CN103554231B - 一对特异识别猪NFкBp65基因的多肽及其编码基因和应用 - Google Patents

一对特异识别猪NFкBp65基因的多肽及其编码基因和应用 Download PDF

Info

Publication number
CN103554231B
CN103554231B CN201310398624.9A CN201310398624A CN103554231B CN 103554231 B CN103554231 B CN 103554231B CN 201310398624 A CN201310398624 A CN 201310398624A CN 103554231 B CN103554231 B CN 103554231B
Authority
CN
China
Prior art keywords
amino acids
acids residue
position nucleotide
plasmid
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310398624.9A
Other languages
English (en)
Other versions
CN103554231A (zh
Inventor
李和刚
赵金山
阮进学
李培培
张宝珣
刘明团
代永联
侯乐乐
郝小静
江科
吴海港
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO INSTITUTE OF ANIMAL HUSHANDRY VETERINARY MEDICINE
Original Assignee
QINGDAO INSTITUTE OF ANIMAL HUSHANDRY VETERINARY MEDICINE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO INSTITUTE OF ANIMAL HUSHANDRY VETERINARY MEDICINE filed Critical QINGDAO INSTITUTE OF ANIMAL HUSHANDRY VETERINARY MEDICINE
Priority to CN201310398624.9A priority Critical patent/CN103554231B/zh
Publication of CN103554231A publication Critical patent/CN103554231A/zh
Application granted granted Critical
Publication of CN103554231B publication Critical patent/CN103554231B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一对特异识别猪NFκBp65基因的多肽及其编码基因和应用。该多肽由多肽甲和多肽乙组成;多肽甲中双连氨基酸依次如下:序列3的2-3、36-37、70-71、104-105、138-139、172-173、206-207、240-241、274-275、308-309、342-343、376-377、410-411、444-445、478-479、512-513和546-547;多肽乙中双连氨基酸依次如下:序列5的2-3、36-37、70-71、104-105、138-139、172-173、206-207、240-241、274-275、308-309、342-343、376-377、410-411、444-445、478-479、512-513和546-547。本发明提供的多肽可以特异识别猪NFκBp65基因,适合应用于NFκBp65基因的敲除或改造,以获得猪抗病育种材料、异种移植供体及人类疾病动物模型。

Description

一对特异识别猪NFкBp65基因的多肽及其编码基因和应用
技术领域
本发明属于基因工程技术领域,涉及一对特异识别猪NFκBp65基因的多肽及其编码基因和应用。
背景技术
p65是NFκB转录因子最重要的一个亚基。猪NFκBp65与仔猪蓝耳病毒、猪瘟病毒及伪狂犬病毒抗体水平有显著关联(Lietal.,2011),其单个氨基酸的改变可引起家猪对非洲猪瘟病毒(ASFV)感染能力的显著变化(Palgraveetal.,2011)。由此可见,猪NFκBp65基因可作为猪抗病育种的一个重要候选基因。
p65作为NFκB转录因子一个主要的亚基,在哺乳动物免疫反应中扮演着重要的角色。在含有TAD的三个亚基中,p65是唯一一个全身性表达的(Doleschalletal.,2007)。p65亚基的缺失导致因肝变性所致胚胎死亡(Begetal.,1995);相应的,缺失其它四个亚基中任何一个都仅仅导致免疫缺陷,并未表现出任何发育障碍(Gerondakisetal.,1999;LiandVerma,2002)。与p65在不同细胞中发挥着抗凋亡作用相一致,p65双敲除的成纤维细胞和巨噬细胞也表现出对TNFα诱导凋亡的敏感度增加(BegandBaltimore,1996;Gerondakisetal.,1999)。p65双敲除的小鼠成纤维细胞永生化速度大大超过正常未敲除细胞(Wangetal.,2009)。p65也对正常淋巴细胞的功能起着重要的作用(Gerondakisetal.,1999)。NF-κBp65亚基特异性调节cyclinD1蛋白的稳定性(Dahlmanetal.,2009)。p65对IκBβ蛋白的紧密控制在维持细胞动态平衡中是必需的。p65的激活对于细胞死亡和肠上皮的分裂的动态平衡是必需的,同样在防止重度急性肠炎的发生上也是必要的(Steinbrecheretal.,2008)。在肿瘤抑制因子p53存在或缺失的情况下,p65的删除均可减少K-Ras诱导的肺部肿瘤数量(Basseresetal.,2010)。
另外,猪被认为是异种移植最重要的器官供体。NFκB介导的转录激活是引起猪-人异种移植排斥反应的重要原因(Altintasetal.,2011;AuchinclossandSachs,1998),而p65作为NFκB转录因子的主要亚基,必然会在这一免疫反应中发挥重要的作用。
综上所述,在细胞或个体水平上对猪NFκBp65基因进行敲除或修饰,可解析猪NFκBp65基因的功能、减缓猪-人异种移植排斥反应或获得相关疾病模型,为猪抗病育种、异种器官移植及新药研发服务。
传统的基因敲除技术效率很低,因此寻找一种能定点切割猪NFκBp65基因的技术相当重要。近年来发展的主要方法为依托序列特异的核酸酶进行基因的精确修饰。序列特异的核酸酶主要由一个DNA识别域与一个能非特异性切割DNA的内切酶结构域连接而成。其主要原理为先由DNA识别域识别并结合到需要改造的DNA片段上,然后由与DNA相连的非特异性内切酶结构域对DNA进行切割,造成DNA的双链断裂(Double-strandbreak,DSB),DSB会激活DNA的自我修复而引起基因的突变从而促进该位点的同源重组。
转录激活子样效应因子核酸酶(transcriptionactivator-likeeffectornucleases,TALEN)是继锌指核酸酶技术以来的另一种能够对基因组进行高效定点修饰的新技术。转录因子激活效应物家族中有一种蛋白(TALEs)能够识别、结合DNA。TALE与DNA序列特异性结合主要是由TAL结构内34个恒定氨基酸序列介导。将TALEs与FokI核酸内切酶的切割域相连接,形成TALEN,从而可以实现对基因组DNA双链在特定位点进行修饰。
在TALE的中央存在着一个重复区域,这个区域通常是由33-35个氨基酸的数量可变的重复单元构成。重复序列结构域(RepeatDomain)负责识别特异性的DNA序列。每个重复序列基本上都是一样的,除了两个可变的氨基酸,即重复序列可变的双氨基酸残基(Repeat-VariableDiresidues,RVD)。TALE识别DNA的机制在于一个重复序列上的RVD能够识别DNA靶点上的一个核苷酸,再融合FokI核酸内切酶,组合成TALEN。TALEN是一种异源二聚体分子(两单位的TALEDNA结合结构域融合到一单位的催化性结构域),能够切割两个相隔较近的序列,从而使得特异性增强。该酶效率高、毒性低、制备周期短,成本低,优势日益明显。
发明内容
本发明的目的是提供一对特异识别猪NFκBp65基因的多肽及其编码基因和应用。本发明利用这对多肽构建获得的一对重组的转录激活子样效应因子(TALE)能够特异性地识别猪NFκBp65基因。本发明还利用这对转录激活子样效应因子构建获得的一对转录激活子样效应因子核酸酶(TALEN),能够对猪NFκBp65基因进行准确、高效地靶向修饰。
具体地,本发明的目的是这样实现的:
一对特异识别猪NFκBp65基因的多肽(命名为特异多肽对),由多肽甲和多肽乙组成;所述多肽甲由17个TAL核酸识别单元组成,每个TAL核酸识别单元中具有两个双连氨基酸;所述多肽乙由17个TAL核酸识别单元组成,每个TAL核酸识别单元中具有两个双连氨基酸;
所述多肽甲中的17个双连氨基酸依次如下:序列表的序列3自N末端第2-3位氨基酸残基、第36-37位氨基酸残基、第70-71位氨基酸残基、第104-105位氨基酸残基、第138-139位氨基酸残基、第172-173位氨基酸残基、第206-207位氨基酸残基、第240-241位氨基酸残基、第274-275位氨基酸残基、第308-309位氨基酸残基、第342-343位氨基酸残基、第376-377位氨基酸残基、第410-411位氨基酸残基、第444-445位氨基酸残基、第478-479位氨基酸残基、第512-513位氨基酸残基和第546-547位氨基酸残基。
所述多肽乙中的17个双连氨基酸依次如下:序列表的序列5自N末端第2-3位氨基酸残基、第36-37位氨基酸残基、第70-71位氨基酸残基、第104-105位氨基酸残基、第138-139位氨基酸残基、第172-173位氨基酸残基、第206-207位氨基酸残基、第240-241位氨基酸残基、第274-275位氨基酸残基、第308-309位氨基酸残基、第342-343位氨基酸残基、第376-377位氨基酸残基、第410-411位氨基酸残基、第444-445位氨基酸残基、第478-479位氨基酸残基、第512-513位氨基酸残基和第546-547位氨基酸残基。
所述多肽甲具体可如序列表的序列3所示。
所述多肽乙具体可如序列表的序列5所示。
本发明还保护一对DNA分子(命名为特异DNA分子对),由编码所述多肽甲的DNA分子甲和编码所述多肽乙的DNA分子乙组成。
所述DNA分子甲中,编码所述多肽甲的17个双连氨基酸的核苷酸依次如下:序列表的序列4自5’末端第4-9位核苷酸、第106-111位核苷酸、第208-213位核苷酸、第310-315位核苷酸、第412-417位核苷酸、第514-519位核苷酸、第616-621位核苷酸、第718-723位核苷酸、第820-825位核苷酸、第922-927位核苷酸、第1024-1029位核苷酸、第1126-1131位核苷酸、第1228-1233位核苷酸、第1330-1335位核苷酸、第1432-1437位核苷酸、第1534-1539位核苷酸和第1636-1641位核苷酸。
所述DNA分子乙中,编码所述多肽乙的17个双连氨基酸的核苷酸依次如下:序列表的序列4自5’末端第4-9位核苷酸、第106-111位核苷酸、第208-213位核苷酸、第310-315位核苷酸、第412-417位核苷酸、第514-519位核苷酸、第616-621位核苷酸、第718-723位核苷酸、第820-825位核苷酸、第922-927位核苷酸、第1024-1029位核苷酸、第1126-1131位核苷酸、第1228-1233位核苷酸、第1330-1335位核苷酸、第1432-1437位核苷酸、第1534-1539位核苷酸和第1636-1641位核苷酸。
所述DNA分子甲具体可如序列表的序列2所示。
所述DNA分子乙具体可如序列表的序列4所示。
本发明还保护一对质粒(命名为特异质粒对),由具有所述DNA分子甲的质粒甲和具有所述DNA分子乙的质粒乙组成。
所述质粒甲具体可为在pCS2-FokI载体(PEAS型)的多克隆位点插入所述DNA分子甲得到的重组质粒。
所述质粒乙具体可为在pCS2-FokI载体(PERR型)的多克隆位点插入所述DNA分子乙得到的重组质粒。
本发明还保护所述特异多肽对在特异识别和靶向修饰猪NFκBp65基因中的应用。所述猪NFκBp65基因,具体可如序列表的序列1所示。
本发明还保护所述特异质粒对在特异切割猪NFκBp65基因中的应用。所述猪NFκBp65基因,具体可如序列表的序列1所示。
本发明还保护所述特异质粒对在构建猪NFκBp65基因突变库中的应用。所述猪NFκBp65基因,具体可如序列表的序列1所示。
与现有技术相比,本发明提供了特异识别猪NFκBp65基因的多肽对,并提供了该多肽对的编码基因。本发明同时提供了用于基因工程的质粒对,该质粒对由两个质粒组成,其中一个质粒表达一条多肽和PEAS型FokI核酸内切酶的融合蛋白,另一个质粒表达另一条多肽和FokI核酸内切酶(PERR型)的融合蛋白。将所述质粒对导入含有目的基因的细胞,可以使细胞中的目的基因被特异切割,在细胞自身修复系统的作用下,可以得到目的基因的突变库。本发明的目的在于,在细胞或个体水平上对猪NFκBp65基因进行敲除或修饰,以解析猪NFκBp65基因的功能、构建猪NFκBp65基因突变库或获得相关疾病模型,为猪抗病育种及新药研发服务。
附图说明
图1为四种质粒的结构示意图和工作原理示意图。
图2为重组质粒TALE-L具有的串联模块及其构建过程的示意图。
图3为重组质粒TALE-R具有的串联模块及其构建过程的示意图。
图4为重组质粒pcs2-TALE-peas-L和重组质粒pcs2-TALE-peas-R的构建流程示意图。
图5为重组质粒pGL4-SSA-p65的工作原理示意图。
图6为TALEN质粒对pcs2-TALE-peas-L和pcs2-TALE-perr-R转染猪PEF细胞60h后提取DNA进行PCR扩增,将PCR产物克隆后的部分测序结果(突变序列)。
图7为TALEN质粒对pcs2-TALE-peas-L和pcs2-TALE-perr-R的工作原理示意图。
具体实施方式
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。以下实施例中,如无特殊说明,均采用低糖DMEM培养基培养细胞。
pTALE-A:CWBIO,CatNo.CW2238。pTALE-G:CWBIO,CatNo.CW2239。pTALE-C:CWBIO,CatNo.CW2240。pTALE-T:CWBIO,CatNo.CW2241。293T细胞系:CWBIO,CatNo.CW2095。
pGL4-SSA载体:Addgene,CatNo.42962。pRL-TK载体:Promega,CatNo.E2241。
实施例1、TALE靶点识别模块的构建
一、四种模块以及将模块进行组合的机理描述
TAL的核酸识别单元为间隔32个恒定氨基酸序列的双连氨基酸(即相邻的两个氨基酸)。双连氨基酸与A、G、C、T有恒定的对应关系,即NI识别A、NG识别T、HD识别C、NN识别G。pTALE-A质粒、pTALE-G质粒、pTALE-C质粒和pTALE-T质粒为单模块载体,为分别具有上述四种TAL的核酸识别单元的编码DNA的质粒,且在编码DNA的5’末端具有SpeI酶切识别序列、3’末端具有连续的NheI酶切识别序列和HindIII识别序列。通过单模块载体上的SpeI、NheI和HindIII酶切位点按照靶点序列相对应的TAL单元即可串联克隆,其中右侧靶点序列需反向构建模块。四种质粒的结构示意图和工作原理示意图见图1。目前,TALEN系统利用FokI的内切酶活性打断目标基因,因为FokI需形成2聚体方能发挥活性,在实际操作中需在目标基因中选择两处相邻(间隔1418碱基)的靶序列(一般十几个碱基)分别进行TAL识别模块构建。
二、靶点的选择
NFκBp65基因的部分序列见序列表的序列1,其中自5’末端第196至270位核苷酸为第十外显子。首先通过大量序列分析和筛选工作将第十外显子作为初步选定的靶点,然后通过进一步筛选,将序列表的序列1自5’末端第216至269位核苷酸作为进一步选定的靶点,通过再次的筛选,将序列表的序列1自5’末端第217-233位核苷酸和第252-268位核苷酸作为最终的靶点。
三、重组质粒TALE-L(左侧TALE模块)和重组质粒TALE-R(右侧TALE模块)的构建
根据选定的靶点,用pTALE-A质粒、pTALE-G质粒、pTALE-C质粒和pTALE-T质粒构建重组质粒TALE-L(具有图2所示的串联模块),构建过程见图2。根据选定的靶点,用pTALE-A质粒、pTALE-G质粒、pTALE-C质粒和pTALE-T质粒构建重组质粒TALE-R(具有图3所示的串联模块),构建过程见图3。重组质粒TALE-L识别17个核苷酸(GCAACCCGGCGCATTGC),重组质粒TALE-R识别17个核苷酸(GGCTTGGGGACGGAAGC)。
重组质粒TALE-L和重组质粒TALE-R经SpeI和NheI双酶切,均产生1.7kb左右预期条带。重组质粒TALE-L和重组质粒TALE-R统称重组质粒TALE。
四、重组质粒pcs2-TALE-peas-L和重组质粒pcs2-TALE-perr-R的构建
pCS2-FokI载体:CWBIO,CatNo.CW2273;包括一对结构基本相同的质粒,pCS2-FokI载体(PEAS型)和pCS2-FokI载体(PERR型),pCS2-FokI载体(PEAS型)又称PEAS型pCS2-FokI载体,pCS2-FokI载体(PERR型)又称PERR型pCS2-FokI载体,pCS2-FokI载体(PEAS型)和pCS2-FokI载体(PERR型)的差异仅在于pCS2-FokI载体(PEAS型)具有编码FokI核酸内切酶(PEAS型)的DNA序列,pCS2-FokI载体(PERR型)具有编码FokI核酸内切酶(PERR型)的DNA序列;质粒的结构为:具有由sCMV启动了控制的、除目标基因靶点识别域外的TALEN必需元件、编码FokI核酸内切酶(PEAS型或PERR型)的DNA序列,在编码TALE0.5单元模块(RVDNG,识别T碱基)的DNA序列的5’端嵌有限制性内切酶NheIDNA的识别序列。FokI核酸内切酶(PEAS型)和FokI核酸内切酶(PERR型)形成二聚体后发挥内切酶的功能。
重组质粒pcs2-TALE-peas-L和重组质粒pcs2-TALE-perr-R统称pcs2-TALEN,构建流程示意图见图4。
1、用限制性内切酶SpeI和NheI双酶切重组质粒TALE-L,回收约1.7kb的DNA片段。
2、用限制性内切酶NheI酶切pCS2-FokI载体(PEAS型),回收约5.4kb的载体骨架。
3、将步骤1得到的DNA片段和步骤2得到的载体骨架连接,得到重组质粒pcs2-TALE-peas-L(左侧表达质粒)。根据测序结果,对重组质粒pcs2-TALE-peas-L进行结构描述如下:在pCS2-FokI载体(PEAS型)的NheI酶切位点插入了序列表的序列3所示的双链DNA分子(序列表的序列2所示的DNA分子编码序列表的序列3所示的蛋白质;序列3中的双连氨基酸分别为:第2-3位氨基酸残基、第36-37位氨基酸残基、第70-71位氨基酸残基、第104-105位氨基酸残基、第138-139位氨基酸残基、第172-173位氨基酸残基、第206-207位氨基酸残基、第240-241位氨基酸残基、第274-275位氨基酸残基、第308-309位氨基酸残基、第342-343位氨基酸残基、第376-377位氨基酸残基、第410-411位氨基酸残基、第444-445位氨基酸残基、第478-479位氨基酸残基、第512-513位氨基酸残基、第546-547位氨基酸残基);重组质粒pcs2-TALE-peas-L中,在CMV启动子的作用下,表达序列3所示蛋白质与FokI内切酶单体的融合蛋白(命名为融合蛋白-L),该融合蛋白中,序列3所示蛋白质位于N末端。
4、用限制性内切酶SpeI和NheI双酶切重组质粒TALE-R,回收约1.7kb的DNA片段。
5、用限制性内切酶NheI酶切pCS2-FokI载体(PERR型),回收约5.5kb的载体骨架。
6、将步骤4得到的DNA片段和步骤5得到的载体骨架连接,得到重组质粒pcs2-TALE-perr-R(右侧表达质粒)。根据测序结果,对重组质粒pcs2-TALE-perr-R进行结构描述如下:在pCS2-FokI载体(PERR型)的NheI酶切位点之间插入了序列表的序列4所示的DNA分子(序列表的序列4所示的DNA分子编码序列表的序列5所示的蛋白质;序列5中的双连氨基酸分别为:第2-3位氨基酸残基、第36-37位氨基酸残基、第70-71位氨基酸残基、第104-105位氨基酸残基、第138-139位氨基酸残基、第172-173位氨基酸残基、第206-207位氨基酸残基、第240-241位氨基酸残基、第274-275位氨基酸残基、第308-309位氨基酸残基、第342-343位氨基酸残基、第376-377位氨基酸残基、第410-411位氨基酸残基、第444-445位氨基酸残基、第478-479位氨基酸残基、第512-513位氨基酸残基、第546-547位氨基酸残基);重组质粒pcs2-TALE-peas-R中,在CMV启动子的作用下,表达序列5所示蛋白质与FokI内切酶单体的融合蛋白(命名为融合蛋白-R),该融合蛋白中,序列5所示蛋白质位于N末端。
实施例2、报告质粒的构建
1、合成序列表的序列6所示的双链DNA分子(靶点片段)。
2、以步骤1合成的双链DNA分子为模板,用NFκBp65F和NFκBp65R组成的引物对进行PCR扩增,得到PCR扩增产物。
NFκBp65F:5’-ACTTATGTTACCCGGGCGGATTGAGGAGAAACGCAAAAGG-3’;
NFκBp65R:5’-ATACATGTATCCCGGGAGAAACAGGAGCCCAACAGAGGG-3’。
3、用限制性内切酶XmaI酶切步骤2的PCR扩增产物,回收酶切产物。
4、用限制性内切酶XmaI酶切pGL4-SSA载体,回收约5.7kb的载体骨架。
5、将步骤3的酶切产物和步骤4的载体骨架连接,得到重组质粒pGL4-SSA-p65(报告质粒)。根据测序结果,对重组质粒pGL4-SSA-p65进行结构描述如下:在pGL4-SSA载体的XmaI酶切位点插入了序列表的序列6所示的DNA分子(NFκBp65片段)。由CMV启动子控制的SSA报告基因(即FireflyLuciferase基因,中文名称为萤火虫荧光素酶基因)被终止密码子和靶点片段分割为两段(自上游至下游依次命名为片段甲和片段乙,片段甲的下游和片段乙的上游为同源臂)。将重组质粒pGL4-SSA-p65导入细胞后,因为片段甲和片段乙之间具有终止密码子和靶点片段组成的间隔区,只能表现出很弱的萤火虫荧光素酶活性。将重组质粒pGL4-SSA-p65导入细胞后,如果间隔区的DNA片段被切割,片段甲和片段乙可以借助同源臂发生同源重组并形成有活性的萤火虫荧光素酶基因,使得萤火虫荧光素酶活性显著增强,工作原理示意图见图5。
实施例3、通过荧光素酶报告基因法验证实施例1构建的质粒的TALEN活性
分别进行如下2组实验处理(每个实验处理进行三次重复实验,每次重复实验设置3个重复处理,结果取三个重复处理的平均值;转染试剂均为DNAFectTransfectionReagentDNA转染试剂,CWBIO,CatNo.CW0860,每个处理中转染试剂的加入量为6μl,并按照说明书进行操作):
第1组:将0.4μgpRL-TK质粒(参考对照质粒)、2.0μg重组质粒pGL4-SSA-p65、4.0μg质粒载体pCS2-FokI(PEAS型)和4.0μg质粒载体pCS2-FokI(PERR型)共转染1×106的293T细胞;
第2组:将0.4μgpRL-TK质粒(参考对照质粒)、2.0μg重组质粒pGL4-SSA-p65、4.0μg重组质粒pcs2-TALE-peas-L和4.0μg重组质粒pcs2-TALE-perr-R共转染1×106的293T细胞;
转染24小时后取各组的细胞进行裂解并检测荧光素酶的荧光信号(仪器为:Luminometer,DLReady,型号是TD-20/20),结果见表1。荧光素酶检测按照试剂盒Dualluciferaseassaykit(Promega,货号#E1910)说明书进行。
表1各组处理的荧光强度数据
TALENs敲除效率=(第二组的F/R):(第一组的F/R)=3.550(P<0.01),即重组质粒pcs2-TALE-peas-L和重组质粒pcs2-TALE-peas-R对靶点片段的敲除活性为3.550。
实施例4、通过测序验证实施例1构建的质粒的TALEN活性
PEF细胞(猪胎儿成纤维细胞):从流产的猪胎儿中分离得到PEF细胞(分离方法参见文献:李红,魏红江,许成盛,汪霞,卿玉波,曾养志;版纳微型猪近交系胎儿成纤维细胞系的建立及其生物学特征;湖南农业大学学报(自然科学版);第36卷第6期;2010年12月;678-682)。
1、将4μg重组质粒pcs2-TALE-peas-L和4μg重组质粒pcs2-TALE-perr-R通过电转化的方式共转染1×106PEF细胞,得到重组细胞。
2、将步骤1得到的重组细胞30℃培养60小时,然后收集细胞。
3、提取步骤2收集的细胞的基因组DNA并作为模板,用PCRF与PCRR组成的引物对进行PCR扩增,回收376bp的PCR扩增产物。
PCRF:5’-CGGATTGAGGAGAAACGCAAAAGG-3’:
PCRR:5’-AGAAACAGGAGCCCAACAGAGGG-3’。
4、将步骤3得到的PCR扩增产物与pMD18-T载体(宝生物,货号:D101A)连接,得到连接产物。
5、将步骤4得到的连接产物转化大肠杆菌DH5α感受态细胞(宝生物,D9057S),然后涂布于含500mg/ml氨苄青霉素的LB固体培养基平板上进行培养,随机挑取100个克隆并进行测序,计算突变的克隆占总体克隆数的比例,从而估算出该对TALEN质粒的效率。结果发现5个克隆在预期切割位点附近出现突变(详见图6),即重组质粒pcs2-TALE-peas-L和pcs2-TALE-perr-R组成的TALEN质粒对在PEF细胞基因组中的切割效率达5%。
重组质粒pcs2-TALE-peas-L和重组质粒pcs2-TALE-perr-R的工作原理见图7,两种带有FokI功能域的靶向TALE核酸酶分别在CMV启动子控制下高效表达,并进入细胞核内,与相应的靶点DNA发生特异性结合。FokI核酸内切酶成二聚体行使DNA切割活性,切断目标基因DNA双链。

Claims (9)

1.一对多肽,由多肽甲和多肽乙组成;所述多肽甲由17个TAL核酸识别单元组成,每个TAL核酸识别单元中具有两个双连氨基酸;所述多肽乙由17个TAL核酸识别单元组成,每个TAL核酸识别单元中具有两个双连氨基酸;
所述多肽甲中的17个双连氨基酸依次如下:序列表的序列3自N末端第2-3位氨基酸残基、第36-37位氨基酸残基、第70-71位氨基酸残基、第104-105位氨基酸残基、第138-139位氨基酸残基、第172-173位氨基酸残基、第206-207位氨基酸残基、第240-241位氨基酸残基、第274-275位氨基酸残基、第308-309位氨基酸残基、第342-343位氨基酸残基、第376-377位氨基酸残基、第410-411位氨基酸残基、第444-445位氨基酸残基、第478-479位氨基酸残基、第512-513位氨基酸残基和第546-547位氨基酸残基;
所述多肽乙中的17个双连氨基酸依次如下:序列表的序列5自N末端第2-3位氨基酸残基、第36-37位氨基酸残基、第70-71位氨基酸残基、第104-105位氨基酸残基、第138-139位氨基酸残基、第172-173位氨基酸残基、第206-207位氨基酸残基、第240-241位氨基酸残基、第274-275位氨基酸残基、第308-309位氨基酸残基、第342-343位氨基酸残基、第376-377位氨基酸残基、第410-411位氨基酸残基、第444-445位氨基酸残基、第478-479位氨基酸残基、第512-513位氨基酸残基和第546-547位氨基酸残基;
所述多肽甲如序列表的序列3所示;所述多肽乙如序列表的序列5所示。
2.一对DNA分子,由编码权利要求1中的所述多肽甲的DNA分子甲和编码权利要求1中的所述多肽乙的DNA分子乙组成。
3.如权利要求2所述的一对DNA分子,其特征在于:
所述DNA分子甲中,编码所述多肽甲的17个双连氨基酸的核苷酸依次如下:序列表的序列2自5’末端第4-9位核苷酸、第106-111位核苷酸、第208-213位核苷酸、第310-315位核苷酸、第412-417位核苷酸、第514-519位核苷酸、第616-621位核苷酸、第718-723位核苷酸、第820-825位核苷酸、第922-927位核苷酸、第1024-1029位核苷酸、第1126-1131位核苷酸、第1228-1233位核苷酸、第1330-1335位核苷酸、第1432-1437位核苷酸、第1534-1539位核苷酸和第1636-1641位核苷酸;
所述DNA分子乙中,编码所述多肽乙的17个双连氨基酸的核苷酸依次如下:序列表的序列4自5’末端第4-9位核苷酸、第106-111位核苷酸、第208-213位核苷酸、第310-315位核苷酸、第412-417位核苷酸、第514-519位核苷酸、第616-621位核苷酸、第718-723位核苷酸、第820-825位核苷酸、第922-927位核苷酸、第1024-1029位核苷酸、第1126-1131位核苷酸、第1228-1233位核苷酸、第1330-1335位核苷酸、第1432-1437位核苷酸、第1534-1539位核苷酸和第1636-1641位核苷酸。
4.如权利要求3所述的一对DNA分子,其特征在于:所述DNA分子甲如序列表的序列2所示;所述DNA分子乙如序列表的序列4所示。
5.一对质粒,由质粒甲和质粒乙组成;所述质粒甲为具有权利要求2或3或4中所述的DNA分子甲的质粒;所述质粒乙为具有权利要求2或3或4中所述的DNA分子乙的质粒。
6.如权利要求5所述的一对质粒,其特征在于:所述质粒甲是在PEAS型pCS2-FokI载体的多克隆位点插入所述DNA分子甲得到的重组质粒;所述质粒乙是在PERR型pCS2-FokI载体的多克隆位点插入所述DNA分子乙得到的重组质粒。
7.权利要求1所述的一对多肽在特异识别和靶向修饰猪NFκBp65基因中的应用。
8.权利要求6所述的一对质粒在特异切割猪NFκBp65基因中的应用。
9.权利要求6所述的一对质粒在构建猪NFκBp65基因突变库中的应用。
CN201310398624.9A 2013-09-05 2013-09-05 一对特异识别猪NFкBp65基因的多肽及其编码基因和应用 Expired - Fee Related CN103554231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310398624.9A CN103554231B (zh) 2013-09-05 2013-09-05 一对特异识别猪NFкBp65基因的多肽及其编码基因和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310398624.9A CN103554231B (zh) 2013-09-05 2013-09-05 一对特异识别猪NFкBp65基因的多肽及其编码基因和应用

Publications (2)

Publication Number Publication Date
CN103554231A CN103554231A (zh) 2014-02-05
CN103554231B true CN103554231B (zh) 2015-11-25

Family

ID=50008621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310398624.9A Expired - Fee Related CN103554231B (zh) 2013-09-05 2013-09-05 一对特异识别猪NFкBp65基因的多肽及其编码基因和应用

Country Status (1)

Country Link
CN (1) CN103554231B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865898B (zh) * 2014-03-24 2017-03-01 青岛农业大学 一对特异识别绵羊mmp2基因的多肽及其编码基因和应用
CN105367628B (zh) * 2014-08-19 2019-07-26 深圳华大基因农业控股有限公司 一对高效编辑水稻waxy基因的talen其识别打靶位点及其应用
CN105367631B (zh) * 2014-08-25 2019-05-14 深圳华大基因科技有限公司 一种转录激活子样效应因子核酸酶及其编码基因和应用
CN104250297B (zh) * 2014-09-15 2018-07-13 青岛农业大学 一对特异识别绵羊krt25基因的多肽及其编码基因和应用
CN104628828B (zh) * 2015-01-29 2018-04-20 中国农业科学院北京畜牧兽医研究所 一对特异识别IκBα基因的多肽及其编码基因和应用
CN104726428B (zh) * 2015-02-13 2018-08-14 青岛农业大学 一对特异识别绵羊il8基因的多肽及其编码基因和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732472A (zh) * 2011-04-08 2012-10-17 华中农业大学 表达猪肺炎支原体p65蛋白的减毒猪霍乱沙门氏菌的构建与应用
CN103018442B (zh) * 2011-09-23 2014-11-19 华中农业大学 猪肺炎支原体间接elisa抗体检测试剂盒及应用
CN102964431B (zh) * 2012-12-03 2014-05-07 中国农业科学院北京畜牧兽医研究所 一对特异识别肌肉生长抑制素基因的多肽及其编码基因和应用

Also Published As

Publication number Publication date
CN103554231A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
CN103554231B (zh) 一对特异识别猪NFкBp65基因的多肽及其编码基因和应用
CN106191116B (zh) 基于CRISPR/Cas9的外源基因敲入整合系统及其建立方法和应用
CN107828738A (zh) 一种dna甲基转移酶缺陷型cho细胞系及其制备方法及应用
WO2020098772A1 (zh) CRISPR-Cas12j酶和系统
CN105821116A (zh) 一种绵羊mstn基因定向敲除及其影响成肌分化的检测方法
CN103224947A (zh) 一种基因打靶系统
CN111575319B (zh) 一种高效的crispr rnp和供体dna共位介导的基因插入或替换方法及其应用
WO2021175289A1 (zh) 多重基因组编辑方法和系统
Zutter et al. Regulation of α2 integrin gene expression in cells with megakaryocytic features: a common theme of three necessary elements
CN102964431B (zh) 一对特异识别肌肉生长抑制素基因的多肽及其编码基因和应用
CN106755089A (zh) 表达山羊淋巴细胞活化分子的细胞系及其构建方法与应用
Numata et al. Direct introduction of neomycin phosphotransferase II protein into apple leaves to confer kanamycin resistance
CN110438128A (zh) 利用CRISPR/Cas9系统敲除猪CCAR1基因的方法
CN102850444B (zh) 一对转录激活子样效应因子核酸酶l3和r1及其编码基因与应用
CN103233010B (zh) 一种大黄鱼抗菌肽hepcidin基因启动子序列及其应用
CN102702335B (zh) 重组转录激活子样效应因子、转录激活子样效应因子核酸酶及其编码基因及应用
CN103305516A (zh) 一种肺组织特异性sp-c启动子及其应用
CN114107253B (zh) 一种利用工程细胞进行基因编辑的系统及方法
CN102702331B (zh) 一对转录激活子样效应因子核酸酶及其编码基因与应用
CN102702332B (zh) 一对转录激活子样效应因子核酸酶l1和r2及其编码基因与应用
CN103833858B (zh) 一对多肽及其编码基因和应用
CN104232685A (zh) 一种可活体成像监测肝脏中NF-κB活性的小鼠模型及其构建方法
CN105734032A (zh) 一种山羊blg基因定点敲除修饰系统及应用
CN104450784B (zh) 一种samhd1基因敲除细胞系的构建方法
CN106399371B (zh) 一种构建基因替代小鼠研究野生型和突变体非肌性肌球蛋白重链ii功能的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20170905

CF01 Termination of patent right due to non-payment of annual fee