CN103532170B - 用于并网电流滞环控制算法的开关周期固定控制方法 - Google Patents

用于并网电流滞环控制算法的开关周期固定控制方法 Download PDF

Info

Publication number
CN103532170B
CN103532170B CN201310533135.XA CN201310533135A CN103532170B CN 103532170 B CN103532170 B CN 103532170B CN 201310533135 A CN201310533135 A CN 201310533135A CN 103532170 B CN103532170 B CN 103532170B
Authority
CN
China
Prior art keywords
grid
connected current
value
amplitude
est
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310533135.XA
Other languages
English (en)
Other versions
CN103532170A (zh
Inventor
骆素华
吴凤江
骆林松
冯帆
张陆捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201310533135.XA priority Critical patent/CN103532170B/zh
Publication of CN103532170A publication Critical patent/CN103532170A/zh
Application granted granted Critical
Publication of CN103532170B publication Critical patent/CN103532170B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

用于并网电流滞环控制算法的开关周期固定控制方法,属于电能变换领域,本发明为解决现有并网电流滞环控制算法的开关周期不固定造成的滤波电感设计困难和并网电流谐波较大的问题。本发明的过程为:在定时器达到周期值时,采集电网电压的瞬时值,通过锁相环模块计算电网电压的角频率和相位角;计算电网电压相位角的正弦值,获取电网电压的幅值;对幅值进行低通滤波;通过并网电流采样模块采集并网电流的瞬时值,获取并网逆变器的滤波电感估算值;对滤波电感估算值进行低通滤波;获取定时器新的周期值,以实现开关周期和频率的固定控制。本发明用于对并网逆变器中的并网电流滞环控制算法中的开关周期进行固定控制。

Description

用于并网电流滞环控制算法的开关周期固定控制方法
技术领域
本发明属于电能变换领域,具体涉及一种用于并网电流滞环控制算法的开关周期固定控制方法。
背景技术
在单相并网逆变器中,为实现低谐波污染、近单位功率因数运行,需要对并网电流的波形和相位进行实时控制。在用于单相并网电流的几种控制策略中,电流滞环控制具有电流响应快、跟踪精度高、无瞬态电流过冲等优点,得到了广泛应用。但是在使用中存在如下问题:(1)传统电流滞环控制方案的功率器件开关周期不固定,在某一区间功率器件开关周期过高,造成其开关损耗加大,降低系统整体使用寿命;(2)开关周期在整个工频周期变化剧烈,为输出滤波器的设计带来较大难度;针对这一问题,现有方案采用近似固定开关周期的控制方案,这些方法算法复杂,而且受系统电气参数影响较大;(3)传统电流滞环控制方法普遍设置了一个电流滞环宽度,在采用数字方法实现时,离散的采样方式对电流控制精度造成较大影响,为获得较高的电流控制精度,需要较高的采样周期,造成实现难度和成本均有所提高。
专利“单相并网逆变器的并网电流单极性无环宽滞环控制装置及方法,专利号ZL201110022722.3”公开了一种无环宽的数字式并网电流滞环控制装置及方法,取消了电流滞环,在每个计算周期里只需采样实际的并网电流并通过一次实际电流和给定电流的比较就可以获得并网逆变器各个开关管的控制信号,算法非常简单,特别适合采用单片机、DSP等数字化控制芯片的实现。但是该方法采用了固定的计算周期,并网逆变器各个开关器件的开关周期存在较大波动,前述分析的电流滞环控制方法存在的问题在该专利公开的方法中仍然存在,没有从根本上解决上述不足。
发明内容
本发明目的是为了解决现有并网电流滞环控制算法的开关周期不固定造成的滤波电感设计困难和并网电流谐波较大的问题,提供了一种用于并网电流滞环控制算法的开关周期固定控制方法。
本发明所述用于并网电流滞环控制算法的开关周期固定控制方法,该方法的具体过程为:
步骤一、在定时器达到周期值时,电网电压采样模块采集电网电压的瞬时值e(k),k表示定时器的周期序号,通过锁相环模块计算电网电压的角频率ω和相位角θ;
步骤二、计算电网电压相位角θ的正弦值,然后获取电网电压的幅值Em(k):
E m ( k ) = e ( k ) sin ( θ ) - - - ( 1 ) ;
步骤三、对步骤二中获得的Em(k)进行低通滤波,所获得的电网电压幅值的滤波结果为:
E m ( k ) ‾ = a E m ( k ) + ( a - 1 ) E m ( k - 1 ) ‾ - - - ( 2 ) ,
其中为上一个采样周期的电网电压幅值的滤波结果,a为小于1的常数;
步骤四、通过并网电流采样模块采集并网电流的瞬时值i(k),获取并网逆变器的滤波电感估算值Lest(k):
其中TC(k)是上一个采样周期计算得到的定时器的周期值,Vdc表示并网逆变器的直流电压,为设定值,保持不变,e(k-1)和i(k-1)分别是上一个采样周期采集的电网电压瞬时值和并网电流瞬时值;
步骤五、对步骤四中得到的滤波电感估算值Lest(k)进行低通滤波,所获得的滤波电感估算值的滤波结果为:
L est ( k ) ‾ = b L est ( k ) + ( b - 1 ) L est ( k - 1 ) ‾ - - - ( 4 ) ,
其中为上一个采样周期的滤波电感估算值的滤波结果,b为小于1的常数;
步骤六、利用公式(5)获取定时器的新的周期值TC(k+1),以实现开关周期和频率的固定控制:
其中是并网电流幅值的给定值,TSDER是设定的所述的电流滞环控制算法的开关周期值。
本发明的优点:
(1)利用原有电流滞环控制算法中已经采集到的信息量,无需额外增加检测元件;
(2)只需要在软件中实时计算下一个采样点的时间间隔(即定时器的周期值),就可以实现电流滞环控制算法的开关周期(频率)的固定控制,算法相对简单,尤其易于数字化实现;
(3)算法中加入了并网逆变器滤波电感的在线估算算法,消除了逆变器参数变化对控制方法的影响,控制精度较高,对参数变化具有较强的鲁棒性。
本发明用于对并网逆变器中的并网电流滞环控制算法中的开关周期进行固定控制。
附图说明
图1是本发明所述用于并网电流滞环控制算法的开关周期固定控制方法的流程框图;
图2是单相并网逆变器的原理结构图;
图3是本发明所述并网电流滞环控制算法的工作原理示意图;
图4是并网电流滞环控制算法的开关周期随电网电压相位角的分布曲线图;
图5是采用固定采样周期的并网电流滞环控制算法的仿真波形图;
图6是图5中并网电流的谐波分布仿真波形图;
图7是包含本发明所述开关周期固定控制方法的单相并网逆变器的工作原理示意图;
图8是采用本发明的并网电流滞环控制算法的仿真波形图;
图9是图8中并网电流的谐波分布仿真波形图。
具体实施方式
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述用于并网电流滞环控制算法的开关周期固定控制方法,该方法的具体过程为:
步骤一、在定时器达到周期值时,电网电压采样模块采集电网电压的瞬时值e(k),k表示定时器的周期序号,通过锁相环模块计算电网电压的角频率ω和相位角θ;
步骤二、计算电网电压相位角θ的正弦值,然后获取电网电压的幅值Em(k);
步骤三、对步骤二中获得的Em(k)进行低通滤波,所获得的电网电压幅值的滤波结果为:
E m ( k ) ‾ = a E m ( k ) + ( a - 1 ) E m ( k - 1 ) ‾ - - - ( 2 ) ,
其中为上一个采样周期的电网电压幅值的滤波结果,a为小于1的常数;
步骤四、通过并网电流采样模块采集并网电流的瞬时值i(k),获取并网逆变器的滤波电感估算值Lest(k);
步骤五、对步骤四中得到的滤波电感估算值Lest(k)进行低通滤波,所获得的滤波电感估算值的滤波结果为:
L est ( k ) ‾ = b L est ( k ) + ( b - 1 ) L est ( k - 1 ) ‾ - - - ( 4 ) ,
其中为上一个采样周期的滤波电感估算值的滤波结果,b为小于1的常数;
步骤六、利用公式(5)获取定时器的新的周期值TC(k+1),以实现开关周期和频率的固定控制:
其中是并网电流幅值的给定值,TSDER是设定的所述的电流滞环控制算法的开关周期值,Vdc表示并网逆变器的直流电压,为设定值,保持不变。
具体实施方式二:下面结合图1说明本实施方式,本实施方式对实施方式一作进一步说明,步骤二所述获取电网电压的幅值Em(k)的具体方法为:根据公式(1)求取
E m ( k ) = e ( k ) sin ( θ ) - - - ( 1 ) .
具体实施方式三:下面结合图1说明本实施方式,本实施方式对实施方式一作进一步说明,步骤四所述获取并网逆变器的滤波电感估算值Lest(k)的具体方法为:通过公式(3)获取
其中TC(k)是上一个采样周期计算得到的定时器的周期值,e(k-1)和i(k-1)分别是上一个采样周期采集的电网电压瞬时值和并网电流瞬时值。
具体实施方式四:下面结合图2-图7说明本实施方式,本实施方式对实施方式一作进一步说明,本发明所述的并网电流滞环控制算法的工作原理为:
单相并网逆变器的并网电流滞环控制方法原理为:
采用电流滞环控制的单相并网逆变器的原理结构图如图2所示,采用全桥结构。图3给出了本发明所述的电流滞环控制算法的基本控制原理。其基本思想是,取一个采样周期TC,在每一个采样时刻到来时,采集并网电流的实际瞬时值i(k)。设置输入信号并网电流幅值的给定值Im *,采集电网电压的瞬时值e,由电网电压的瞬时值e通过锁相环模块获取电网电压的角频率ω和电网电压的当前相位角θ,在并网电流给定瞬时值计算模块中计算并网电流给定瞬时值,其原理为,并网电流的给定瞬时值i*(k)为i*(k)=Im **sin(θ),将i*(k)和i(k)相比较,比较结果直接作为并网逆变器的各个功率开关器件的控制信号,二者的比较逻辑为
由上述原理可知,该算法以采样周期作为控制信号的最小时基,由此限制了最小开关周期不会小于采样周期的一半。如果根据开关器件的最大工作频率来选取适当的采样周期,就可以使开关器件工作在可控的开关周期。另外,由于在每一个采样点只进行逻辑比较,而不用进行复杂的数学运算,大大减小了处理器的负担,进而可以和高性能系统控制策略相融合。
根据所述的并网电流滞环控制算法的原理可以获得开关周期TS(k)随电网电压相位角θ的分布情况
式中Vdc为并网逆变器的直流输入电压,Em为电网电压幅值,L为并网逆变器的滤波电感,根据公式(7)绘制在采样周期不变时的电流滞环控制方法的开关周期随电网电压相位角的分布曲线如图4所示。由图4可知,在采样周期保持不变时,在电网电压的整个周期内,开关周期为近似正弦变化。
图5和图6给出了采用上述方法的并网电流的仿真波形和并网电流的谐波分布波形,由图可知,采用上述方法可以实现并网电流的瞬时波形控制和相角控制,使其波形为近似正弦,相角和电网电压近似成180度,功率因数约等于1。但是从图5和图6同样能看出并网电流的谐波成份分布较广,难以进行滤波电感值的设计,同时也造成并网逆变器的开关损耗增加等问题。
本发明的工作原理为:
本发明提出一种通过实时改变采样周期值来使开关周期恒定的方法。将式(7)变形得
式中TSDER为设定的期望开关周期值。对于任意设定的开关周期,如果按照式(8)实时改变采样周期,则能够保证开关周期固定。由上式可知,若实时估算下一个采样周期的大小,需要知道直流电压,并网电流幅值,电网频率,电网电压幅值,以及滤波电感的大小。直流电压为设计值,认为保持不变。并网电流幅值为外部设定值。电网频率通过锁相环模块获得,对于电网电压幅值,在每个采样点,采集电网电压瞬时值e(k),利用公式(9)即可获得电网电压的幅值。
E m ( k ) = e ( k ) sin ( θ ) - - - ( 9 )
为提高电网幅值的计算精度,对每个采样周期的计算结果进行低通滤波,低通滤波器的表达式为
E m ( k ) ‾ = a E m ( k ) + ( a - 1 ) E m ( k - 1 ) ‾ - - - ( 10 )
其中为上一个采样周期的电网电压幅值的滤波结果,a为小于1的常数。
对于滤波电感值,在实际系统中,由于电感温升的变化,电流幅值的变化以及电感饱和等因素造成电感值发生变化,如果公式中使用不变的电感值,将造成开关周期波动,直接影响了系统的控制效果。为此本发明引入滤波电感的实时估算方法。其基本原理是根据如下公式获得滤波电感的估算值
其中,i(tk)和i(tk-1)分别是第k和第k-1个采样点的并网电流的采样值,e(tk)和e(tk-1)是第k个采样点和第k-1个采样点的电网电压瞬时值,TC(k)是上一个采样周期计算得到的本次采样周期值。
由上式可知,在每一个开关周期内都可以获得电感的在线估算值,考虑到电感的变化相对于开关周期是较慢的,因此采用低通滤波器对实时获得电感值进行低通滤波。滤波电感估算值的滤波结果为
L est ( k ) ‾ = b L est ( k ) + ( b - 1 ) L est ( k - 1 ) ‾ - - - ( 7 )
其中为上一个采样周期的滤波电感估算值的滤波结果,b为小于1的常数。
由此得到如图7所示的加入开关周期固定控制方法的并网逆变器控制结构图。
本发明所述的用于并网电流滞环控制算法的开关周期固定控制方法中所涉及的锁相环模块采用现有方案即可,例如基于电网电压瞬时值的直接锁相方法,基于虚拟同步坐标变换的方法以及基于瞬时功率的锁相方法等。
图8和图9给出了采用本发明的并网逆变器的仿真波形。为了对比电网侧电压电流,下面的仿真波形中均将电网电压缩小了15倍。期望开关周期为100微秒。由图8和图9可知,并网电流波形具有较好的正弦性,和电网电压近似反相,采样周期为近似正弦变化,电流谐波的峰值分布在10kHz及其倍数频率附近,实现了开关周期的固定,而且相比图5和图6的情况,THD有所减小。
本发明利用原有电流滞环控制算法中已经采集到的信息量,无需额外增加检测元件,只需要在软件中实时计算下一个采样点的时间间隔(即定时器的周期值),就可以实现电流滞环控制算法的开关周期(频率)的固定控制,算法相对简单,尤其易于数字化实现,算法中加入了并网逆变器滤波电感的在线估算算法,消除了逆变器参数变化对控制方法的影响,控制精度较高,对参数变化具有较强的鲁棒性。

Claims (2)

1.用于并网电流滞环控制算法的开关周期固定控制方法,其特征在于,该方法的具体过程为:
步骤一、在定时器达到周期值时,电网电压采样模块采集电网电压的瞬时值e(k),k表示定时器的周期序号,通过锁相环模块计算电网电压的角频率ω和相位角θ;
步骤二、计算电网电压相位角θ的正弦值,然后获取电网电压的幅值Em(k);
步骤三、对步骤二中获得的Em(k)进行低通滤波,所获得的电网电压幅值的滤波结果为:
E m ( k ) ‾ = a E m ( k ) + ( a - 1 ) E m ( k - 1 ) ‾ - - - ( 2 ) ,
其中为上一个采样周期的电网电压幅值的滤波结果,a为小于1的常数;
步骤四、通过并网电流采样模块采集并网电流的瞬时值i(k),获取并网逆变器的滤波电感估算值Lest(k),
L est ( k ) = T C ( k ) · [ V dc + | e ( k ) + e ( k - 1 ) | 2 ] | i ( k ) - i ( k - 1 ) - - - ( 3 ) ,
其中TC(k)是上一个采样周期计算得到的定时器的周期值,e(k-1)和i(k-1)分别是上一个采样周期采集的电网电压瞬时值和并网电流瞬时值,Vdc表示并网逆变器的直流电压,为设定值,保持不变;
步骤五、对步骤四中得到的滤波电感估算值Lest(k)进行低通滤波,所获得的滤波电感估算值的滤波结果为:
L est ( k ) ‾ = b L est ( k ) + ( b - 1 ) L est ( k - 1 ) ‾ - - - ( 4 ) ,
其中为上一个采样周期的滤波电感估算值的滤波结果,b为小于1的常数;
步骤六、利用公式(5)获取定时器的新的周期值TC(k+1),以实现开关周期和频率的固定控制:
其中是并网电流幅值的给定值,TSDER是设定的所述的电流滞环控制算法的开关周期值,Vdc表示并网逆变器的直流电压,为设定值,保持不变。
2.根据权利要求1所述用于并网电流滞环控制算法的开关周期固定控制方法,其特征在于,步骤二所述获取电网电压的幅值Em(k)的具体方法为:根据公式(1)求取
E m ( k ) = e ( k ) sin ( θ ) - - - ( 1 ) .
CN201310533135.XA 2013-10-31 2013-10-31 用于并网电流滞环控制算法的开关周期固定控制方法 Expired - Fee Related CN103532170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310533135.XA CN103532170B (zh) 2013-10-31 2013-10-31 用于并网电流滞环控制算法的开关周期固定控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310533135.XA CN103532170B (zh) 2013-10-31 2013-10-31 用于并网电流滞环控制算法的开关周期固定控制方法

Publications (2)

Publication Number Publication Date
CN103532170A CN103532170A (zh) 2014-01-22
CN103532170B true CN103532170B (zh) 2015-05-20

Family

ID=49933968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310533135.XA Expired - Fee Related CN103532170B (zh) 2013-10-31 2013-10-31 用于并网电流滞环控制算法的开关周期固定控制方法

Country Status (1)

Country Link
CN (1) CN103532170B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105846697B (zh) * 2016-05-05 2018-09-21 苏州汇川技术有限公司 一种低开关频率下pwm整流控制方法以及系统
CN105929720B (zh) * 2016-06-17 2017-06-30 山东理工大学 一种电流跟踪控制方法及装置
CN105955033B (zh) * 2016-07-01 2019-01-25 天津科技大学 一种光伏lcl型并网逆变器的控制方法
CN110098635B (zh) 2019-04-17 2022-06-28 华为数字能源技术有限公司 一种光伏逆变器以及相应开关频率控制的方法
CN111157791A (zh) * 2020-01-03 2020-05-15 北京科诺伟业科技股份有限公司 一种快速开关的峰谷值检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6894900A (en) * 1999-08-06 2001-03-05 Chongming Qiao Unified constant-frequency integration control of three-phase power factor corrected rectifiers, active power filters, and grid-connected inverters
US8824174B2 (en) * 2007-02-22 2014-09-02 Virginia Tech Intellectual Properties, Inc. Control system and method for a universal power conditioning system
CN103151780B (zh) * 2013-03-04 2014-10-29 东南大学 一种三相三线制sapf的定时变环宽电流控制的方法

Also Published As

Publication number Publication date
CN103532170A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
Kazmierkowski et al. DSP-based control of grid-connected power converters operating under grid distortions
CN103532170B (zh) 用于并网电流滞环控制算法的开关周期固定控制方法
CN101710797B (zh) Z源型并网逆变器的电流预测无差拍控制方法及其控制装置
CN102447268A (zh) 一种基于功率前馈的鲁棒双环光伏并网控制方法
CN103904922A (zh) 一种基于虚拟磁链定向用于电压型整流器的控制方法
CN103684031A (zh) 一种pwm整流器电流滞环控制数字实现系统
CN103472731A (zh) 一种微电网小信号稳定性分析并参数协调整定的方法
CN105071677A (zh) 用于两电平三相并网逆变器的电流预测控制方法
CN103326611A (zh) 一种三相电压源型pwm变流器的预测直接功率控制方法
CN109787491A (zh) 基于虚拟磁链的三相Vienna整流器预测直接功率控制方法
CN104852566A (zh) 基于模型预测的h桥级联型statcom控制系统
CN104158222A (zh) 一种带电压补偿的并网逆变器直接功率控制方法
CN104821601A (zh) 一种三相光伏并网逆变器控制装置
CN103401243A (zh) 一种指定次谐波补偿apf及其谐波检测和控制方法
CN104393605B (zh) 晶闸管投切滤波器的无功连续补偿控制方法
CN104143837B (zh) 具有参数自适应特性的逆变器无交流电压传感器控制方法
CN103023464B (zh) 一种数字化三角波比较法
CN205004756U (zh) 一种三相光伏并网逆变器控制装置
CN110297446B (zh) 一种非理想电网条件下多矢量快速模型预测控制方法
CN104065091B (zh) 具有完全apf功能的静止无功发生器
CN107040146B (zh) 级联h桥多电平变流器中各单元瞬时功率计算方法
CN103532128B (zh) 直流微电网中光伏发电系统的比例积分准谐振控制方法
CN203690925U (zh) 一种基于线性自抗扰的statcom 控制装置
CN105356772A (zh) 基于改进型模型预测控制的三相pwm整流的控制方法
Zhou et al. Hybrid prediction-based deadbeat control for a high-performance shunt active power filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150520

Termination date: 20151031

EXPY Termination of patent right or utility model