通过将图像处理变换(例如,霍夫变换)应用到该图像来确定(方框392),其可以用于定位红外相机的视场和/或在显示的图像上提供线(例如,任何类型的标记,如红线或其它标记。接下来,对该图像直方图均衡(方框394)并且缩放(方框396),以形成输出图像。接下来,线性映射输出图像的动态范围以适合显示组件140(方框398)。应当意识到,在不脱离本公开的范围的情况下,可以以不同的顺序执行其中执行过程390的方框顺序。
在一种实现中,可以使用由该变换(例如,霍夫变换)产生的信息来标记作为用于显示的线性区域的海岸线或甚至地平线。可以将该变换应用到与主视频路径分开的路径中的图像(例如,当应用的变换不会改变图像数据并且不会影响后期的图像处理操作时),并且可以使用该变换的应用来检测线性区域,如直线(例如,海岸线和/或地平线)。在一个方面中,通过假设海岸线和/或地平线包括使帧的整个宽度拉伸的直线,海岸线和/或地平线会被标识为变换时的峰并且可以用来参考海岸线和/或地平线的位置保持该视场。同样,可以对输入图像(例如,预处理的图像)直方图均衡(方框394)并缩放(方框396),以产生输出图像,并且可以将变换信息(方框392)加到输出图像以突出所显示图像的海岸线和/或地平线。
此外,在海岸线的操作模式中,图像会被海(即,图像的下部)和天空(即,图像的上部)所占据,其表现为图像直方图中的两个峰。在一个方面中,希望显著的对比度在海岸线的窄带上,并且可以针对用于直方图均衡的平顶限制来选择(例如,相对地基于传感器像素的数目和在直方图中使用的位元的数目的)一低数字。在一个方面中,例如,低的平顶限制(相对的)会降低直方图中的峰值的影响并且在保留用于海岸线和/或地平线区域的对比度时,提供相比海洋和天空的低对比度。
图4示出了说明实施模式410A-410E和与此有关的红外处理技术的方法400的框图,如参考本公开的各个实施例中所描述。具体地,第一模式指的是夜间停靠模式410A,第二模式指的是人员落水模式410B,第三模式指的是夜间巡航模式410C,第四模式指的是白天巡航模式410D,第五个模式指的是烟雾状况模式410E。
在一种实现中,参考图4,图1A、1B的图像捕捉系统100A、100B的处理组件110可以执行如下的方法400。接收或获得捕捉图像的传感器数据(即,红外图像数据)(方框402)。将校正项应用到所接收到的传感器数据(方框404),并且将时间噪声消减应用到所接收到的传感器数据(方框406)。
接下来,所选模式410A-410E中的至少一个可以经由图像捕捉系统100A、100B的控制组件150通过用户或操作员选择,并且处理组件110执行与所选操作模式相关的相应的处理技术。在一个示例中,如果选择夜间停靠模式410A,那么可以对传感器数据直方图均衡和缩放(例如,0-511)(方框420),该传感器数据可以被线性缩放(例如,0-128),饱和最高和最低(例如,1%)(方框422),并将直方图均衡的传感器数据加到线性缩放的传感器数据,以用于将该动态范围线性映射到显示组件140(方框424)。在另一示例中,如果选择人员落水模式410B,则可移动或定位图像捕捉系统100A、100B的红外捕捉组件130,以便地平线位于视场(FoV)的上部,将高通滤波器(HPF)应用到传感器数据(方框432),并且然后线性映射高通滤波的传感器数据的动态范围以适合显示组件140(方框434)。在另一示例中,如果选择夜间巡航模式410C,则处理传感器数据以用高通滤波器提取弱的细节部分和背景部分(方框440),对背景部分直方图均衡和缩放(例如,0-450)(方框442),缩放细节部分(例如,0至511)(方框444),以及背景部分被添加到细节部分用于线性映射该动态范围以显示组件140(方框446)。在另一示例中,如果选择白天巡航模式410D,则处理传感器数据以用高通滤波器提取微弱的细节部分和背景部分(方框450),对背景部分直方图均衡和缩放(例如,0-511)(方框452),对细节部分缩放0-255(方框454),并且使背景部分与细节部分相加以将动态范围线性映射到显示组件140(方框456)。在另一示例中,如果选择烟雾状况模式410E,则将非线性低通滤波器(例如,中值)应用到传感器数据(方框460),其然后被直方图均衡和缩放,以将动态范围线性映射到显示组件140(方框462)。
对于任何模式(例如,方框410A-410E),用于显示的图像数据会被标记(例如,颜色编码、高亮显示或以其他方式确定标记),以标识例如水中可疑的人(例如,人员落水)或水中危险的人(例如,夜间巡航、白天巡航或其他任何模式)。例如,如本文所讨论,可以将图像处理算法应用到图像数据(方框470)以标识图像数据中的各个特征(例如,对象,如温暖的健全人、水危险、地平线或海岸线)并且适当地标记这些特征,以通过用户查看该显示器辅助识别和标识。作为具体的示例,水中可疑的人可以是蓝色,而危险的水(例如,漂浮碎屑)在显示的图像中可以是黄色。
此外,对于任何的模式(例如,方框410A-410E),可以标记用于显示的图像数据,以标识例如海岸线(例如,海岸线和/或地平线)。例如,如本文所讨论,可以将图像处理算法应用到(方框475)图像数据,以标识海岸线和/或地平线,并且适当标记这些特征以通过用户查看显示器辅助识别和标识。作为具体的示例,可以在显示的图像上用红线勾勒或标识地平线和/或海岸线,以帮助用户查看所显示的图像。
接下来,在施加至少一个红外处理技术用于模式410A-410E之后,判定在夜间模式下是否以前面描述的方式显示处理的传感器数据(即,应用夜间调色板)(方框480)。如果是,则将夜间调色板应用到处理的传感器数据(方框482),并且在夜间模式显示处理的传感器数据(方框484)。如果没有,则以非夜间模式的方式显示处理的传感器数据(例如,黑色或白色热调色板)(方框484)。应当意识到,在夜间模式下,会在红色或绿色的颜色调色板上显示传感器数据(即,图像数据)以提高用户或操作员的夜视能力。
图5示出了说明用于在不同操作模式之间进行选择的红外成像系统100A、100B的控制组件150的一个实施例的框图,如前面参考图2-4所描述。在一个实施例中,红外成像系统100A、100B的控制组件150可以包括用户输入和/或接口装置,如具有一个或多个按钮510、520、530、540、550、560、570的控制面板单元500(例如,有线或无线的手持式控制单元),其适于与用户接口并接收用户输入的控制值,并进一步适于产生并传送一个或多个输入控制信号至处理组件100A、100B。在各个其它实施例中,控制面板单元500可以包括滑动杆、可转动的旋钮以选择所需的模式、键盘等,而没有脱离本公开的范围。
在各种实现中,可以利用控制面板单元500的多个按钮510、520、530、540、550、560、570在如前面参考图2-4所描述的各种操作模式之间进行选择。在各种实现中,处理组件110适于感测来自控制面板单元500的控制输入信号并响应从按钮510、520、530、540、550、560、570接收的任何感测的控制输入信号。处理组件110可以进一步适于将控制输入信号解释为值。在各种其他实现中,应当意识到,控制面板单元500可以适于包括一个或多个其他的按钮(未示出),以提供红外成像系统100A、100B的各种其它控制功能,如自动对焦、菜单启用和选择、视场(FOV)、亮度、对比度和/或各种其他特征。在另一实施例中,控制面板单元500可以包括单个按钮,其可以用于选择操作510、520、530、540、550、560、570中的每个模式。
在另一实施例中,控制面板单元500可以适于集成为显示组件140的一部分以用作用户输入装置和显示装置,例如,用户激活的触摸屏装置适于从显示屏幕的用户触摸的不同部分接收输入信号。同样,GUI接口装置可以具有例如按钮510、520、530,540、550、560、570的一个或多个图像,适于与用户接口并通过显示组件140的触摸屏接收用户输入的控制值。
在一个实施例中,参考图5,可以启动第一按钮510以选择夜间停靠操作模式,可以启动第二按钮520以选择人员落水操作模式,可以启动第三按钮530以选择夜间巡航操作模式,可以启动第四按钮540以选择白天巡航操作模式,可以启动第五按钮550以选择烟雾状况操作模式,可以启动第六按钮560以选择海岸线操作模式,以及可以启动第七按钮570以选择或关闭夜间显示模式(即,夜间调色板)。在另一实施例中,在不脱离本公开的范围的情况下,可以使用用于控制面板单元500的单个按钮,以切换到操作模式510、520、530、540、550、560、570中的每个。
图6示出了说明红外成像系统100A、100B的图像捕捉组件130的实施例的框图。如所示,图像捕捉组件130可以适于包括第一相机组件132、第二相机组件134和/或探照灯组件136。在各种实现中,在不脱离本公开的范围的情况下,组件132、134、136中的每个可以集成为图像捕捉组件130的一部分或者组件132、134、136中的一个或多个可以与图像捕捉组件130分开。
在一个实施例中,第一相机组件132可以包括能够捕捉图像170的红外图像数据的红外相机组件。通常,红外相机是一种装置,其适于利用红外辐射形成图像,这对于水中和/或黑暗中的救援行动是有利的。
在一个实施例中,第二相机组件134可以包括另一个红外相机组件或能够捕捉图像170的可见光谱图像的相机。通常,由船舶180的乘务员使用可见光波长的相机以查看和检查图像170。例如,在白天,可见光波长的相机可以帮助查看、标识和定位落水的人。
在各种实现中,相机组件132、134可以适于包括宽和/或窄的视场(例如,固定的或可变的视场)。例如,该特征可以包括使视场变窄的套筒透镜以聚光于视场内的特定区域上。
在一个实施例中,探照灯组件136包括能够在视场中朝着图像170投射光束的装置。在一种实现中,探照灯组件136适于将光束聚光在至少一个相机组件132、134的视场内的目标上,以标识和定位例如人员落水的位置,这将允许船舶180的乘务员提高黑暗中的人的可见度。
图7示出了说明用于监控红外成像系统100A、100B的图像数据的方法700的实施例的框图。在一种实现中,通过红外成像系统100A、100B的处理组件110执行方法700。如图7所示,获得图像数据(方框710)。在各种实现中,可以从图像捕捉组件130或从存储器组件120中的存储器直接获得图像数据。
接下来,可以处理所获得的图像数据(方框714)。在一种实现中,可以利用图3B的人员落水操作模式320处理所获得的图像数据,以收集图像数据从而检测对象,如人落入或靠近船舶180的水中的人。
接下来,可以由处理的图像数据标识人员落水(例如,人)(方框718)。在一种实现中,该对象(例如,人)可以基于它们之间的温度差与水分离。例如,当具有约98度体温的人落入具有约60-70度或更低水温的水中时,可用红外图像查看到温度之间的差异,因此,该人会被在水中快速标识并定位。
在一个示例性实施例中,各类传统的图像处理软件(例如,位于VA,Reston的ObjectVideo公司的软件包)会通过处理组件110运行以进行图像分析,从而监控图像数据并检测人员落水的状态。在一个示例性实施例中,这种传统软件中的特征可以支持阈值条件或对象识别的使用,例如,以将非活体对象如躺椅或其它无生命的物体与人区分开。用阈值因素如温度、形状、大小、纵横比、速度或其他因素编程软件程序包有助于区分非活体和/或非人类对象的图像与人类图像的软件包。因此,在给定的应用中希望使用的阈值条件可以提供:当下降的躺椅或热咖啡杯扔到海里时,例如飞过相机视场的鸟会被忽略。
当怀疑或确定人员落水状况时,会警报或通知操作员(例如,乘务员)(方框722),以便可以启动救援行动。在各种实现中,此警报或通知可以包括音频信号和/或视觉信号,如报警、警告灯、警报声、钟、蜂鸣器等。
接下来,可以基于图像数据标识人员落水的具体位置(方框726)。在一种实现中,标识该人的位置可以包括使图像捕捉组件130的视场变窄。例如,红外相机的透镜可以直接插入到一位置,以放大水中的对象或人,或者至少放大水中的人的邻近位置,或者查看成像捕捉组件130的另一较窄视场可以指向水中的人的邻近位置。此外,探照灯(例如,图像捕捉组件130的探照灯组件136)可以指向水中人的邻近位置(方框730),以辅助落水人员的拯救和营救。
当检测到人员落水状况时,例如,根据一个实施例,可以连同图像数据一起记录事件的时间和/或位置(例如,方框722或726的一部分),以例如帮助搜救行动和/或为可疑的人员落水事件的以后分析提供信息。备选地,可以用图像数据定期记录时间和/或位置。例如,处理组件110(图1a、1b)可以包括位置确定功能(例如,全球定位系统(GPS)接收器或通过其它常规的位置确定技术),以接收精确的位置和/或时间信息,这会与图像数据一起存储(例如,在存储器组件120中)。可以使用连同位置信息和/或时间信息的图像数据,例如,以当大型船通常不能快速停止并返回到人员落水事件的位置时,允许搜索和救援人员离开船(例如,游船)并以即时的方式乘小船或直升机返回人员落水状况的确切位置。
在可应用的情况下,本发明的各种实施例可以利用硬件、软件、或硬件和软件的各种组合来实施。在可应用的情况下,这里提出的各种硬件组件和/或软件组件可以组合成包括软件、硬件和/或两者的复合组件,而不脱离本公开的范围和功能。在可应用的情况下,这里提出的各种硬件组件和/或软件组件可以分成具有软件、硬件和/或两者的子组件,而不脱离本公开的范围和功能。在可应用的情况下,预期软件组件可以实现为硬件组件,反之亦然。
根据本公开,软件,如程序代码和/或数据,可以存储在一个或多个计算机可读介质上。还预期,这里标识的软件可以利用一个或多个通用或专用计算机和/或计算机系统、网络和/或以其他方式来实现。在可应用的情况下,本文所描述的各个步骤的顺序可以改变、组合成复合步骤,和/或分离成子步骤以提供这里所描述的特征。
在各种实施例中,用于模式模块112A-112N的软件可以嵌入(即,硬编码)在处理组件110中或存储在存储器组件120上,以用于通过处理组件110存取并执行。如前所述,在一个实施例中,用于模式模块112A-112N的代码(即,软件和/或硬件)定义预设的显示功能,其允许处理组件100A、100B在一个或多个处理技术之间进行切换,如参考图2-4所述,以用于在显示组件140上显示捕捉的和/或处理的红外图像。
现在参考图8-13,根据各种实施例,讨论用于将多个光学装置,如夜视装置和/或相机,对准共同目标的系统。例如,根据一个实施例,一旦用不太强大(例如,具有较小的放大率和/或较低的灵敏度)的手持式夜视装置发现人员落水,就可以将更强大的(例如,具有较大的放大率和/或较高的灵敏度)固定的夜视相机系统对准落水的人。此外,对于一个或多个实施例,成像装置可以代表一个或多个红外和/或可见光相机(例如,固定的、可固定的和/或便携式相机),其可处于(或能够)无线通信并且形成无线相机系统,其在相机之间提供旋转-提示功能(如本文所讨论的)以提供信息,从而允许一个或多个相机将它们的视场引向由系统中的一个或多个其他相机指定的感兴趣区域。此外对于一个或多个实施例,本文所公开的相机和技术可以应用于陆地、海洋、天空和/或空间环境,并且可以包括用户接口,其允许用户存储指定的信息(例如,位置、视线、指向、罗盘、航向和/或其他信息),有选择地将信息提供给系统中的其他相机,和/或接收所提供的信息以便将用于相关用户的相机指向对应于从系统中的其他相机接收到的信息的感兴趣区域。
图8示出了说明成像系统800用于将固定安装相机子系统801对准用便携式成像/查看子系统802查看的目标803的框图。便携式成像/查看子系统802可以由用户807握住,并且在一个或多个实施例中,便携式成像/查看子系统802可以代表固定安装(或可固定安装),类似地,对于一些实施例固定安装相机子系统801可以代表便携式成像/查看子系统。
例如,成像系统800可以在船舶804上实现。当在船舶804上实现时,例如,目标803可以是落水的人。因此,成像系统800可用于搜索和救援行动,比如,当人从海上的船上掉下去时。
固定安装相机子系统801可以具有视场811。便携式成像/查看子系统802可以具有视场812。通常,视场811可以至少部分地与视场812重叠,使得目标803可以通过固定安装相机子系统801和便携式成像/查看子系统802成像和/或查看。因此,一旦用户807用便携式成像/查看子系统802定位了目标803,那么用户807就会向固定安装相机子系统801发信号来查看目标803,并且向感兴趣区域提供所需的信息。
固定安装相机子系统801可以具有不存在于便携式成像/查看子系统802中的能力。例如,固定安装相机子系统801可以有多个相机,可以具有多个焦距(倍率)的相机,可以具有对多个波长的光(如可见光,红外光和/或紫外光)敏感的相机,可以自动跟踪目标803,和/或可以将关于目标的信息转送到远程位置(如船舶804)。固定安装相机子系统801的尺寸和/或重量可以比便携式成像/查看子系统802的尺寸和/或重量大很多。代替便携式成像/查看子系统802或除便携式成像/查看子系统802之外,有固定安装相机子系统801查看目标,是相当有利的。
固定安装相机子系统801可永久附着于船舶804。固定安装相机子系统801可以由人进行远程操作或由自动化系统操作。例如,固定安装相机子系统801可以是俄勒冈州威尔森威尔的FLIR系统TM制造的M系列的相机系统。
便携式成像/查看子系统802可以手持、三脚架安装或以其他方式保持在适当位置。便携式成像/查看子系统802可以由配置用户手动操作。例如,便携式成像/查看子系统802可以是由FLIR系统TM制造的H系列热成像相机。
成像系统800可以包括配置为从便携式成像/查看子系统802向固定安装相机子系统801传达信号的通信链路810。通信链路810可以是有线通信链路或无线通信链路,其示例为例如蜂窝式电话通信链路、光通信链路、网络通信链路、蓝牙TM通信链路和/或Wi-FiTM通信链路。通信链路810可以是任何类型的通信链路。通信链路810可以是相对于彼此串联和/或并联工作的通信链路的任何组合。
图9示出了可以由根据本公开实施例的便携式成像/查看子系统802的用户807查看的显示900。显示900可以包括经由便携式成像/查看子系统的802成像和/或查看的场景901的实时再现。可以可选地提供场景901,带或不带电子处理。因此,场景901可以是与摄像机类似的视频显示和/或可以是与望远镜或双筒望远镜类似的光学显示。
显示900可以包括航向表示902和/或范围表示903。例如,航向表示902可以是一个航向带。航向表示902可以是α-数字表示。航向表示902可以是任何类型的表示。范围表示903可以是范围带、α-数字表示和/或任何其他形式的范围表示。
目标指定标记904可以提供在显示器900上以有利于希望是航向和范围的目标803的指定。目标指定标记904可以是窗口(如正方形、长方形、椭圆形或圆形的窗口)、一组十字线(如图9所示)或任何其他类型的标记。移动便携式成像/查看子系统802以将目标放置在目标指定标记904下面或内部可以便于相对于便携式成像/查看子系统802对目标确定航向和范围。
图10示出了说明根据本公开施例的便携式成像/查看子系统802的框图。便携式成像/查看子系统802可以包括成像装置,如相机(例如,静止照相机和/或视频相机),并且可以包括可视装置,如望远镜或双筒望远镜。该相机可以是可见光相机、红外相机或任何其他类型的相机。便携式成像/查看子系统802可以包括任何类型的或多种类型组合的多个相机(例如,如参考图6讨论的)。便携式成像/查看子系统802可以代表红外相机,并且附加地可以包括通信链路810的至少一部分和测位器。
例如,便携式成像/查看子系统802可以包括配置为从场景(如在海洋中落水的人)接收光并提供光以方便用户807查看的光学系统1001。出来的光可以被放大、加强、过滤(如偏振和/或光谱过滤),和/或以其他方式光学和/或电子处理。例如,光学系统1001可以包括望远镜或双筒望远镜。
根据一个实施例,成像/查看子系统802可以包括相机,如视频相机。例如,视频相机可以由成像仪1002、控制器1004和显示器1005定义。便携式成像/查看子系统802可以便于仅用光学系统1001(例如,没有视频相机,如通过查看出来的光)查看,仅用视频相机(例如,经由显示器1005)查看,或者用光学系统1001和视频相机二者查看。光学系统1001可以通过视频相机(如用于聚焦、变焦、图像稳定和/或过滤)使用,或者可以仅用于光学(不是相机)查看。因此,视频相机可以使用也有利于光学查看的光学系统1001,和/或可以使用独立的专用光学系统。
成像仪1002可以经由光束分离器1003等接收来自光学系统1001的光。成像仪1002可以向控制器1004提供代表视频图像的信号。此外,控制器1004可以处理视频图像以用于查看显示器1005。例如,控制器1004可以包括微处理器1006,因此可以是基于微处理器的控制器或其他类型的逻辑器件(例如,处理器、可编程逻辑器件和/或专用集成电路)。
便携式成像/查看子系统802可以包括通信链路810的一部分(图8)。便携式成像/查看子系统802可以包括发送器或收发器(xcvr)1007,其被配置为将有关目标803的信息发送给固定安装相机子系统801。例如,收发器1007可以将如便携式成像/查看子系统802的位置的位置信息、以及一个航向和范围发送至目标803。作为另外的示例,收发器1007可以发送目标803的位置。作为又一示例,收发器1007可以发送场景901(图9)、语音、数据、控制信号和/或任何其他信息,并且类似地接收来自其他设备的类似的信息。对于一些实施例,收发器1007可以代表任何类型的通信接口,以提供或接收来自另一设备的信息(例如,与固定安装相机子系统801建立通信链路。
收发器1007可以响应于用户807激励便携式成像/查看子系统802的控制发送。例如,场景901可以响应于用户807按下按钮1008、显示触摸屏选择或其他控件组件(例如,如参考图1A和5所讨论)来发送。例如,按钮1008可以代表一个或多个用户接口控件,其可被选择来执行各种功能(例如,旋转-提示或其他功能),例如将位置信息提供到远程设备以辅助定位感兴趣的目标,或者请求要被显示的指向提示以辅助用户基于接收到的目标位置信息指向目标的方向,如本文进一步讨论。
激励控制,例如,按下按钮1008,也会导致信息存储在如便携式成像/查看子系统802中的存储器1009中。该信息可以包括位置信息,如便携式成像/查看子系统802的位置,以及目标803的航向和范围,和/或目标803的位置。存储器1009可存储此信息,包括目标803的位置、便携式成像/查看子系统802的位置、目标803的航向和范围、场景901、语音、数据、控制信号和/或任何其他信息。
目标803的位置可以由GPS(全球定位系统接收器)1011、测距仪1013和数字罗盘1012限定的测位器来确定。控制器1004可以使用来自GPS1011、测距仪1013和数字罗盘1012的信息来确定目标803的位置。备选地,远程装置,如远程计算机和/或固定安装相机子系统801可以使用来自GPS1011、测距仪1013(例如,激光测距仪)和数字罗盘1012(例如,任何类型的罗盘)的信息来确定目标803的位置。
可以根据便携式成像/查看子系统802的位置、目标803相对于便携式成像/查看子系统802的航向和目标803距离便携式成像/查看子系统802的范围确定目标803的位置。便携式成像/查看子系统802的位置可以用GPS1011确定。可以使用数字罗盘1012确定目标803相对于便携式成像/查看子系统802的航向。目标803距离便携式成像/查看子系统802的范围可以使用测距仪1013确定。因此,数字罗盘1012和测距仪1013可以合作来限定目标测位器。各种类型的测距仪是适合的。例如,测距仪1013可以是激光测距仪、超声波测距仪或光学测距仪。
可以由除固定安装相机子系统801之外的装置使用由收发器1007发送的信号。例如,目标803的位置可由收发器1007发送以进行搜索和救援飞机中的人员或可以由收发器1007发送到另一个船舶。
控制器1004可以使用存储在存储器1009中和/或可以被配置(例如,硬连接或编程)来执行各种任务的指令,如确定目标803的位置、收发器1007的操作、处理来自成像仪1002的图像、显示器1005的操作、和/或监测按钮1008的状态。控制器1004可以是通用计算机,专用计算机或任何其他类型的控制器或处理器。
根据一个实施例,便携式成像/查看子系统802可以如参考图1A所讨论的那样来实施。例如对于一实施例,便携式成像/查看子系统802可以代表红外相机或配置为红外成像系统100A(图1A)或红外成像系统100B(图1B)的其他装置,其中传感组件160(图1A、1B)包括且代表不同的无线功能和测位器功能(参考图8-10所讨论的),如收发器1007、GPS1011、罗盘1012和/或测距仪1013。此外,图10中的各个元素可以对应于本文所描述的各种元素,如参考图1A、1B、5和6。例如对于一实施例,成像仪1002、控制器1004、显示器1005、存储器1005和按钮1008可以如分别针对图像捕捉组件130、处理组件110、显示组件140、存储组件120和/或模式模块112A-112N和控制组件150所讨论的那样来实现。
图11示出了说明根据本公开实施例的固定安装相机子系统801的框图。固定安装相机子系统801可以是永久或半永久地安装到例如船舶804(图1)。固定安装相机子系统801可以被安装到任何所需的车辆或平台。例如,固定安装相机子系统801可以安装至陆基运输工具、船舶、潜艇、飞机、航天器或卫星。固定安装相机子系统801可以安装到非机动车结构或地球。例如,固定安装相机子系统801可以安装到生命守护站,或者可以沿着海滩、码头或海滨自动安装。
多个固定安装相机子系统801和/或多个便携式成像/查看子系统802可以包括在成像系统800中(例如,如参考图1C配置和讨论)。因此,便携式成像/查看子系统802中的一个或多个可以与固定安装相机子系统801中的一个或多个和/或便携式成像/查看子系统802中的一个或多个通信,以传达目标位置信息,从而为共同目标803成像(例如旋转-提示技术)。作为一示例性实施例中,固定安装相机子系统801可以如参考图1B-1F所讨论的那样实施。
作为一个示例,多个便携式成像/查看子系统802可以包括在成像系统800中。因此,便携式成像/查看子系统802可以与一个或多个固定安装相机子系统801通信,并且响应地,所述一个或多个固定安装相机子系统801可以为共同目标803成像。
一个便携式成像/查看子系统802可以成像和/或传输多个分立目标803的位置。便携式成像/查看子系统802可以存储多个分立目标803的位置。
因此,实践的各种实施例会涉及多个便携式成像/查看子系统802、多个固定安装相机子系统801和/或多个目标803。成像系统800可以容纳任何数量的便携式成像/查看子系统802和固定安装相机子系统801,其相互合作,以标识和查看/成像一个或多个目标803。
固定安装相机子系统801可以包括相机1101和相机定位器,例如,平移和倾斜底座1102(pan and tilt mount)。平移和倾斜底座1102可以在所需方向上例如朝向目标803驱动或对准相机1101。固定安装相机子系统801可以包括任意数量的相机1101,所述相机1101由任意数量的平移和倾斜底座1102驱动。例如,固定安装相机子系统801可以包括都是由共同的平移和倾斜底座1102驱动的广角可见光相机、远摄可见光相机和/或红外相机。备选地,固定安装相机子系统801可以包括每个都由单独的平移和倾斜底座1102驱动的广角可见光相机、远摄可见光相机和/或红外相机。
相机1101可以包括提供光给成像仪1104的光学系统1103。成像仪1104可以提供视频输出到控制器1106。控制器1106可以具有微处理器1107,并且因此可以是基于微处理器的控制器或其他类型的逻辑器件(例如,处理器、可编程逻辑器件和/或专用集成电路)。
控制器1106可以接收来自收发器(xcvr)1108的信息。例如,在将表示目标803位置的信息从便携式成像/查看子系统802通信到固定安装相机子系统801之后,控制器1106可以从收发器1108接收此信息。该收发器1108可以接收语音、数据、控制信号和/或任何其他信息,且可以将上述信息提供给控制器1106。收发器1108可以发送任何类型的信息,如语音、数据、控制信号和/或任何其他信息到便携式成像/查看子系统802。例如,收发器1108可以将目标803的结束的(放大的)和偏振过滤(以减少眩光)的图像发送给便携式成像/查看子系统802。对于一些实施例,收发器1108可以代表任何类型的通信接口,以向或自另一设备提供或接收信息(例如,与便携式成像/查看子系统802建立通信链路。
平移和倾斜底座1102可以包括驱动电机控制器1109。驱动电机控制器1109可以使用位置反馈来确定在哪个位置对准相机1101。例如,位置反馈传感器可以提供在平移和倾斜底座1102的万向支架上(未示出)。驱动电机控制器1109可以将驱动信号提供给平移电机(pan motor)和倾斜电机。
目标803的位置、视频图像或任何其他信息可以存储在存储器1112中。目标803的位置可以例如通过被绘制在船舶804的操舵室中的图表绘图仪上(未示出)而显示在图表上。
控制器1106可以使用存储在存储器1112中的指令和/或可以被配置(例如,硬连接或编程)来执行各种任务,如确定目标803的位置、收发器1108的操作、通过驱动电机控制器1109操作平移和倾斜底座1102和/或跟踪目标803。控制器1106可以是通用计算机、专用计算机或任何其他类型的控制器或处理器。
根据一实施例,固定安装相机子系统801可以参考图1A-1F、5和6所讨论实施以及实施参考图2-4和7所讨论的各种技术。例如对于一实施例,固定安装相机子系统801可以代表红外相机或配置为红外成像系统100A(图1A)或红外成像系统100B(图1B)的其他设备,其中传感组件160(图1A、1B)包括且代表各种无线功能和目标测位器特征(参考图8-10中讨论),如收发器1007、GPS1011、罗盘1012和/或测距仪1013。
此外,图11中的各个元素可以对应于本文所描述的各个元素,如参考图1A、1B、5和6。例如对于一实施例,成像仪1104、控制器1106和存储器1112可以分别如对于图像捕捉组件130、处理组件110以及存储器组件120和/或模式模块112A-112N所讨论的那样来实现。对于一些实施例,便携式成像/查看子系统802(图10)可以包括平移/倾斜底座1102,如参考图11所讨论,以提供指向机构。另外对于一些实施例,固定安装相机子系统801可以如便携式成像/查看子系统802所描述那样实现有一定功能,例如固定安装相机子系统801可以包括对象(或目标)测位器功能,其可以包括GPS、测距仪和/或罗盘功能,以便该信息可以无线地提供到附近的其它相机(例如,便携式成像/查看子系统802)。
图12示出说明根据本公开实施例的一种方法的流程图,该方法用于将固定安装相机子系统801的相机1101对准正利用便携式成像/查看子系统802查看的目标803。目标803可以用便携式成像/查看子系统802成像或查看(方框1201)。目标803的位置可以利用便携式成像/查看子系统802的目标测位器确定(方框1202)。目标测位器可以包括如本文中所讨论的GPS1011、数字罗盘1012和测距仪1013。
目标803的位置可以通过例如通信链路810从便携式成像/查看子系统802传送到固定安装相机子系统801(方框1203)。固定安装式相机1101可以对准目标803(方框1204),以便通过固定安装相机1101促进目标803的成像和/或查看。
应当理解的是,图12中公开的方法可以应用到如本文所公开的任何的成像/查看装置(例如,固定安装相机子系统801或便携式成像/查看子系统802)或它们之间。例如,可以应用该方法,以便固定安装相机子系统801可以使目标位置与便携式成像/查看子系统802通信,以便便携式成像/查看子系统802可以指向感兴趣的对象。作为一个或多个实施例的进一步的示例,便携式成像/查看子系统802可以为便携式成像/查看子系统802的用户提供指向提示,以辅助用户基于由另一装置(例如,固定安装相机子系统801)提供的信息使便携式成像/查看子系统802指向感兴趣的对象。例如,可以为用户显示所需的航向和范围,以如本领域技术人员将理解,利用基于便携式成像/查看子系统802和提供信息的装置之间的位置差调整的航向查看并调整便携式成像/查看子系统802的指示方向。作为示例备选地,可以在显示器上提供指向提示(例如,左、右、上、下箭头),以指导用户基于由其他装置提供的信息指向所希望的方向。
图13示出了说明根据本公开实施例的一种方法的流程图,该方法用于确定目标803相对于便携式成像/查看子系统802的位置。可以确定便携式成像/查看子系统802的位置(方框1301)。例如,便携式成像/查看子系统802的位置可以利用GPS1011确定。备选地,例如,可以利用另外的方法,如三角测量,确定便携式成像/查看子系统802的位置。根据一个实施例,便携式成像/查看子系统802的位置可以是固定的(例如,当便携式成像/视图子系统802被安装在救生员站上时),因而可以被预先确定。
可以相对于便携式成像/查看子系统802确定目标803的航向和范围(方框1302)。航向可以使用数字罗盘1012确定,且该范围可以使用测距仪1013确定。如本领域的技术人员将理解,然后可以由便携式成像/查看子系统802的位置、航向和到目标803(方框1303)的范围确定目标803的位置。还应当理解的是,图13的方法也可以实现用于提供测位器功能的固定安装相机子系统801,如本文所讨论。
因此,根据一个实施例,一旦用不太强大的手持式夜视仪发现落水的人,就可以将更强大的固定的夜视相机系统对准落水的人。使用更强大的固定的夜视相机会大大提高成功解救落水的人的可能性。
可以使用各种实施例来发现和/或识别海盗或恐怖分子。除了或代替固定安装相机子系统801的相机,可以对准其他装置。可以将致命和/或非致命武器对准,如潜在的敌人或入侵者。例如,可以将声波的非致命性武器、微波的非致命性武器、水炮等对准潜在的敌人或入侵者。作为进一步的示例,可以将机枪、大炮和或导弹对准潜在的敌人或入侵者。
如本文使用的,术语“航向”可以定义为包括从便携式成像/查看子系统802到目标803的视线与这样的真北或船头的基准之间的角度。如本文使用的,术语“航向”可以定义为从便携式成像/查看子系统802到目标803的方向,并且可以与目标803相对于便携式成像/查看子系统802的方位相同。
根据一个或多个实施例,本文公开的技术可以应用于各种类型的应用,如文中提到的,海上应用除外。例如,本文公开的技术可以应用到陆地、空中或空间应用,其中目标位置和指向信息(例如,旋转-提示)信息可以是有用的。
根据一个或多个实施例,固定安装相机子系统801和便携式成像/查看子系统802可以实现如本文所讨论的各种模式的功能(例如,参考图1A-7),并且可以在一个系统内实现以执行各种技术,如本文所讨论的(例如,参考图1A-7和/或图8-13)。例如,系统(例如,如参考图1C或8所讨论)可以用各种装置实现(或组成),包括一个或多个固定安装相机子系统801和一个或多个便携式成像/查看子系统802,一个或多个或每个装置是用户可操作的以选择不同的海上模式(例如,如参考图2,4,和5所讨论的)。
一个或多个装置也可以是用户可操作的以将对象位置信息提供(例如,如本文所讨论的自动或经由用户界面通过用户命令,如参考图1A、5和8-13)到系统内的其他装置。一个或多个装置还可以是用户可操作的,以接收来自其他装置的对象位置信息,并且自动地或通过用户的认可(例如,经由用户界面通过用户命令)允许该装置指向指定的感兴趣的对象或者提供指向提示(例如,经过显示器),以基于接收到的对象位置信息引导用户将该装置指向对象的指定位置。
作为一个实施例的示例,用户查看感兴趣的对象可以通过用户接口下命令,以存储对象位置信息和/或将对象位置信息提供给系统内的其他装置,其然后可以基于接收到的对象位置信息(或通过相应的用户界面在相应的用户接收时)旋转以指向该对象。例如,对于一个或多个实施例的装置可以提供用于旋转-提示功能的屏幕上的图形(例如,看看我在哪里寻找功能)。因此,本文所公开的旋转-提示技术可以在相机系统架构内提供一定的优势,如本文中所公开。
上面描述的实施例说明但不限制本公开。还应当理解,根据本公开的原则,可以进行许多修改和变形。因此,本发明的范围仅由所附权利要求定义。

Claims (20)

1.一种系统,包括:
固定安装相机子系统,其具有相机、相机定位器和第一通信接口;
便携式成像/查看子系统,其具有目标测位器和适于与第一通信接口建立通信链路以从目标测位器向相机定位器传输信号的第二通信接口,该信号代表用该便携式成像/查看子系统成像/查看的目标的位置信息;
其中固定安装相机子系统被配置为响应于该信号利用相机定位器对准相机。
2.根据权利要求1所述的系统,其中便携式成像/查看子系统配置为手持式,并且其中固定安装相机子系统还包括第二目标测位器,第一通信接口被配置为从第二目标测位器通过通信链路向便携式成像/查看子系统传输第二信号,其中第二信号代表用固定安装相机子系统成像的目标的位置信息。
3.根据权利要求2所述的系统,其中便携式成像/查看子系统包括显示器,该显示器被配置为基于从固定安装相机子系统接收的第二信号向用户提供指向提示,以帮助用户将该便携式成像/查看子系统指向目标。
4.根据权利要求1所述的系统,其中该便携式成像/查看子系统包括用户可操作控制器,该用户可操作控制器被配置为启动通信链路上的信号的通信,并且其中该便携式成像/查看子系统包括选自由夜视系统、望远镜、双筒望远镜、红外相机和可见光相机组成的列表的至少一个装置。
5.根据权利要求1所述的系统,其中该固定安装相机子系统包括可见光相机和红外相机,其中便携式成像/查看子系统包括显示器,该显示器被配置为基于从固定安装相机子系统接收的第二信号向用户提供指向提示,以帮助用户将该便携式成像/查看子系统指向目标,其中指向提示包括方向箭头或航向和范围提示中的至少一个。
6.根据权利要求1所述的系统,其中该目标测位器包括:
全球定位系统(GPS)接收器,其被配置为确定便携式成像/查看子系统的位置;
罗盘,其被配置为提供从便携式成像/查看子系统至目标的方位角;
测距仪,其被配置为提供从便携式成像/查看子系统到目标的范围。
7.根据权利要求1所述的系统,其中相机定位器包括平移和倾斜驱动器,其中该便携式成像/查看子系统包括存储器,该存储器被配置为存储代表目标位置的信息,并且其中该便携式成像/查看子系统包括光学取景器和显示器,以向用户提供场景的直接光学视图和在显示器上提供生成的场景的图像视图。
8.根据权利要求1所述的系统,其中通信链路包括有线通信链路或无线通信链路,并且其中通信链路是双向的并配置为传输语音和数据。
9.根据权利要求8所述的系统,其中便携式成像/查看子系统和固定安装相机子系统中的至少一个包括:
图像捕捉组件,其适于捕捉红外图像;
控制组件,其适于向用户提供多个可选择的处理模式,接收对应于用户选择的处理模式的用户输入,并生成表示用户选择的处理模式的控制信号,其中多个可选择的处理模式包括夜间巡航模式、白天巡航模式和人员落水模式;
处理组件,其适于从控制组件接收生成的控制信号,根据用户选择的处理模式处理捕捉的红外图像,并生成处理的红外图像;以及
显示组件,其适于显示处理的红外图像。
10.一种运输工具,包括权利要求1的系统。
11.一种红外相机系统,包括:
红外相机,其具有适于捕捉场景的红外图像的图像捕捉组件;
目标测位器,其适于获取场景内目标的目标位置信息;
通信接口,其被配置为基于来自目标测位器的信息传输来自红外相机的信号,该信号代表用红外相机查看的目标的位置信息,并且其中通信接口进一步配置为接收来自其它装置的目标位置信息;
控制组件,其适于向用户提供可选择的处理模式,接收对应于用户选择的处理模式的用户输入,并生成表示用户选择的处理模式的控制信号,其中可选择的处理模式包括:处理经由通信接口接收的目标位置信息,和处理来自目标测位器的位置信息以经由通信接口提供;和
处理组件,其适于从控制组件接收生成的控制信号,并基于用户选择的处理模式执行选择的处理功能。
12.根据权利要求11所述的红外相机系统,进一步包括:
显示组件,其适于显示红外图像;和
其中处理组件适于基于经由通信接口接收的目标位置信息,为用户生成指向提示以提供在显示器上,从而帮助用户将红外相机指向目标。
13.根据权利要求12所述的红外相机系统,其中:
控制组件,其适于向用户提供多个可选择的处理模式,接收对应于用户选择的处理模式的用户输入,并生成表示用户选择的处理模式的第二控制信号,其中多个可选择的处理模式包括夜间巡航模式、白天巡航模式和人员落水模式;和
处理组件,其适于从控制组件接收生成的第二控制信号,根据用户选择的处理模式处理捕捉的红外图像,并生成处理的红外图像;和
显示组件,其适于显示处理的红外图像。
14.根据权利要求11所述的红外相机系统,进一步包括:
显示组件,其适于显示红外图像;和
定位器,其被配置为基于经由通信接口接收的目标位置信息,使红外相机指向目标;
其中红外相机系统被配置为自动识别目标,在显示器上显示与目标相关的目标指定标记,并通过定位器控制平移/倾斜以自动跟踪目标。
15.根据权利要求14所述的红外相机系统,其中目标指定标记包括正方形、十字准线和/或椭圆形以识别显示器上的目标,并且其中目标被识别为红外图像中的最热对象。
16.一种方法,包括:
在第一红外相机的视野内捕捉目标的红外图像;
响应于用户命令,确定目标的位置信息;
将目标的位置信息存储在红外相机内;和
将目标的位置信息无线传送到远程红外相机,以帮助远程红外相机指向目标。
17.根据权利要求16所述的方法,进一步包括:
由红外相机接收目标的位置信息;和
在红外相机的显示器上生成指向提示,以帮助用户将红外相机指向目标。
18.根据权利要求16所述的方法,进一步包括:
为红外相机的用户提供多个可选择的处理模式,其中多个可选择的处理模式包括夜间停靠模式、人员落水模式和白天巡航模式;
接收对应于用户选择的处理模式的用户输入;
根据用户选择的处理模式,处理捕捉的红外图像;
生成处理的红外图像;和
显示处理的红外图像。
19.根据权利要求16所述的方法,其中远程红外相机是固定安装相机子系统,并且红外相机是便携式成像/查看子系统,其中该方法进一步包括基于从红外相机接收的位置信息,对准固定安装相机子系统。
20.一种配置为执行权利要求16的方法的系统。
CN201280027380.7A 2011-04-11 2012-04-10 红外相机系统和方法 Active CN103583037B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161474209P 2011-04-11 2011-04-11
US61/474,209 2011-04-11
PCT/US2012/032937 WO2012142049A1 (en) 2011-04-11 2012-04-10 Infrared camera systems and methods

Publications (2)

Publication Number Publication Date
CN103583037A true CN103583037A (zh) 2014-02-12
CN103583037B CN103583037B (zh) 2017-04-26

Family

ID=46000377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280027380.7A Active CN103583037B (zh) 2011-04-11 2012-04-10 红外相机系统和方法

Country Status (4)

Country Link
US (2) US9047745B2 (zh)
CN (1) CN103583037B (zh)
CA (1) CA2833167C (zh)
WO (1) WO2012142049A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080698A (ja) * 2014-10-17 2016-05-16 日本無線株式会社 画像生成装置
CN107613244A (zh) * 2016-07-08 2018-01-19 杭州海康威视数字技术股份有限公司 一种航道监控目标获取方法及装置
CN109643480A (zh) * 2016-07-22 2019-04-16 路晟(上海)科技有限公司 安全系统及方法
CN110472517A (zh) * 2019-07-24 2019-11-19 广东校园卫士网络科技有限责任公司 一种自主式校园访客抓拍及分析管理方法
CN111932817A (zh) * 2020-08-03 2020-11-13 上海理工大学 一种火灾探测预警系统及方法
WO2021102939A1 (zh) * 2019-11-29 2021-06-03 深圳市大疆创新科技有限公司 图像处理方法及设备
WO2021126312A1 (en) * 2019-12-19 2021-06-24 Oceaneering International, Inc. System for identification of marine mammalian species present at an offshore construction site
CN113665495A (zh) * 2021-09-23 2021-11-19 温州大学大数据与信息技术研究院 一种便于安装的基于计算机视觉的车载目标跟踪器
US11346938B2 (en) 2019-03-15 2022-05-31 Msa Technology, Llc Safety device for providing output to an individual associated with a hazardous environment

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232237B2 (en) * 2009-06-03 2019-03-19 Flir Systems, Inc. Thermal-assisted golf rangefinder systems and methods
US20130162835A1 (en) * 2011-12-23 2013-06-27 Fluke Corporation Thermal imaging camera for infrared rephotography
CN104541501B (zh) * 2012-05-23 2020-02-21 杭州美盛红外光电技术有限公司 红外拍摄装置和红外拍摄方法
EP2885671A4 (en) * 2012-08-14 2016-03-30 Nokia Technologies Oy VISION ASSISTANCE UNDER LOW LIGHT
JP6071436B2 (ja) 2012-11-05 2017-02-01 オリンパス株式会社 撮像装置、撮像方法およびプログラム
CN103514693B (zh) * 2013-10-23 2015-06-10 广州市海林电子科技发展有限公司 岸滩目标监测装置
US10931934B2 (en) * 2014-09-02 2021-02-23 FLIR Belgium BVBA Watercraft thermal monitoring systems and methods
US9569671B1 (en) * 2014-09-30 2017-02-14 Puretech Systems, Inc. System and method for man overboard incident detection
US11126857B1 (en) * 2014-09-30 2021-09-21 PureTech Systems Inc. System and method for object falling and overboarding incident detection
WO2016069084A1 (en) * 2014-10-30 2016-05-06 Bae Systems Information & Electronic Systems Integration Inc. Three-dimensional thermal imaging for medical applications
US9558643B2 (en) * 2015-03-09 2017-01-31 Alexander Inchausti Emergency alert assembly
BR112017020067A2 (pt) * 2015-03-19 2018-11-06 Rugiero Rosa Virginia Y Morilla Horacio Alberto sistema autônomo de regaste de pessoas para embarcações e naufrágios
EP3073449A1 (en) * 2015-03-23 2016-09-28 Continental Automotive GmbH Apparatus and method for recording data associated with a vehicle
US10322787B2 (en) 2016-03-01 2019-06-18 Brunswick Corporation Marine vessel station keeping systems and methods
GB2550111B (en) * 2016-04-29 2019-10-09 Marss Ventures S A Method of verifying a triggered alert and alert verification processing apparatus
US10502634B2 (en) * 2016-05-02 2019-12-10 Hastings Fiber Glass Products, Inc. Temperature measuring head unit for a hot stick
CN106441238A (zh) * 2016-06-01 2017-02-22 昆山塔米机器人有限公司 一种基于红外视觉技术的机器人的定位装置及其定位导航算法
US10506193B2 (en) 2016-07-19 2019-12-10 Snap-On Incorporated Methods and systems for displaying a thermal image and information related to servicing a vehicle
US9896170B1 (en) * 2016-08-12 2018-02-20 Surveillance International, Inc. Man overboard detection system
CN107818553B (zh) * 2016-09-12 2020-04-07 京东方科技集团股份有限公司 图像灰度值调整方法和装置
GB2559955A (en) * 2017-01-19 2018-08-29 Nocturna Ltd Portable evidence capturing device, evidence capturing system and method
US10308330B1 (en) * 2017-01-27 2019-06-04 Paul Spivak Motion stabilized spotlight
WO2018178506A1 (en) * 2017-03-30 2018-10-04 Scopesensor Oy A method, a system and a device for displaying real-time video images from around a vehicle
WO2018237307A1 (en) * 2017-06-22 2018-12-27 Holohan Eric METHODS AND SYSTEMS FOR A VERTICALLY VARIABLE OCEAN NAVIGATION SYSTEM VISIBILITY SYSTEM
US20190079370A1 (en) * 2017-09-11 2019-03-14 Tactacam LLC Autofocus and autozoom recording system
KR101852476B1 (ko) * 2017-12-28 2018-06-04 한국해양과학기술원 사고 선박 및 익수자 탐지용 다중파장 영상 분석 전자 광학 시스템 및 그 분석 방법
US10924685B2 (en) 2018-05-07 2021-02-16 Rubicon Products, LLC Night vision apparatus
US10845812B2 (en) 2018-05-22 2020-11-24 Brunswick Corporation Methods for controlling movement of a marine vessel near an object
CN110636248B (zh) * 2018-06-22 2021-08-27 华为技术有限公司 目标跟踪方法与装置
EP3629226B1 (en) * 2018-09-26 2020-11-25 Axis AB Method for converting alerts
US11198494B2 (en) 2018-11-01 2021-12-14 Brunswick Corporation Methods and systems for controlling propulsion of a marine vessel to enhance proximity sensing in a marine environment
US10926855B2 (en) 2018-11-01 2021-02-23 Brunswick Corporation Methods and systems for controlling low-speed propulsion of a marine vessel
US11794865B1 (en) 2018-11-21 2023-10-24 Brunswick Corporation Proximity sensing system and method for a marine vessel
US11443637B2 (en) 2018-11-21 2022-09-13 Brunswick Corporation Proximity sensing system and method for a marine vessel
US11436927B2 (en) 2018-11-21 2022-09-06 Brunswick Corporation Proximity sensing system and method for a marine vessel with automated proximity sensor location estimation
US11403955B2 (en) 2018-12-14 2022-08-02 Brunswick Corporation Marine propulsion control system and method with proximity-based velocity limiting
US11373537B2 (en) 2018-12-21 2022-06-28 Brunswick Corporation Marine propulsion control system and method with collision avoidance override
US11702178B2 (en) 2019-01-31 2023-07-18 Brunswick Corporation Marine propulsion control system, method, and user interface for marine vessel docking and launch
US11257378B2 (en) 2019-01-31 2022-02-22 Brunswick Corporation Marine propulsion control system and method
JP7317531B2 (ja) * 2019-03-14 2023-07-31 ヤマハ発動機株式会社 船舶の撮影システムおよびそれを備えた船舶、ならびに船舶の撮影システムの較正方法
JP7232089B2 (ja) * 2019-03-19 2023-03-02 ヤマハ発動機株式会社 船舶用の表示装置、船舶および船舶用の画像表示方法
CN110130414A (zh) * 2019-05-20 2019-08-16 中铁七局集团郑州工程有限公司 一种检测地下连续墙成墙质量的方法
CN111147719B (zh) * 2019-12-26 2022-07-05 中国人民警察大学 一种可穿戴摄像机
US11480966B2 (en) 2020-03-10 2022-10-25 Brunswick Corporation Marine propulsion control system and method
US11373511B2 (en) 2020-09-14 2022-06-28 PureTech Systems Inc. Alarm processing and classification system and method
GB202101727D0 (en) * 2021-02-08 2021-03-24 Offshore Survival Systems Ltd Location apparatus
WO2022262932A1 (en) * 2021-06-14 2022-12-22 Robert Bosch Gmbh Operating unit, surveillance network, method computer program and storage medium

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729016A (en) 1994-04-12 1998-03-17 Hughes Aircraft Company Low cost night vision system for nonmilitary surface vehicles
US6930709B1 (en) * 1997-12-04 2005-08-16 Pentax Of America, Inc. Integrated internet/intranet camera
US7576770B2 (en) 2003-02-11 2009-08-18 Raymond Metzger System for a plurality of video cameras disposed on a common network
US6255650B1 (en) 1998-12-11 2001-07-03 Flir Systems, Inc. Extreme temperature radiometry and imaging apparatus
US20060132643A1 (en) * 2001-07-11 2006-06-22 Chang Industry, Inc. Deployable monitoring device having self-righting housing and associated method
US20040121782A1 (en) * 2002-09-07 2004-06-24 Offshore Data Services, Llc Personal flotation device transceiver tracking system
US20050134685A1 (en) * 2003-12-22 2005-06-23 Objectvideo, Inc. Master-slave automated video-based surveillance system
US7956889B2 (en) * 2003-06-04 2011-06-07 Model Software Corporation Video surveillance system
CA2543788C (en) * 2003-10-23 2012-01-17 Tsx Products Corporation An apparatus for automatically pointing a device at a target
US20050108261A1 (en) * 2003-11-04 2005-05-19 Joseph Glassy Geodigital multimedia data processing system and method
US20070174152A1 (en) * 2003-12-08 2007-07-26 Bjornberg David B Handheld system for information acquisition, verification, recording, processing, display and communication
US7787013B2 (en) * 2004-02-03 2010-08-31 Panasonic Corporation Monitor system and camera
SE0400232L (sv) 2004-02-05 2005-08-06 Vendolocus Ab Alarmsystem
DE102004034663A1 (de) * 2004-07-17 2006-02-09 Siemens Ag Folgekamerasteuerung
US7629995B2 (en) * 2004-08-06 2009-12-08 Sony Corporation System and method for correlating camera views
US7183549B2 (en) 2004-09-09 2007-02-27 Flir Systems, Inc. Multiple camera systems and methods
US20080136916A1 (en) * 2005-01-26 2008-06-12 Robin Quincey Wolff Eye tracker/head tracker/camera tracker controlled camera/weapon positioner control system
US7929016B2 (en) * 2005-06-07 2011-04-19 Panasonic Corporation Monitoring system, monitoring method and camera terminal
US8284254B2 (en) * 2005-08-11 2012-10-09 Sightlogix, Inc. Methods and apparatus for a wide area coordinated surveillance system
NO336576B1 (no) * 2005-09-06 2015-09-28 Aptomar As Lyskaster
US7728264B2 (en) * 2005-10-05 2010-06-01 Raytheon Company Precision targeting
US7335077B2 (en) 2006-04-25 2008-02-26 Anthony Chiappetta Man overboard detection and rescue system
GB2441802A (en) 2006-09-13 2008-03-19 Marine & Remote Sensing Soluti Safety system for a vehicle
CN100544410C (zh) * 2006-10-17 2009-09-23 马涛 主动红外跟踪系统
US8049658B1 (en) * 2007-05-25 2011-11-01 Lockheed Martin Corporation Determination of the three-dimensional location of a target viewed by a camera
US7820967B2 (en) * 2007-09-11 2010-10-26 Electrophysics Corp. Infrared camera for locating a target using at least one shaped light source
NO330248B1 (no) * 2007-10-11 2011-03-14 Aptomar As Et marint sokesystem
US20110279673A1 (en) 2007-11-28 2011-11-17 Flir Systems, Inc. Maritime controls systems and methods
US8749635B2 (en) 2009-06-03 2014-06-10 Flir Systems, Inc. Infrared camera systems and methods for dual sensor applications
US8253576B2 (en) 2009-09-04 2012-08-28 Raytheon Company Search and rescue using ultraviolet radiation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080698A (ja) * 2014-10-17 2016-05-16 日本無線株式会社 画像生成装置
CN107613244A (zh) * 2016-07-08 2018-01-19 杭州海康威视数字技术股份有限公司 一种航道监控目标获取方法及装置
CN109643480A (zh) * 2016-07-22 2019-04-16 路晟(上海)科技有限公司 安全系统及方法
US11346938B2 (en) 2019-03-15 2022-05-31 Msa Technology, Llc Safety device for providing output to an individual associated with a hazardous environment
CN110472517A (zh) * 2019-07-24 2019-11-19 广东校园卫士网络科技有限责任公司 一种自主式校园访客抓拍及分析管理方法
WO2021102939A1 (zh) * 2019-11-29 2021-06-03 深圳市大疆创新科技有限公司 图像处理方法及设备
WO2021126312A1 (en) * 2019-12-19 2021-06-24 Oceaneering International, Inc. System for identification of marine mammalian species present at an offshore construction site
CN111932817A (zh) * 2020-08-03 2020-11-13 上海理工大学 一种火灾探测预警系统及方法
CN113665495A (zh) * 2021-09-23 2021-11-19 温州大学大数据与信息技术研究院 一种便于安装的基于计算机视觉的车载目标跟踪器

Also Published As

Publication number Publication date
CA2833167C (en) 2017-11-07
WO2012142049A1 (en) 2012-10-18
US20120224063A1 (en) 2012-09-06
US9615006B2 (en) 2017-04-04
US20150341532A1 (en) 2015-11-26
CN103583037B (zh) 2017-04-26
CA2833167A1 (en) 2012-10-18
US9047745B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
CN103583037B (zh) 红外相机系统和方法
US9729802B2 (en) Infrared camera systems and methods for maritime applications
CN204415685U (zh) 一种船只和适于与该船只一起使用的一种控制元件
US9083897B2 (en) Infrared camera systems and methods for dual sensor applications
US10931934B2 (en) Watercraft thermal monitoring systems and methods
US10425595B2 (en) Modular camera systems and methods
US8817106B2 (en) Infrared camera with image processing modes for maritime applications
US20150104064A1 (en) Method and system for detection of foreign objects in maritime environments
JP2010521879A (ja) パノラマ画像処理システム
CN103493472A (zh) 模块化的红外摄像机系统及方法
US10924685B2 (en) Night vision apparatus
US10587824B2 (en) Imaging systems with pulse detection for search and rescue
CN116577779A (zh) 一种水上异常目标探测系统及方法
CN103700285B (zh) 一种基于光电可视技术的船舶引航观测方法
Lensen et al. Application of heterogeneous multiple camera system with panoramic capabilities in a harbor environment
Judd et al. Passive shortwave infrared technology and hyperspectral imaging for maritime applications
Schwering et al. Task-specific sensor settings for electro-optical systems in a marine environment
Schwering et al. Asymmetric threat assessment using electrooptical imaging systems
Liddiard et al. Development of a Small High Performance Thermal Infrared Detection Aid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant