CN103553336B - 气密密封的密封材料及制备方法、气密密封方法 - Google Patents

气密密封的密封材料及制备方法、气密密封方法 Download PDF

Info

Publication number
CN103553336B
CN103553336B CN201310514154.8A CN201310514154A CN103553336B CN 103553336 B CN103553336 B CN 103553336B CN 201310514154 A CN201310514154 A CN 201310514154A CN 103553336 B CN103553336 B CN 103553336B
Authority
CN
China
Prior art keywords
encapsulant
substrate
oxide powder
mgo
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310514154.8A
Other languages
English (en)
Other versions
CN103553336A (zh
Inventor
张建华
李艺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201310514154.8A priority Critical patent/CN103553336B/zh
Publication of CN103553336A publication Critical patent/CN103553336A/zh
Application granted granted Critical
Publication of CN103553336B publication Critical patent/CN103553336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种气密密封的密封材料及制备方法、气密密封方法。该密封材料,按照摩尔百分比包括以下组分:40‑60B2O3、10‑25ZnO、10‑20Co2O3、0‑12BaO、0‑15SiO2和0‑2RO,其中,R基为Na、Mg、K、Cs中的至少一种。所述玻璃料组合物的制备方法,包括如下步骤:烧结氧化物粉末,并随熔融的氧化物粉末水淬得到玻璃珠;粉碎所述得到的玻璃珠形成玻璃颗粒形态的密封材料;其中,所述氧化物粉末按照摩尔百分比包括以下组分:40‑60B2O3、10‑25ZnO、10‑20Co2O3、0‑12BaO、0‑15SiO2和0‑2RO,R基为Na、Mg、K、Cs中的至少一种。采用本发明能得到密封强度高的气密式封装,并且不污染环境。

Description

气密密封的密封材料及制备方法、气密密封方法
技术领域
本发明涉及密封材料技术领域,特别是涉及一种气密密封的密封材料及制备方法、气密密封方法。
背景技术
气密密封的密封材料,例如玻璃料,作为对基板进行密封的一类中间材料而被应用于发光器件的的封接,以使得发光器件的内部与周围环境隔绝,避免发光器件受到周围环境的影响而使性能下降。
发光器件,例如有机电致发光器件,得到了越来越多的关注和广泛应用。在有机电致发光器件中,有机电致发光显示器OLED作为一种新兴的平板显示器在色彩对比度、视角、响应速度和能耗等方面均具有潜在的优势,密封材料对于发光器件的性能而言尤为重要。
然而,传统的密封材料含有五氧化二钒等有毒物质,以作为吸收剂吸收实现基板密封的激光,并且在密封材料熔化温度较低的情况下,热膨胀系数升高,形成封接时的裂纹和塌陷,具有密封强度不高的缺陷。
发明内容
基于此,有提供一种密封强度较高、无污染的气密密封的密封材料。
此外,还有必要提供一种密封强度高、无污染的密封材料的制备方法。
另外,还有必要提供一种密封强度高、无污染的气密密封方法。
一种气密密封的密封材料,按照摩尔百分比包括以下组分:40-60B2O3、10-25ZnO、10-20Co2O3、0-12BaO、0-15SiO2和0-2RO,其中,R基为Na、Mg、K、Cs中的至少一种。
在其中一个实施例中,所述RO为Na2O和MgO以1:1的摩尔比组成的混合物。
在其中一个实施例中,所述RO为K2O和CsO以1:1的摩尔比组成的混合物。
在其中一个实施例中,所述RO为MgO。
一种密封材料的制备方法,包括如下步骤:
烧结氧化物粉末,并随熔融的氧化物粉末水淬得到玻璃珠;
粉碎所述得到的玻璃珠形成玻璃颗粒形态的密封材料;
其中,所述氧化物粉末按照摩尔百分比包括以下组分:40-60B2O3、10-25ZnO、10-20Co2O3、0-12BaO、0-15SiO2和0-2RO,R基为Na、Mg、K、Cs中的至少一种。
在其中一个实施例中,所述粉碎得到的玻璃颗粒形态的密封材料的平均粒度分布小于5微米。
在其中一个实施例中,所述粉碎所述得到的玻璃珠形成玻璃颗粒形态的密封材料的步骤之后,所述方法还包括:
风选得到与预设粒度分布相符的密封材料的步骤。
一种气密密封方法,包括如下步骤:
将密封材料沉积于基板;
预烧结所述沉积了密封材料的基板得到预制件;
通过辐射源封接所述预制件形成所述基板之间的气封密封;
所述密封材料按照摩尔百分比包括以下组分:40-60B2O3、10-25ZnO、10-20Co2O3、0-12BaO、0-15SiO2和0-2RO,其中,R基为Na、Mg、K、Cs中的至少一种。
在其中一个实施例中,所述玻璃料组合物与有机粘结剂混合,所述预烧结所述沉积了密封材料的基板得到预制件的步骤之前,所述方法还包括:
将所述沉积了密封材料的基板加热至300℃-350℃,并停留预设时间,烧尽所述有机粘结剂。
上述气密密封的密封材料及制备方法、气密密封方法,通过引入Co2O3,以Co2O3作为吸收激光的主要添加剂无毒且吸收效果好,使密封材料作为一种玻璃得到较低的熔化温度的同时得到较低的热膨胀系数(CTE),进而保证了密封材料与基板之间良好的润湿性,应用上述密封材料对基板进行封接将保证了封接的密封强度高、无污染。
附图说明
图1为一实施方式的密封材料的制备方法的流程图;
图2为一实施方式的气密密封方法的流程图;
图3为一个实施方式的玻璃料组合物的CTE和熔点温度的关系示意图。
具体实施方式
下面结合实施方式及附图,对气密密封的密封材料及制备方法、气密密封方法作进一步的详细说明。
一实施方式的气密密封的密封材料,按照摩尔百分比包括以下组分:40-60B2O3、10-25ZnO、10-20Co2O3、0-12BaO、0-15SiO2和0-2RO,其中,R基为Na、Mg、K、Cs中的至少一种。
本实施例中,RO为Na2O和MgO以1:1的摩尔比组成的混合物。
另一实施例中,RO为K2O和CsO以1:1的摩尔比组成的混合物。
其它实施例中,RO为MgO。
上述气密密封的密封材料通过引入Co2O3,以Co2O3作为吸收激光的主要添加剂无毒且吸收效果好,使密封材料作为一种玻璃得到较低的熔化温度的同时得到较低的热膨胀系数(CTE),进而保证了密封材料与基板之间良好的润湿性,应用上述密封材料对基板进行封接将保证了封接的密封强度高、无污染。
传统的密封材料为使得熔点温度维持在400摄氏度左右而使得热膨胀系数远高于80,无法同时得到较低熔点温度和较低热膨胀系数的密封材料,而上述密封材料不需要添加任何耐火填料即可达到熔化低且热膨胀系数低的特点,保证了较低的热膨胀系数与基板的材质相匹配得到较好的密封效果。
请参阅图1,一实施方式的密封材料的制备方法,包括以下步骤:
S110,烧结氧化物粉末,并随熔融的氧化物粉末水淬得到玻璃珠。
本实施例中,氧化物粉末按照摩尔百分比包括以下组分:40-60B2O3、10-25ZnO、10-20Co2O3、0-12BaO、0-15SiO2和0-2RO,其中,R基为Na、Mg、K、Cs中的至少一种。
按照如上所述的摩尔百分比称量一定量的B2O3、ZnO、Co2O3、BaO、SiO2、和RO相混合得到氧化物粉末,以将氧化物粉末置于高温炉内烧结得到熔融状态的氧化物粉末,并将熔融状态的氧化物粉末倒入水中进行水淬形成玻璃珠。
S130,粉碎得到的玻璃珠形成玻璃颗粒形态的密封材料。
本实施例中,粉碎得到的玻璃珠形态的密封材料的平均粒度分布小于5微米。用于粉碎玻璃珠的方式可以是球磨、研磨或者其它合适的方式。
其它实施方式的密封材料的制备方法中,上述步骤S130之后,还包括风选得到与预设粒度分布相符的密封材料的步骤。
请参阅图2,一实施方式的气密密封方法,包括以下步骤:
S210,将密封材料沉积于基板。
本实施例中,密封材料按照摩尔百分比包括以下组分:40-60B2O3、10-25ZnO、10-20Co2O3、0-12BaO、0-15SiO2和0-2RO,其中,R基为Na、Mg、K、Cs中的至少一种。
提供第一基板和第二基板,通过丝网印刷等方式使得密封材料沉积于基板之上,该基板即为第二基板;预贴合第一基板和第二基板,使得沉积于第二基板的密封材料置于第一基板和第二基板之间。
S230,预烧结沉积了密封材料的基板得到预制件。
本实施例中,于400℃对沉积了密封材料的基板进行预烧结,其中,预烧结的气氛可以是惰性气体、还原性气体或低氧气气氛环境中的任意一种。该低氧气气氛环境所含氧气将低于5%,以防止密封材料中氧化物的过渡氧化。
与传统的密封材料相比较,由于传统的密封材料需要在450℃的环境之下进行预烧结,而如上所述的密封材料只需要在400℃即可完成预烧结过程,避免了过高的温度所造成的热损害。
S250,通过辐射源封接预制件形成基板之间的气封密封。
本实施例中,该辐射源可以是激光、红外线和微波中的任意一种。通过辐射源加热密封材料,使得密封材料融化形成封条,以将两个基板连接,即第一基板连接到第二基板上。
另一实施方式的气密密封方法中,密封材料与有机粘结剂混合,上述S230之前,该方法还包括:
将沉积了密封材料的基板加热至300℃-350℃,并停留预设时间,烧尽有机粘结剂。
本实施例中,在对沉积了密封材料的基板进行加热的过程中,在加热温度升至300℃-350℃时停留预设时间,以使得有机粘结剂在预烧结过程中尽数烧尽。
上述气密密封方法,通过密封材料吸收辐射源以达到基板中局部加热的效果,可用于实现薄膜器件或有机发光器件中的气密式封装,以通过较强的密封性保证薄膜器件或有机发光器件的性能。
以下结合具体实施例来进行说明。
实施例1
制备密封材料,其按照摩尔百分比包括以下组分:40B2O3、16ZnO、15Co2O3、15SiO2、12BaO和2RO,其中,RO为为Na2O和MgO以1:1的摩尔比组成的混合物。
按照如上摩尔百分比称量B2O3、ZnO、Co2O3、SiO2、BaO、Na2O和MgO,并混合得到氧化物粉末,置于高温炉内烧结得到熔融状态的氧化物粉末,并将熔融状态的氧化物粉末倒入水中进行水淬得到玻璃珠;
粉碎得到的玻璃珠以得到平均粒度分布小于5微米的玻璃颗粒形态的密封材料,并通过风选选出所需各粒度分布的颗粒。
该制备得到的密封材料的熔点温度为417℃,热膨胀系数为57.8。
实施例2
制备密封材料,其按照摩尔百分比包括以下组分:50B2O3、25ZnO、10Co2O3和15SiO2
按照如上摩尔百分比称量B2O3、ZnO、Co2O3和SiO2,并混合得到氧化物粉末,置于高温炉内烧结得到熔融状态的氧化物粉末,并将熔融状态的氧化物粉末倒入水中进行水淬得到玻璃珠;
粉碎得到的玻璃珠以得到平均粒度分布小于5微米的玻璃颗粒形态的密封材料,并通过风选选出所需各粒度分布的颗粒。
该制备得到的密封材料的熔点温度为381℃,热膨胀系数为52.3。
实施例3
制备密封材料,其按照摩尔百分比包括以下组分:60B2O3、10ZnO、15Co2O3、10BaO。
按照如上摩尔百分比称量B2O3、ZnO、Co2O3和BaO,并混合得到氧化物粉末,置于高温炉内烧结得到熔融状态的氧化物粉末,并将熔融状态的氧化物粉末倒入水中进行水淬得到玻璃珠;
粉碎得到的玻璃珠以得到平均粒度分布小于5微米的玻璃颗粒形态的密封材料,并通过风选选出所需各粒度分布的颗粒。
该制备得到的密封材料的熔点温度为352℃,热膨胀系数为49.4。
实施例4
制备密封材料,其按照摩尔百分比包括以下组分:52B2O3、18ZnO、15Co2O3、8SiO2、5BaO和2RO,其中,RO为K2O和CsO以1:1的摩尔比组成的混合物。
按照如上摩尔百分比称量B2O3、ZnO、Co2O3、SiO2、BaO、K2O和CsO,并混合得到氧化物粉末,置于高温炉内烧结得到熔融状态的氧化物粉末,并将熔融状态的氧化物粉末倒入水中进行水淬得到玻璃珠;
粉碎得到的玻璃珠以得到平均粒度分布小于5微米的玻璃颗粒形态的密封材料,并通过风选选出所需各粒度分布的颗粒。
该制备得到的密封材料的熔点温度为387℃,热膨胀系数为53.6。
实施例5
制备密封材料,其按照摩尔百分比包括以下组分:48B2O3、15ZnO、15Co2O3、15SiO2、6BaO和1RO,其中,RO为MgO。
按照如上摩尔百分比称量B2O3、ZnO、Co2O3、SiO2、BaO和MgO,并混合得到氧化物粉末,置于高温炉内烧结得到熔融状态的氧化物粉末,并将熔融状态的氧化物粉末倒入水中进行水淬得到玻璃珠;
粉碎得到的玻璃珠以得到平均粒度分布小于5微米的玻璃颗粒形态的密封材料,并通过风选选出所需各粒度分布的颗粒。
该制备得到的密封材料的熔点温度为336℃,热膨胀系数为55.1。
请参阅图3,图3所示为实施例1~实施例5制备的密封材料的熔点温度和热膨胀系数(CTE)的测试结果。从图3中可以看出实施例1~实施例5制备的密封材料的熔点温度和热膨胀系数均较低,可以有效减少周围环境中例如外部水气等对薄膜器件或有机发光器件的侵蚀,从而提高薄膜器件或有机发光器件的性能和寿命。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种气密密封的密封材料,其特征在于,按照摩尔百分比由以下组分组成:40-60B2O3、10-25 ZnO、10-20 Co2O3、0-12 BaO、0-15 SiO2和0-2 RO,其中,所述RO为Na2O和MgO以1:1的摩尔比组成的混合物,
或所述RO为K2O和CsO以1:1的摩尔比组成的混合物,
或所述RO为MgO。
2.一种密封材料的制备方法,其特征在于,包括如下步骤:
烧结氧化物粉末,并随熔融的氧化物粉末水淬得到玻璃珠;
粉碎所述得到的玻璃珠形成玻璃颗粒形态的密封材料;
其中,所述氧化物粉末按照摩尔百分比包括以下组分:40-60 B2O3、10-25 ZnO、10-20Co2O3、0-12 BaO、0-15 SiO2和0-2 RO,
所述RO为Na2O和MgO以1:1的摩尔比组成的混合物,或所述RO为K2O和CsO以1:1的摩尔比组成的混合物,或所述RO为MgO。
3.根据权利要求2所述的密封材料的制备方法,其特征在于,所述粉碎得到的玻璃颗粒形态的密封材料的平均粒度分布小于5微米。
4.根据权利要求2所述的密封材料的制备方法,其特征在于,所述粉碎所述得到的玻璃珠形成玻璃颗粒形态的密封材料的步骤之后,所述方法还包括:
风选得到与预设粒度分布相符的密封材料的步骤。
5.一种气密密封方法,其特征在于,包括如下步骤:
将密封材料沉积于基板;
预烧结所述沉积了密封材料的基板得到预制件;
通过辐射源封接所述预制件形成所述基板之间的气封密封;
所述密封材料按照摩尔百分比包括以下组分:40-60 B2O3、10-25 ZnO、10-20 Co2O3、0-12 BaO、0-15 SiO2和0-2 RO,其中,
所述RO为Na2O和MgO以1:1的摩尔比组成的混合物,或所述RO为K2O和CsO以1:1的摩尔比组成的混合物,或所述RO为MgO。
6.根据权利要求5所述的气密密封方法,其特征在于,所述密封材料与有机粘结剂混合,所述预烧结所述沉积了密封材料的基板得到预制件的步骤之前,所述方法还包括:
将所述沉积了密封材料的基板加热至300℃-350℃,并停留预设时间,烧尽所述有机粘结剂。
CN201310514154.8A 2013-10-25 2013-10-25 气密密封的密封材料及制备方法、气密密封方法 Active CN103553336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310514154.8A CN103553336B (zh) 2013-10-25 2013-10-25 气密密封的密封材料及制备方法、气密密封方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310514154.8A CN103553336B (zh) 2013-10-25 2013-10-25 气密密封的密封材料及制备方法、气密密封方法

Publications (2)

Publication Number Publication Date
CN103553336A CN103553336A (zh) 2014-02-05
CN103553336B true CN103553336B (zh) 2017-12-19

Family

ID=50007757

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310514154.8A Active CN103553336B (zh) 2013-10-25 2013-10-25 气密密封的密封材料及制备方法、气密密封方法

Country Status (1)

Country Link
CN (1) CN103553336B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487677B2 (en) * 2015-11-10 2019-11-26 General Electric Company Turbine component having a seal slot and additive manufacturing process for making same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178204B2 (ja) * 2005-12-06 2013-04-10 コーニング インコーポレイテッド フリットで密封されたガラスパッケージおよびその製造方法
KR20080044063A (ko) * 2006-11-15 2008-05-20 엘지전자 주식회사 유전체 조성물 및 이를 이용한 플라즈마 디스플레이 패널과그 제조방법
US9540274B2 (en) * 2010-04-15 2017-01-10 Ferro Corporation Low-melting lead-free bismuth sealing glasses
CN102452794A (zh) * 2010-10-27 2012-05-16 郑庆云 一种结晶型低熔点封接玻璃及其制备方法

Also Published As

Publication number Publication date
CN103553336A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
TWI482745B (zh) A glass member having a sealing material layer, and an electronic device using the same, and a method of manufacturing the same
US9469562B2 (en) Glass substrate with sealing material layer, organic EL device using same, and manufacturing method for electronic device
CN104508061B (zh) 无机粘合剂组合物和利用其的气密密封方法
CN102939270B (zh) 密封材料糊以及使用其的电子器件的制造方法
CN105358498A (zh) 密封材料
JP5862973B2 (ja) 有機elディスプレイの製造方法
TWI462829B (zh) Glass member having sealing material layer and method for manufacturing the same, and electronic device and manufacturing method thereof
TW201246527A (en) Glass member with sealing material layer, electronic device using same and method for producing same
CN102822109A (zh) 密封材料及使用其的糊剂材料
TW201427922A (zh) 密封材料、附密封材料層之基板、積層體及電子裝置
CN103553336B (zh) 气密密封的密封材料及制备方法、气密密封方法
CN103539356B (zh) 玻璃料组合物及制备方法、基于玻璃料组合物的密封方法
CN103539354B (zh) 密封发光器件的玻璃料组合物及制备方法、气密密封方法
CN106782942A (zh) 一种铝基绝缘介质浆料及其制备方法
CN103553335B (zh) 玻璃料及其制备方法、基于玻璃料的密封方法
JP2014015350A (ja) 色素増感型太陽電池用封着材料
CN103539355B (zh) 气密密封的玻璃料组合物及制备方法、基于玻璃料组合物的密封方法
CN108863082A (zh) 低熔点玻璃粉、玻璃粉浆料及其制备方法以及组合物用途
JP5880043B2 (ja) 封着構造体
JP5489061B2 (ja) フィラー粉末およびこれを用いた封着材料
KR101408289B1 (ko) 저팽창 글라스 충전제, 이의 제조방법, 및 이를 포함하는 글라스 프릿
KR101236373B1 (ko) 유기 el 디스플레이의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant