CN103558351A - 一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法 - Google Patents

一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法 Download PDF

Info

Publication number
CN103558351A
CN103558351A CN201310333083.1A CN201310333083A CN103558351A CN 103558351 A CN103558351 A CN 103558351A CN 201310333083 A CN201310333083 A CN 201310333083A CN 103558351 A CN103558351 A CN 103558351A
Authority
CN
China
Prior art keywords
gas
sensor
chamber
sample
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310333083.1A
Other languages
English (en)
Inventor
惠国华
邵拓
李晨迪
王南露
周瑶
詹玉丽
周于人
杜桂苏
马美娟
顾佳璐
李曼
蔡艳芳
许晓岚
黄洁
王敏敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201310333083.1A priority Critical patent/CN103558351A/zh
Publication of CN103558351A publication Critical patent/CN103558351A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种基于智能电子鼻系统的绿茶品质分析装置及方法。解决现有靠人体自身器官对饮料样品挥发气体进行检测,存在主观差异性,以及对人体有害的技术问题。装置包括集气单元、采气单元、处理单元和控制单元,集气单元包括气室、样品室、第一连通管和第二连通管,共同构成回型的循环通路,采气单元连接到气室,处理单元与采气单元连接,进气机构、出气电磁阀、采集单元分别与控制单元连接。本发明优点是:构建了电子鼻系统,使得检测结果更加全面客观,也避免了样品气体对人体健康造成危害;采集气体时气体进行循环流动,使得气体混合更均匀,使得检测的数据更加精确。

Description

一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法
技术领域
本发明涉及一种对饮料品质检测的技术,尤其是涉及一种基于智能电子鼻系统的绿茶饮料品质分析装置,以及基于智能电子鼻系统的绿茶饮料品质分析方法。
背景技术
饮料是人们的日常消费品,消费者在选购及饮用过程中,饮料的香气和口味对其有较大的影响。如果饮料口味不适合消费者或者不稳定,实际上会直接影响产品的市场销售,涉及到生产商的效益。因此,生产商在饮料研发及生产过程中,会对其进行感官品评鉴定。
长期以来,人们通过自身的感官对饮料等的质地进行判断,而这种判断常常带有很强的主观性,评价分析结果往往会随着年龄、经验等不同,存在相当大的个体差异。即便同一个人也会由于身体状况、情绪变化而得出不同结果。况且嗅觉鉴别是一个挥发物质吸入过程,长期实验会对人体的健康造成危害,而且某些不良气味会令品评人员特别敏感而使结果有误;另外,感官评价过程中往往需要大量有品评经验的人员组成品评小组,过程较为繁琐,评价结果往往不具有重复性,因此对于新型的分析技术需求日益迫切。
公布号为CN101769889A的中国发明申请,公开了一种农产品品质检测的电子鼻系统,其结构包括一主要完成对低浓度气味收集的气体富集模块,一主要把气味信号转化为电信号的箱体气路模块及传感器阵列,一主要对传感器阵列输出信号进行滤波、模数转换、特征提取的传感器调理电路域数据预处理模块,一对信号进行识别和判断、且带有数据存储的嵌入式系统,一显示与结果输出模块;所述的气体富集模块由装填有吸附剂的吸附管、电热丝和温控装置构成。该发明也能收集气体进行识别,但该发明还存在不足之处:一是功能较单一,不能识别农产品以外的其他样品;而是传感器对样品采集方法存在随机性,影响测试结果;三是未提出系统对传感器采集的数据进行处理,以获得精确结果的方法。
发明内容
本发明主要是解决现有靠人体自身器官对饮料样品挥发气体进行检测,存在主观差异性,以及对人体有害的技术问题,提供了一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法。
本发明的上述技术问题主要是通过下述技术方案得以解决的:一种基于智能电子鼻系统的绿茶饮料品质分析装置,包括集气单元、采气单元、处理单元和控制单元,所述集气单元包括气室、样品室、第一连通管和第二连通管,气室和样品室都具有进口和出口,所述第一连通管连接在气室出口和样品室入口之间,所述第二连通管连接在气室入口和样品室出口之间,使得气室和样品室形成一回型的循环通路,在所述气体室内设置有进气机构,在第二连通管上设置有出气口,出气口上设置有出气电磁阀,所述采集单元连接到气室,由气室内采集气体,处理单元与采气单元连接,所述进气机构、出气电磁阀、采集单元分别与控制单元连接,由控制单元控制它们进行工作。本发明中集气单元对采集的气体进行预处理,将气体进行循环流动使得气体混合更加均匀,并根据检测数据对其他进行稀释,这样处理后采集的气体检测的数据更加精确。该样品设置在样品室内,载气有气室通入,通过第一连通管和第二连通管,使得载气在气室和样品室之间循环流动,带动样品散发出的气体一起循环流动。设置出气口排放气体,用于对集气单元进行进行清洗用。采气单元对样品气体进行采样,输出信号到处理单元,处理单元对信号进行分析处理,分析出样品的品质。控制单元控制进气机构、出气电磁阀、采集单元等执行元件的工作,使得完成集气、采气的步骤。
作为一种优选方案,所述样品室包括抽拉式座体,在座体上设置有放置样品的槽体,在座体的上部留有空腔,样品室出口和入口设置在样品室上部,且样品室出口位于槽体上方位置。本方案中样品室采用抽屉式,该座体可以抽拉,样品放在座体上,这样方便将样品放入样品室内。在座体上部留有空腔,用于气体流通用,气体由入口进入,在空腔内流动,带走样品散发的气体,气体再有出入流出。
作为一种优选方案,在所述气室与出气口之间的第二连通管上设置有第四电磁阀,在第二连通管上还设置有第一气泵,所述第四电磁阀和气泵连接到控制单元上。设置第四电磁阀方便排放气体,当第四电磁阀关闭时,形成了由气室到第一连通管、样品室、第二连通管、出气口的单独路线,方便排气。气泵用于驱动气体。
作为一种优选方案,所述进气机构包括空气进气口、空气进气口上设置有第一电磁阀,第一电磁阀与控制单元连接。第一电磁阀控制空气进气口通断,即控制载气是否通入。控制单元控制第一电磁阀动作。
作为一种优选方案,所述采气单元包括采气吸管和由若干传感器构成的传感器阵列,各传感器设置在一独立的腔室内,所述采气吸管一端连接在气室上,在采气吸管端口上设置有第五电磁阀,采气吸管上设置有第二气泵,采气吸管另一端分别连接到各个传感器的腔室上,各传感器分别连接在处理单元上,在各传感器的腔室上还连接有清洗管路,清洗管路上设置有第六电磁阀和第三气泵。
采气单元连接在气室上,从气室内采集气体,控制单元通过控制第五电磁阀,可以控制采气单元开始或停止采气。采集的气体由吸管分别进入到各个传感器的腔室内,传感器对气体进行检测,并将检测数据发送给处理单元。清洗管路用于通入洁净空气,有第三气泵将空气泵如各传感器腔室内,对传感器进行清洗。所述传感器具有8个,分别为硫化物气体传感器、氢气传感器、氨气传感器、氮氧化物传感器、炭氢组分气体传感器、乙醇传感器、苯类传感器和烷类传感器。
作为一种优选方案,在所述样品室内设置有搅拌出气机构,搅拌出气机构包括转轴,转轴为空心,转轴与样品室进口连通,在转轴上连接有搅拌管,搅拌管的中间位置设置有转轴座,搅拌管通过转轴座安装在转轴上,构成一T型结构,搅拌管为空心密封管,搅拌管与转轴连通,在搅拌管的端头的一侧上设置有若干第一气孔,在搅拌管的另一端头与第一气孔相背的一侧上设置有若干第二气孔。该搅拌出气机构没在样品溶液内,在通气的情况下可以进行旋转,对溶液样品进行搅拌,使得样品混合均匀,且载气由搅拌出气机构内排出,能与样品挥发气体均匀混合,使得检测更加准确。该搅拌管上两端头的第一气孔和第二气孔分别朝向相反的方向,这样在气体通入后能自动带动搅拌管绕转轴进行旋转。
一种基于智能电子鼻系统的绿茶饮料品质分析方法,包括以下步骤:
步骤一:设置实验环境温度20~30℃,湿度为56%-65%,对采气单元的传感器阵列进行清洗,将洁净空气通入到各传感器的腔室内,运行8-12min,使得各传感器处于初始状态;
步骤二:对气体进行预处理,将待测绿茶样品取20ml,倒入在样品室内,先对集气单元进行清洗,清洗后由进气口通入载气,由气泵带动样品产生的挥发性气体随载气在集气单元内循环20-30min;
步骤三:由采气吸管采集样品气体,将气体排入到各传感器的腔室内,由控制单元控制各传感器对腔室内的气体进行检测,检测时间为40-60s,各传感器将检测到的信息发送给处理单元;
步骤四:处理单元对信息进行处理得到各个传感器的响应曲线,并在各响应曲线上采样30个点,将各曲线采样得到的数据作为输入数据Input(t),利用非线性随机共振模型计算得到信噪比SNR,该非线性随机共振模型算法如下:
随机共振系统包含三个因素:双稳态系统,输入信号和外噪声源,以一个在双稳态势阱中被周期力驱动的过阻尼布朗运动粒子来描述系统特征,
Figure BDA00003606774400051
V(x)为非线性对称势函数,ξ(t)为高斯白噪声,其自相关联函数为:E[ξ(t)ξ(0)]=2Dδ(t),a是输入信号强度,f0是调制信号频率,D是噪声强度,a、b均是实参数,
V ( x ) = 1 8 ax 4 - 1 4 bx 2
因此上式可以改为:
Figure BDA00003606774400062
得到信噪比为:
SNR = 2 [ lim Δω → 0 ∫ Ω - Δω Ω + Δω S ( ω ) dω ] / S N ( Ω )
S(ω)是信号频谱密度,SN(Ω)是信号频率范围内的噪声强度;
取该信噪比曲线峰值作为信噪比特征值;
步骤五:将输入变量带入一种非线性状态空间模型
Figure BDA00003606774400064
式中:
σ为输入变量,即信噪比特征值、ε为中间传递参量、τ为初始相位、
Figure BDA00003606774400065
为输出变量、κ为实参数、η为实参数、Γ为实矫正参数,
然后定义残差变量:
Figure BDA00003606774400066
Figure BDA00003606774400067
为系统实际输出、
Figure BDA00003606774400068
为系统理论输出,
再定义分类标准模型:
Δ = 1 L Σ ψ = N - L + 1 N e T ( ψ ) e ( ψ )
式中L为数据长度,将将Δ与预先设定的阈值库内各阈值Thr相比,如果有
Figure BDA00003606774400071
则可以判断被测样品是该阈值所属类型,得到该被测样品品质信息,如果
Figure BDA00003606774400072
则需要重新进行类型判断。
作为一种优选方案,所述阈值库各阈值为预先取得,其过程为:预先取得每类样品,然后使用分析装置对每类样品进行检测,把检测数据输入随机共振模型进行分析,得到信噪比特征值,再对每类样品进行多次测量,取该类样品多次得到的信噪比特征值的平均值作为判断该类样品的阈值Thr,各类样品的阈值共同构成了阈值库。
作为一种优选方案,对步骤四中的采样数据进行计算性噪比之前先进行异常数据处理,处理过程为:将每个传感器响应曲线采样到的数据作为一组检测数据,每组检测数据中的采样值W符合正态分布:W~N(μ,σ2),μ为每组数据中采样值W的均值,σ为每组数据中采样值W的标准差,经推导则有:
P(|W-μ|>3σ)≤2-2Φ(3)=0.003
将每组数据的均值μ、标准差σ以及各个采样值W代入公式|W-μ|>3σ,将满足公式|W-μ|>3σ的采样值W作为异常数据去除。
作为一种优选方案,步骤四种对各响应曲线上采样为随机采样或者是在各响应曲线上等间距采样。
因此,本发明的优点是:1.构建了电子鼻系统,由系统对样品气体进行检测,使得检测结果更加全面、也更加客观,同时也避免了样品气体对人体健康造成危害;2.采用多种类型传感器组成的电子鼻,每个传感器均设在独立的腔室内对样品进行检测,避免了多个传感器共处一箱而形成相互干扰,提高了检测精度,快捷,重复性好;3.采集气体时气体进行循环流动,使得气体混合更均匀,使得检测的数据更加精确。
附图说明
附图1是本发明中集气单元的一种结构示意图;
附图2是本发明中集气单元的另一种结构示意图;
附图3是本发明中采气单元的一种结构示意图;
附图4是本发明控制单元与传感器、气泵连接的一种框架示意图;
附图5是本发明中搅拌出气机构的一种结构示意图。
1-集气单元 2-气室 3-样品室 4-第一连通管 5-第二连通管 6-出气口 7-出气电磁阀 8-空气进气口 9-过滤空气进气口 10-惰性气体进气口 11-采气吸管 12-第一电磁阀 15-第四电磁阀 16-第五电磁阀 17-第六电磁阀18-第一气泵 19-第二气泵 20-座体 21-槽体 22-空腔 23-传感器 24-腔室 25-第三气泵 26-处理单元 27-控制单元 28-采气单元 29-转轴 30-转轴座 31-搅拌管 32-第一气孔 33-第二气孔
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
本实施例一种基于智能电子鼻系统的绿茶饮料品质分析装置,如图1、图2所示,包括有集气单元1、采气单元28、处理检测数据的处理单元26和控制执行操作的控制单元27。
集气单元1包括气室2、样品室3、第一连通管4和第二连通管4四部分,该气室和样品室都具有入口和出口,该第一连通管连接在气室出口与样品室入口之间,第二连通管连接在样品室出口和气室入口之间,这就构成一回形循环通路结构。该样品室内放置样品,本实施例中样品室内倒入绿茶饮料样品,该样品室入口设置在底部,为了防止样品倒流,可在与样品室入口连接的管路上设置U形防逆流管路或是在管路上设置单向阀,样品室出口则设置在顶部。在第一连通管路上还开有出气口6,在出气孔上设有控制开闭的出气电磁阀7,在第一连通管路上还设置有驱动气体流动的第一气泵18,为了排气方便,在气室与出气口之间的第一连通管上设置有第四电池阀15。在气室上设有通入载气的进气机构,本实施例中以通入空气载气为例,则该进气机构包括一个空气进气口8,空气进气口连通在气室上,在空气进气口上设置有控制开闭的第一电磁阀12。
在样品室3内设置有搅拌出气机构,搅拌出气机构淹没在样品内,如图6所示,搅拌出气机构包括转轴29,转轴为空心,转轴与样品室进口连通,在转轴上连接有搅拌管31,搅拌管的中间位置设置有转轴座,搅拌管通过转轴座安装在转轴上,构成一T型结构,搅拌管为空心密封管,搅拌管与转轴连通,在搅拌管的端头的一侧上设置有若干第一气孔32,在搅拌管的另一端头与第一气孔相背的一侧上设置有若干第二气孔33。在通入载气时,载气有样品室入口进入转轴,有转轴进入搅拌管,再分别有两端相背的第一气孔和第二气孔排出,使得搅拌管绕转轴进行旋转。
采气单元28与集气单元1连接,该采气单元包括有采气吸管11和由8个传感器23构成的传感器阵列,该采气吸管一端连接在气室2上,且在采气吸管该端上设有控制开闭的第五电磁阀和驱动吸气的第二气泵19。这里8个传感器分别为硫化物气体传感器、氢气传感器、氨气传感器、氮氧化物传感器、炭氢组分气体传感器、乙醇传感器、苯类传感器和烷类传感器,各传感器分别设置在一个独立的腔室24内,该采气吸管的另一端分别连接至各传感器的独立腔室上。
在采气单元上还设置有清洗机构,用于对传感器进行清洗。该清洗机构包括清洗管路,该清洗管路连接至各传感器独立腔室上,在清洗管路上设置有控制开闭的第六电磁阀17和驱动气体的第三气泵25。
处理单元26处理各传感器检测到的数据,如图4所示,各传感器都连接到处理单元上。
如图5所示,采气单元的各传感器还受控连接在控制单元上,控制单元控制传感器工作。另外,第一电磁阀、第四电磁阀、第五电磁阀、第六电磁阀、第一气泵、第二气泵、第三气泵和出气电磁阀都受控连接在控制单元上,控制单元控制它们工作,以完成采气过程。
如图2所示,还给出了集气单元另一种结构,这里集气单元采用抽屉式结构,该样品室包括一可以抽拉的座体20,在座体上设置有放置样品的槽体21,操作人员可将座体抽出,放入样品后再推入座体。在座体与样品室顶部留有作为其他流通的空腔22,该样品室的出口和入口都设置在顶部上,且样品室出口位于槽体上方位置。
本实施例基于智能电子鼻系统的绿茶饮料品质分析装置的分析方法如下:包括以下步骤,
步骤一:
设置实验环境温度25℃,湿度为60%,对采气单元的传感器阵列进行清洗,就是在第五电磁阀关闭情况下打开第六电池阀,通过第三气泵将洁净的空气通入到各传感器的腔室内,运行10min,清洗各传感器使得各传感器处于初始状态。
步骤二:
在采样室放入绿茶样品20ml,,然后对集气单元也进行清洗,在只采用一种载气如空气情况下,打开空气进气口的第一电磁阀、出气电磁阀,同时关闭第四电磁阀,这样就使得集气单元形成一排气管路,通入空气,直至原来集气单元内气体都排出充满通入载气,然后关闭出气电池阀,打开第四电磁阀,使集气单元形成回形循环通路,由第一气泵带动样品产生的挥发性气体随载气在集气单元内循环20min。
步骤三:
采气单元开始采气,此时打开采气吸管的第五电磁阀,将样品气体吸入采气吸管并通入到各传感器的独立腔室内,控制单元控制各传感器工作,对腔室内的气体进行检测,检测时间为50s,各传感器将检测到的数据发送给处理单元。
步骤四:
各传感器检测得到响应值,以时间和响应强度作为坐标轴,得到各传感器的响应曲线,8个传感器得到8条响应曲线,然后等间距在各响应曲线上采样30个点,得到240各点数据作为一组输入数据Input(t),然后利用非线性随机共振模型计算信噪比SNR,该非线性随机共振模型算法为:
随机共振系统包含三个因素:双稳态系统,输入信号和外噪声源,以一个在双稳态势阱中被周期力驱动的过阻尼布朗运动粒子来描述系统特征,
Figure BDA00003606774400121
V(x)为非线性对称势函数,ξ(t)为高斯白噪声,其自相关联函数为:E[ξ(t)ξ(0)]=2Dδ(t),a是输入信号强度,f0是调制信号频率,D是噪声强度,a、b均是实参数,
V ( x ) = 1 8 ax 4 - 1 4 bx 2
因此上式可以改为:
Figure BDA00003606774400123
得到信噪比为:
SNR = 2 [ lim Δω → 0 ∫ Ω - Δω Ω + Δω S ( ω ) dω ] / S N ( Ω )
S(ω)是信号频谱密度,SN(Ω)是信号频率范围内的噪声强度;
输入数据Input(t)代入到式中计算得到信噪比SNR,该信噪比SNR为曲线,取该信噪比曲线峰值作为信噪比特征值。
步骤五:
将信噪比特征值即输入变量带入一种非线性状态空间模型
Figure BDA00003606774400125
式中:
σ为输入变量,即信噪比特征值、ε为中间传递参量、τ为初始相位、
Figure BDA00003606774400126
为输出变量、κ为实参数、η为实参数、Γ为实矫正参数,
然后定义残差变量:
Figure BDA00003606774400131
Figure BDA00003606774400132
为系统实际输出、
Figure BDA00003606774400133
为系统理论输出,
再定义分类标准模型:
Δ = 1 L Σ ψ = N - L + 1 N e T ( ψ ) e ( ψ )
式中L为数据长度,将将Δ与预先设定的阈值库内各阈值Thr相比,如果有
Figure BDA00003606774400135
则可以判断被测样品是该阈值所属类型,得到该被测样品品质信息,如果
Figure BDA00003606774400136
则需要重新进行类型判断。
其中上述提到的阈值库各阈值Thr为预先取得,其过程为:预先取得每类样品,如第一天到第八天的绿茶样品,然后使用分析装置对每类样品进行检测,把检测数据输入随机共振模型进行分析,得到信噪比特征值,对每类样品进行多次测量,例如对第一天的绿茶样品进行10次,得到10个信噪比特征值,然后将测量取该类样品多次得到的信噪比特征值的平均值作为判断该类样品的阈值Thr,则得到各类样品的阈值,各类样品的阈值共同构成了阈值库。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
尽管本文较多地使用了集气单元、气室、样品室、第一连通管、第二连通管等术语,但并不排除使用其它术语的可能性。使用这些术语仅仅是为了更方便地描述和解释本发明的本质;把它们解释成任何一种附加的限制都是与本发明精神相违背的。

Claims (10)

1.一种基于智能电子鼻系统的绿茶饮料品质分析装置,其特征在于:包括集气单元(1)、采气单元(28)、处理单元(26)和控制单元(27),所述集气单元包括气室(2)、样品室(3)、第一连通管(4)和第二连通管(5),气室和样品室都具有进口和出口,所述第一连通管连接在气室出口和样品室入口之间,所述第二连通管连接在气室入口和样品室出口之间,使得气室和样品室形成一回型的循环通路,在所述气体室内设置有进气机构,在第二连通管上设置有出气口(6),出气口上设置有出气电磁阀(7),所述采气单元连接到气室,由气室内采集气体,处理单元与采气单元连接,所述进气机构、出气电磁阀、采集单元分别与控制单元连接,由控制单元控制它们进行工作。
2.根据权利要求1所述的一种基于智能电子鼻系统的绿茶饮料品质分析装置,其特征是所述样品室(3)包括抽拉式座体(20),在座体上设置有放置样品的槽体(21),在座体的上部留有空腔(22),样品室出口和入口设置在样品室上部,且样品室出口位于槽体上方位置。
3.根据权利要求1或2所述的一种基于智能电子鼻系统的绿茶饮料品质分析装置,其特征是在所述气室(2)与出气口之间的第二连通管(5)上设置有第四电磁阀(15),在第二连通管上还设置有第一气泵(18),所述第四电磁阀和气泵连接到控制单元(27)上。
4.根据权利要求3所述的一种基于智能电子鼻系统的绿茶饮料品质分析装置,其特征是所述进气机构包括空气进气口(8)、空气进气口上设置有第一电磁阀(12),第一电磁阀(12)与控制单元(27)连接。
5.根据权利要求4所述的一种基于智能电子鼻系统的绿茶饮料品质分析装置,其特征是所述采气单元(28)包括采气吸管(11)和由若干传感器(23)构成的传感器阵列,各传感器设置在一独立的腔室(24)内,所述采气吸管一端连接在气室上,在采气吸管端口上设置有第五电磁阀,采气吸管上设置有第二气泵(19),采气吸管另一端分别连接到各个传感器的腔室上,各传感器分别连接在处理单元(26)上,在各传感器的腔室上还连接有清洗管路,清洗管路上设置有第六电磁阀(17)和第三气泵(25),所述传感器(23)具有8个,分别为硫化物气体传感器、氢气传感器、氨气传感器、氮氧化物传感器、炭氢组分气体传感器、乙醇传感器、苯类传感器和烷类传感器。
6.根据权利要求1所述的一种基于智能电子鼻系统的绿茶饮料品质分析装置,其特征是在所述样品室(3)内设置有搅拌出气机构,搅拌出气机构包括转轴(29),转轴为空心,转轴与样品室进口连通,在转轴上连接有搅拌管(31),搅拌管的中间位置设置有转轴座,搅拌管通过转轴座安装在转轴上,构成一T型结构,搅拌管为空心密封管,搅拌管与转轴连通,在搅拌管的端头的一侧上设置有若干第一气孔(32),在搅拌管的另一端头与第一气孔相背的一侧上设置有若干第二气孔(33)。
7.一种基于智能电子鼻系统的绿茶饮料品质分析方法,采用权利要求1-6任一项描述的装置,其特征是:包括以下步骤:
步骤一:设置实验环境温度20~30℃,湿度为56%-65%,对采气单元的传感器阵列进行清洗,将洁净空气通入到各传感器的腔室内,运行8-12min,使得各传感器处于初始状态;
步骤二:对气体进行预处理,将待测冰红茶样品取20ml,倒入在样品室内,先对集气单元进行清洗,清洗后由进气口通入载气,由气泵带动样品产生的挥发性气体随载气在集气单元内循环20-30min;
步骤三:由采气单元采集样品气体,将气体排入到采气单元内各传感器的腔室中,由控制单元控制各传感器对腔室内的气体进行检测,检测时间为40-60s,各传感器将检测到的信息发送给处理单元;
步骤四:处理单元对信息进行处理得到各个传感器的响应曲线,并在各响应曲线上采样30个点,将各曲线采样得到的数据作为输入数据Input(t),代入非线性随机共振模型计算得到信噪比SNR,该非线性随机共振模型算法如下:
随机共振系统包含三个因素:双稳态系统,输入信号和外噪声源,以一个在双稳态势阱中被周期力驱动的过阻尼布朗运动粒子来描述系统特征,
Figure FDA00003606774300031
V(x)为非线性对称势函数,ξ(t)为高斯白噪声,其自相关联函数为:E[ξ(t)ξ(0)]=2Dδ(t),a是输入信号强度,f0是调制信号频率,D是噪声强度,a、b均是实参数,
V ( x ) = 1 8 ax 4 - 1 4 bx 2
因此上式可以改为:
Figure FDA00003606774300042
得到信噪比为:
SNR = 2 [ lim Δω → 0 ∫ Ω - Δω Ω + Δω S ( ω ) dω ] / S N ( Ω )
S(ω)是信号频谱密度,SN(Ω)是信号频率范围内的噪声强度;
取该信噪比曲线峰值作为信噪比特征值;
步骤五:将输入变量带入一种非线性状态空间模型
Figure FDA00003606774300044
式中:
σ为输入变量,即信噪比特征值、ε为中间传递参量、τ为初始相位、
Figure FDA00003606774300045
为输出变量、κ为实参数、η为实参数、Γ为实矫正参数,
然后定义残差变量:
Figure FDA00003606774300046
Figure FDA00003606774300047
为系统实际输出、
Figure FDA00003606774300048
为系统理论输出,
再定义分类标准模型:
Δ = 1 L Σ ψ = N - L + 1 N e T ( ψ ) e ( ψ )
式中L为数据长度,将将Δ与预先设定的阈值库内各阈值Thr相比,如果有
Figure FDA00003606774300052
则可以判断被测样品是该阈值所属类型,得到该被测样品品质信息,如果
Figure FDA00003606774300053
则需要重新进行类型判断。
8.根据权利要求7所述的一种基于智能电子鼻系统的绿茶饮料品质分析方法,其特征是所述阈值库各阈值为预先取得,其过程为:预先取得每类样品,然后使用分析装置对每类样品进行检测,把检测数据输入随机共振模型进行分析,得到信噪比特征值,再对每类样品进行多次测量,取该类样品多次得到的信噪比特征值的平均值作为判断该类样品的阈值Thr,各类样品的阈值共同构成了阈值库。
9.根据权利要求7或8所述的一种基于智能电子鼻系统的绿茶饮料品质分析方法,其特征是对步骤四中的采样数据进行计算性噪比之前先进行异常数据处理,处理过程为:将每个传感器响应曲线采样到的数据作为一组检测数据,每组检测数据中的采样值W符合正态分布:W~N(μ,σ2),μ为每组数据中采样值W的均值,σ为每组数据中采样值W的标准差,经推导则有:
P(|W-μ|>3σ)≤2-2Φ(3)=0.003
将每组数据的均值μ、标准差σ以及各个采样值W代入公式|W-μ|>3σ,将满足公式|W-μ|>3σ的采样值W作为异常数据去除。
10.根据权利要求7或8所述的一种基于智能电子鼻系统的绿茶饮料品质分析方法,其特征是步骤四中对各响应曲线上采样为随机采样或者是在各响应曲线上等间距采样。
CN201310333083.1A 2013-08-01 2013-08-01 一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法 Pending CN103558351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310333083.1A CN103558351A (zh) 2013-08-01 2013-08-01 一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310333083.1A CN103558351A (zh) 2013-08-01 2013-08-01 一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法

Publications (1)

Publication Number Publication Date
CN103558351A true CN103558351A (zh) 2014-02-05

Family

ID=50012658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310333083.1A Pending CN103558351A (zh) 2013-08-01 2013-08-01 一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法

Country Status (1)

Country Link
CN (1) CN103558351A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004767A (zh) * 2015-02-09 2015-10-28 浙江工商大学 一种苯基硫脲溶液浓度检测装置和方法
CN105092665A (zh) * 2015-02-09 2015-11-25 浙江工商大学 一种丙硫氧嘧啶溶液浓度检测装置和方法
CN105092664A (zh) * 2015-02-09 2015-11-25 浙江工商大学 一种柠檬酸溶液浓度检测装置和方法
CN105116025A (zh) * 2015-02-09 2015-12-02 浙江工商大学 一种奎宁溶液浓度检测装置和方法
CN106525849A (zh) * 2016-11-02 2017-03-22 江苏大学 茶叶智能化拼配方法与系统
CN109738606A (zh) * 2018-11-06 2019-05-10 中国工程物理研究院化工材料研究所 一种爆炸物的检测装置及检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590283A (zh) * 2012-01-17 2012-07-18 浙江工商大学 利用电子鼻检测草鱼新鲜度的方法
CN102621192A (zh) * 2012-03-17 2012-08-01 浙江工商大学 一种利用电子鼻检测芒果新鲜度的方法
CN102654495A (zh) * 2012-05-21 2012-09-05 浙江工商大学 一种用于检测番荔枝成熟度的电子鼻及其检测方法
CN102879432A (zh) * 2012-10-22 2013-01-16 浙江工商大学 一种利用电子鼻检测罗非鱼新鲜度的方法
CN102879436A (zh) * 2012-10-22 2013-01-16 浙江工商大学 一种利用电子鼻检测河鲫鱼新鲜度的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590283A (zh) * 2012-01-17 2012-07-18 浙江工商大学 利用电子鼻检测草鱼新鲜度的方法
CN102621192A (zh) * 2012-03-17 2012-08-01 浙江工商大学 一种利用电子鼻检测芒果新鲜度的方法
CN102654495A (zh) * 2012-05-21 2012-09-05 浙江工商大学 一种用于检测番荔枝成熟度的电子鼻及其检测方法
CN102879432A (zh) * 2012-10-22 2013-01-16 浙江工商大学 一种利用电子鼻检测罗非鱼新鲜度的方法
CN102879436A (zh) * 2012-10-22 2013-01-16 浙江工商大学 一种利用电子鼻检测河鲫鱼新鲜度的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑海霞: "基于电子鼻的牛奶品质预测方法研究", 《中国食品学报》, vol. 13, no. 7, 31 July 2013 (2013-07-31) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004767A (zh) * 2015-02-09 2015-10-28 浙江工商大学 一种苯基硫脲溶液浓度检测装置和方法
CN105092665A (zh) * 2015-02-09 2015-11-25 浙江工商大学 一种丙硫氧嘧啶溶液浓度检测装置和方法
CN105092664A (zh) * 2015-02-09 2015-11-25 浙江工商大学 一种柠檬酸溶液浓度检测装置和方法
CN105116025A (zh) * 2015-02-09 2015-12-02 浙江工商大学 一种奎宁溶液浓度检测装置和方法
CN105092665B (zh) * 2015-02-09 2018-01-09 浙江工商大学 一种丙硫氧嘧啶溶液浓度检测装置和方法
CN105004767B (zh) * 2015-02-09 2018-01-09 浙江工商大学 一种苯基硫脲溶液浓度检测装置和方法
CN105116025B (zh) * 2015-02-09 2018-01-09 浙江工商大学 一种奎宁溶液浓度检测装置和方法
CN106525849A (zh) * 2016-11-02 2017-03-22 江苏大学 茶叶智能化拼配方法与系统
CN106525849B (zh) * 2016-11-02 2019-03-05 江苏大学 茶叶智能化拼配方法与系统
CN109738606A (zh) * 2018-11-06 2019-05-10 中国工程物理研究院化工材料研究所 一种爆炸物的检测装置及检测方法

Similar Documents

Publication Publication Date Title
CN103558351A (zh) 一种基于智能电子鼻系统的绿茶饮料品质分析装置及方法
CN103513013A (zh) 一种基于智能电子鼻系统的冰红茶饮料品质分析装置及方法
CN103512921A (zh) 一种基于智能电子鼻系统的梨新鲜度分析装置及方法
WO2016090855A1 (zh) 基于气味控制的白酒自动勾兑系统
CN105223222B (zh) 一种不同收获期坛紫菜的鉴别方法
CN103512795A (zh) 一种基于智能电子鼻系统的铁观音饮料品质分析装置及方法
CN102662048B (zh) 一种尿液分析方法及尿液分析装置
CN102590288A (zh) 基于电子鼻的食品品质检测系统和检测方法
CN106153830B (zh) 通用电子鼻系统及其检测方法
CN109073514A (zh) 蓄电设备的产生气体分析方法以及装置
CN105388309B (zh) 电厂水汽中痕量铁离子自动快速检测方法及系统和应用
CN102879432A (zh) 一种利用电子鼻检测罗非鱼新鲜度的方法
CN104569062B (zh) 基于分子筛过滤的电子鼻气室
CN105319175B (zh) 中药提取过程动态响应模型的在线识别与终点判定方法
CN104894208A (zh) 用于区分奶中细胞负载的方法和装置
CN109085316A (zh) 测定水体溶解甲烷浓度的装置
CN106053387A (zh) 一种呼出气体检测方法及装置
CN104698193A (zh) 一种鉴定恒河猴血型的方法
CN105386263B (zh) 染色过程监测方法
CN209727908U (zh) 一种基于食品检测的电子鼻设备
AT412424B (de) Vorrichtung und verfahren zur analyse von abgaskomponenten
CN103412015A (zh) 一种混合食醋风味分析装置和方法
CN103743849B (zh) 一种同时快速筛查鉴定乳制品中多种有机酸的离子色谱-高分辨质谱联用方法
CN103512920A (zh) 一种基于智能电子鼻系统的柠檬茶饮料品质分析装置及方法
CN110361551A (zh) 一种在线监控预警厌氧发酵过程的装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160601

C20 Patent right or utility model deemed to be abandoned or is abandoned