CN103488832A - 一种复杂曲面零件破损区域的几何修复方法 - Google Patents

一种复杂曲面零件破损区域的几何修复方法 Download PDF

Info

Publication number
CN103488832A
CN103488832A CN201310435159.1A CN201310435159A CN103488832A CN 103488832 A CN103488832 A CN 103488832A CN 201310435159 A CN201310435159 A CN 201310435159A CN 103488832 A CN103488832 A CN 103488832A
Authority
CN
China
Prior art keywords
template curve
curve
damaged
point
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310435159.1A
Other languages
English (en)
Other versions
CN103488832B (zh
Inventor
孙玉文
玉荣
贾振元
郭东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201310435159.1A priority Critical patent/CN103488832B/zh
Publication of CN103488832A publication Critical patent/CN103488832A/zh
Application granted granted Critical
Publication of CN103488832B publication Critical patent/CN103488832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明一种复杂曲面零件破损区域的几何修复方法,属于计算机辅助设计与制造领域,涉及对零件损伤的复杂几何曲面修复方法。几何修复方法首先通过建立复杂曲面破损零件的实测截面数据与其名义几何模板曲线之间的关系,然后利用交替迭代精配准和自由变形的优化方法,即轮换变量法计算实际测量点到模板曲线的最近点和平移、旋转、变形变换矩阵的求解,逐步减小模板曲线和破损零件实测数据之间的几何偏差,使设计模板曲线与测量点最大限度地贴合,从而重建缺损的截面轮廓曲线,最后对截面轮廓进行蒙皮操作生成复杂零件的曲面,有效恢复了破损区域几何形状。几何修复方法解决了复杂曲面破损零件三维测量数据与原CAD模型偏差大的问题,保证几何修复的精确性和实用性。

Description

一种复杂曲面零件破损区域的几何修复方法
技术领域
本发明属于计算机辅助设计与制造领域,涉及对零件损伤的复杂几何曲面修复方法。
背景技术
叶片等复杂曲面零件由于长时间运行在高温、高热、高速等恶劣环境下,容易产生裂纹、腐蚀、断裂等损伤,并且产生不同程度的变形,导致破损复杂零件的实际几何形状与其名义几何模型存在较大偏差,其名义几何模型不再适用于设计、加工等步骤。因此,为了精密修复复杂曲面破损零件,有必要先恢复损伤零件的实际几何形状,也就是对破损区域进行几何修复。复杂曲面破损零件的几何修复是精密修复加工的关键技术,在激光熔覆、磨削加工阶段以破损区域的几何模型生成精确的加工路径,可以达到精密修复的目的,还避免了用传统修复加工方法手工完成堆焊和磨削、抛光等步骤,但由于复杂零件的破损形状复杂,现有的几何修复方法精度和效率都有待提高。
有关复杂曲面零件破损区域的几何修复方法的专利有发明人为X.Q等的美国专利名称为Method of determining shape data,专利号为US7433799B2.该专利提出了通过引用中弧线的概念,对叶尖磨损的叶片进行形状数据恢复的方法。具体过程是选取未使用过的叶片截面轮廓为参考模型,通过确立参考模型中弧线与磨损叶片完整区域截面轮廓中弧线之间的对应关系,推算出叶尖磨损区域数据。该方法是假定参考模型与磨损叶片高度方向上扭曲度相同情况下提出,因此应用范围有局限性。J.M在论文“Worn area modeling for automating the repair of turbine blades”中,通过损伤叶片数字化后得到的点云和名义几何模型获取了破损区域几何形状。具体过程是首先利用破损叶片的三维测量数据与名义几何模型进行匹配,其次以提取后的破损区域边界对名义几何模型进行裁剪,得出表达形式为三角网格的破损区域几何形状。采用该方法提高了修复效率,但只适用于破损复杂零件未发生变形的情况。Yilmaz,O在论文“Repair and OverhaulMethodology for Aeroengine Components”中,提出了利用逆向工程软件的曲面延拓、修补孔洞等功能对表面缺陷有裂纹、凹坑等的破损复杂零件进行模型重构的方法,该方法恢复了损伤零件的几何模型,但是由于有过多的手工操作,这种几何修复方法并不能有效地满足修复质量和精度要求。
发明内容
本发明的目的是发明一种复杂曲面零件破损区域的几何修复方法。这种方法通过模板曲线逐渐贴合缺损截面数据重建了破损区域的二维轮廓,再由截面曲线生成曲面,克服了现有技术的缺陷,避免了现有方法中繁琐的操作过程和过多的人工干预,且不满足修复质量和精度要求的问题。
本发明采用的技术方案是一种复杂曲面零件破损区域的几何修复方法,通过建立复杂曲面破损零件的实测截面数据与其名义几何模板曲线之间的关系,然后利用交替迭代精配准和自由变形的优化方法,即轮换变量法计算实际测量点到模板曲线的最近点和平移、旋转、变形变换矩阵的求解,逐步减小模板曲线和破损零件实测数据之间的几何偏差,然后对截面轮廓进行蒙皮等操作恢复破损区域的实际几何形状。具体步骤如下:
第一步,对缺损截面轮廓的重建:
(1)利用光学扫描仪或三坐标测量仪等测量设备测量出复杂曲面破损零件的截面数据P={pj},(0≤j≤m);
(2)通过对破损零件的名义几何模型切层得出设计模板曲线Ct;模板曲线Ct为NURBS曲线,即:
C t : D ( u ) = Σ i = 0 n d i N i , w ( u ) - - - ( 1 )
式(1)中,di为第i个控制顶点,Ni,w(u)B样条曲线的基函数,w为样条基的次数;
(3)为了让步骤1,2步给定的复杂曲面破损零件实测截面数据P与设计模板曲线Ct偏差最小化,使设计模板曲线与复杂曲面破损零件实测截面数据非刚性配准。非刚性配准中的关键问题是建立截面测量点与模板曲线之间的对应关系,从而求出二者之间的非刚性变换。假设k是迭代次数,Qk=Corresp(Ct k)表示截面测量点P在模板曲线Ct k上对应点的计算,对应点为Qk={qj k},(0≤j≤m);非刚性变换用符号fk=NonRigidTrans(P,Ct k)表示。fk由模板曲线自由变形变换δk和精配准刚性变换Tk组成,即fk:{Tkk},其中精配准刚性变换Tk包括旋转变换和平移变换Tk:{Rk,tk}。根据最小二乘原理,将建立非刚性配准过程中的目标函数,即:
F k = Σ j = 0 m | | p j - q j k | | 2 - - - ( 2 )
(4)通过初始变换测量点和模板曲线,减小测量点和模板曲线之间的坐标差异;采用的初始变换技术为三点旋转平移变换法,由此确定给定截面测量点P和设计模板曲线Ct之间的初始变换T0:{R0,t0};初始变换后的模板曲线为Ct 0=T0Ct;具体过程是测量点P上取不共线的三点pj(j=0,1,2),模板曲线上与之对应的三点为qj(j=0,1,2)。构造以p0为原点的局部坐标系τp=(x(p),y(p),z(p)):
x ( p ) = p 1 - p 0 | p 1 - p 0 | y ( p ) = x ( p ) × p 2 - p 0 | p 2 - p 0 | z ( p ) = x ( p ) × y ( p ) - - - ( 3 )
同样道理,可构造q0为原点的局部坐标系τq=(x(q),y(q),z(q))。最后确定旋和平移的初始变换阵T0:{R0,t0}:
R 0 = [ x ( q ) , y ( q ) , z ( q ) ] T · [ x ( p ) , y ( p ) , z ( p ) ] t 0 = μ p - μ q R 0 - - - ( 4 )
式(4)中μp=(p0+p1+p2)/3,μq=(q0+q1+q2)/3;
(5)置配准精度要求ξ;
(6)k=0,将利用快速迭代法计算确定截面测量数据{pj}在步骤4中初始变换后的设计模板曲线Ct 0上的对应点Q0,计算目标函数 F 0 = Σ j = 0 m | | p j - q j 0 | | 2 ;
(7)k=k+1,利用ICP配准技术计算对应点Qk-1与截面测量数据P精确配准Tk:{Rk,tk};精确配准Tk:{Rk,tk}中旋转平移变换可分为两步计算,1)计算使目标函数取得最小值的旋转变换Rk;2)按tk=CQ k-RkCP计算平移矢量,式中
Figure BDA0000385622890000044
分别表示Qk-1和P的质心。采用奇异值分解法(SVD)求解旋转变换矩阵Rk,首先计算P和Qk-1之间的协方差矩阵Hk
H k = Σ j = 0 m ( Q j k - 1 - C Q k ) ( P j - C P ) T - - - ( 5 )
对Hk进行奇异值分解可得,Hk=UΛVT,X=VUT
旋转矩阵Rk=X;求得旋转矩阵后,进而求解平移矢量tk
(8)将自由变形过程中将采用多点距离约束,计算出模板曲线的控制点变形量δk,使模板曲线进一步向截面测量点贴合。假设在模板曲线上取L个点作为约束点,它们对应的参数分别为uj(j=0,1,Λ,L),模板曲线上约束点的移动量为ΔDj k(j=0,1,Λ,L),于是模版曲线多点约束方程组可写为:
N ( u j ) δ k = Δ D j k ( j = 0,1 , Λ , L ) - - - ( 6 )
通过求N(uj)的广义逆,其矩阵形式为N+保证约束方程最小二乘解,
使模板曲线控制点变形量δk达到最小δk=N+ΔDk
(9)步骤7,8中确定了非刚性配准第一次迭代变换阵fk:{Tkk},变换后的模板曲线为Ct k=fkCt k-1;截面测量点P在变换后的模板曲线Ct k上的对应点为Qk=Corresp(Ct k);
(10)计算最小二乘目标函数:
Figure BDA0000385622890000052
(11)计算σ=1-Fk/Fk-1,对于给定ξ,如果σ≥ξ,则转至第7步继续迭代,否则迭代终止,得到最佳变换f使模板曲线与缺损截面测量点最大限度地贴合,重建破损零件的截面轮廓。
第二步,由于蒙皮操作将曲面建模问题转化为两步曲线的拟合或插值问题,所以对第一步的截面轮廓进行蒙皮操作生成复杂曲面,从而达到恢复缺损区域几何形状的目的;假设生成的NURBS曲面为:
S ( u , v ) = Σ i = 0 n Σ r = 0 h b i , j N i , w ( u ) N r , w ( v ) - - - ( 7 )
式(7)中Ni,w(u)Nr,w(v)分别为U,V方向上的基函数,w为样条基的次数,通过对第一步生成的一系列截面曲线的控制点逼近而确定曲面控制点bi,j
本发明最佳效果是这种几何修复方法大大简化了现有复杂零件破损区域几何修复过程,保证修复后的区域与周边保持连续性和光滑性。同时,新方法对精密修复中的激光熔敷和磨削或抛光等加工阶段提供了三维数字模型,生成了精确的刀具路径,避免了传统修复加工中手工完成这一缺点。采用该方法,较好地改善了复杂曲面破损零件精密修复,保证了修复精度和修复质量。
附图说明
图1,是复杂曲面破损零件几何修复的流程图。
图2,是基于非刚性配准的缺损截面轮廓重建流程图。
图3,是航空发动机破损叶片,其中,1是叶片未缺损部分,2是叶片破损孔区域。
图4,是破损叶片缺损截面测量数据,其中,1是叶片未缺损部分,2是叶片破损孔区域。
图5,设计模板曲线和破损区域截面轮廓数据非刚性配准不同迭代次数时的位置图;其中,图(a)是设计模板曲线1与破损区域截面轮廓数据2初始变换后的位置图;图(b)是设计模板曲线1与破损区域截面轮廓数据2非刚性配准一次迭代后的位置图;图(c)是设计模板曲线1与破损区域截面轮廓数据2非刚性配准后的最终结果。
图6,是由截面曲线蒙皮操作后生成的完整叶片。
具体实施方案
下面结合附图和技术方案,详细说明本发明的具体实施方案。复杂曲面零件例如航空发动机叶片在恶劣环境下长期运行后容易产生裂纹、孔洞、腐蚀等损伤,并且产生变形;应用刚性配准技术无法使损伤零件的设计模型与实际测量点完全贴合,设计模型也不能继续使用在设计、加工等步骤,针对这一情况,本发明采用基于非刚性配准的复杂曲面破损零件几何修复,如图1中流程图所示,首先初始变换给定的模板曲线与测量点集,再利用交替迭代ICP精配准和自由变形构成的非刚性配准优化策略,建立了设计模版曲线和测量点的解析关系,采取距离约束精确控制模板曲线变形幅值,使设计模板曲线在变形量最小条件下与测量点最大限度地贴合,然后由截面轮廓生成曲面从而达到破损区域几何修复的目的。本发明采用的方法在VC++平台中编码实现。详细步骤如下:
第一步,首先采用非刚性配准截面轮廓缺损数据与模板曲线,对破损航空发动机叶片如图3中2所示的不规则孔洞区域进行缺损截面轮廓几何修复:
(1)利用光学扫描仪或三坐标测量仪等测量设备测量出破损叶片的截面数据,如图4所示。该图中未受损区域的截层数据是完好的,如1所指;受损区域的截层数据是不完整的,如3所指。以下计算过程选图4中2所指的破损区域截层为例,该破损区域截层数据为P={pj},(0≤j≤m);
(2)通过对破损叶片的名义几何模型切层得出设计模板曲线Ct;模板曲线Ct为NURBS曲线,即:
C t : D ( u ) = Σ i = 0 n d i N i , w ( u ) - - - ( 1 )
式中,di为第i个控制顶点,Ni,w(u)B样条曲线的基函数,w为样条基的次数;
(3)为了让步骤1,2步给定的破损叶片实测截面数据P与设计模板曲线Ct偏差最小化,使设计模板曲线与破损叶片实测截面数据非刚性配准。非刚性配准中的关键问题是建立截面测量点与模板曲线之间的对应关系,从而求出二者之间的非刚性变换。假设k是迭代次数,Qk=Corresp(Ct k)表示截面测量点P在模板曲线Ct k上对应点的计算,对应点为Qk={q0 k,q1 k,K,qm k};非刚性变换用符号fk=NonRigidTrans(P,Ct k)表示。fk由模板曲线自由变形变换δk和精配准刚性变换Tk组成,即fk:{Tkk},其中精配准刚性变换Tk包括旋转变换和平移变换Tk:{Rk,tk}。根据最小二乘原理,将建立非刚性配准过程中的目标函数,即:
F k = Σ j = 0 m | | p j - q j k | | 2 - - - ( 2 )
(4)通过初始变换测量点和模板曲线,减小测量点和模板曲线之间的坐标差异;采用的初始变换技术为三点旋转平移变换法,由此确定给定截面测量点P和设计模板曲线Ct之间的初始变换T0:{R0,t0};具体过程是测量点P上取不共线的三点pj(j=0,1,2),模板曲线上与之对应的三点为qj(j=0,1,2)。构造以p0为原点的局部坐标系τp=(x(p),y(p),z(p)):
x ( p ) = p 1 - p 0 | p 1 - p 0 | y ( p ) = x ( p ) × p 2 - p 0 | p 2 - p 0 | z ( p ) = x ( p ) × y ( p ) - - - ( 3 )
同样道理,可构造q0为原点的局部坐标系τq=(x(q),y(q),z(q))。最后确定旋和平移的初始变换阵T0:{R0,t0}:
R 0 = [ x ( q ) , y ( q ) , z ( q ) ] T · [ x ( p ) , y ( p ) , z ( p ) ] t 0 = μ p - μ q R 0 - - - ( 4 )
式中μp=(p0+p1+p2)/3,μq=(q0+q1+q2)/3;
变换后的模板曲线为Ct 0=T0Ct,如图5(a)所示;
(5)设置配准精度要求ξ;
(6)k=0,将利用快速迭代法计算确定截面测量数据{pj}在步骤4中初始变换后的设计模板曲线Ct 0上的对应点Q0,计算目标函数快速迭代法速度快,效率高,一般3~10次就可收敛;
(7)k=k+1,利用ICP配准技术计算对应点Qk-1与截面测量数据P精确配准Tk:{Rk,tk},缩小测量数据与其在模板曲线上对应点之间的最小二乘距离;精确配准Tk:{Rk,tk}中旋转平移变换可分为两步计算,1)计算使目标函数取得最小值的旋转变换Rk;2)按tk=CQ k-RkCP计算平移矢量,式中分别表示点集Qk-1和P的质心。采用奇异值分解法(SVD)求解旋转变换矩阵Rk,首先计算P和Qk-1之间的协方差矩阵Hk
H k = Σ j = 0 m ( Q j k - 1 - C Q k ) ( P j - C P ) T - - - ( 5 )
对Hk进行奇异值分解可得,Hk=UΛVT,X=VUT
计算行列式det(X),如果det(X)=+1,则旋转矩阵Rk=X;如果det(X)=-1,计算失败(通常,此情况发生的可能性很小),求的旋转矩阵后,进而求解平移矢量tk
(8)自由变形过程中将采用多点距离约束,计算出模板曲线的控制点变形量δk,使模板曲线进一步向截面测量点贴合。假设在模板曲线上取L个点作为约束点,它们对应的参数分别为uj(j=0,1,Λ,L),叶片壁厚法向上的移动量为ΔDj k(j=0,1,Λ,L),于是模版曲线多点约束方程组可写为
N ( u j ) δ k = Δ D j k ( j = 0,1 , Λ , L ) - - - ( 6 )
通过求N(uj)的广义逆,其矩阵形式为N+保证约束方程最小二乘解,
使模板曲线控制点变形量δk达到最小δk=N+ΔDk
(9)步骤7,8中确定了非刚性配准第一次迭代变换阵fk:{Tkk},变换后的模板曲线为Ct k=fkCt k-1;截面测量点P在变换后的模板曲线Ct k上的对应点为Qk=Corresp(Ct k);图5(b)所示,一次迭代后模板曲线向截面测量点进一步贴合;
(10)计算最小二乘目标函数:
Figure BDA0000385622890000102
(11)计算σ=1-Fk/Fk-1,对于给定ξ,如果σ≥ξ,则转至第7步继续迭代,否则迭代终止,得到最佳变换f使模板曲线与缺损截面测量点最大限度地贴合,重建破损零件的截面轮廓,如图5(c)所示。
第二步,由于蒙皮操作将曲面建模问题转化为两步曲线的拟合或插值问题,所以对第一步的截面轮廓进行蒙皮操作生成复杂曲面,从而达到恢复缺损区域几何形状的目的;假设生成的NURBS曲面为:
S ( u , v ) = Σ i = 0 n Σ r = 0 h b i , j N i , w ( u ) N r , w ( v ) - - - ( 7 )
式(7)中Ni,w(u)Nr,w(v)分别为U,V方向上的基函数,w为样条基的次数,通过对第一步生成的一系列截面曲线的控制点逼近而确定曲面控制点bi,j。生成的完整叶片模型如图6所示。
实施例说明本发明能够有效恢复复杂曲面零件的破损区域几何形状,复杂零件在恶劣环境下工作产生损伤并变形,从而名义几何模型不能用于设计、制造等环节,就可用本发明的方法对破损零件进行几何修复,保证了修复后的区域与周边保持连续性和光滑性。

Claims (1)

1.一种复杂曲面零件破损区域的几何修复方法,其特征是,几何修复方法,首先通过建立复杂曲面破损零件的实测截面数据与其名义几何模板曲线之间的关系,然后利用交替迭代精配准和自由变形的优化方法,即轮换变量法计算实际测量点到模板曲线的最近点和平移、旋转、变形变换矩阵的求解,采取距离约束精确控制模板曲线变形幅值,逐步减小模板曲线和破损零件实测数据之间的几何偏差,使设计模板曲线与测量点最大限度地贴合,从而重建缺损的截面轮廓曲线,最后对截面轮廓进行蒙皮操作生成复杂零件的曲面,有效恢复了破损区域几何形状,具体步骤如下:
第一步,对缺损截面轮廓的重建:
(1)利用光学扫描仪或三坐标测量仪等测量设备测量出复杂曲面破损零件的截面数据P={pj},(0≤j≤m);
(2)通过对破损零件的名义几何模型切层得出设计模板曲线Ct;模板曲线Ct为NURBS曲线,即:
C t : D ( u ) = Σ i = 0 n d i N i , w ( u ) - - - ( 1 )
式(1)中,di为第i个控制顶点,Ni,w(u)B样条曲线的基函数,w为样条基的次数;
(3)为了让步骤1,2步给定的复杂曲面破损零件实测截面数据P与设计模板曲线Ct偏差最小化,使设计模板曲线与复杂曲面破损零件实测截面数据非刚性配准。非刚性配准中的关键问题是建立截面测量点与模板曲线之间的对应关系,从而求出二者之间的非刚性变换。假设k是迭代次数,Qk=Corresp(Ct k)表示截面测量点P在模板曲线Ct k上对应点的计算,对应点为Qk={qj k},(0≤j≤m);非刚性变换用符号fk=NonRigidTrans(P,Ct k)表示。fk由模板曲线自由变形变换δk和精配准刚性变换Tk组成,即fk:{Tkk},其中精配准刚性变换Tk包括旋转变换和平移变换Tk:{Rk,tk}。根据最小二乘原理,将建立非刚性配准过程中的目标函数,即:
F k = Σ j = 0 m | | p j - q j k | | 2 - - - ( 2 )
(4)通过初始变换测量点和模板曲线,减小测量点和模板曲线之间的坐标差异;采用的初始变换技术为三点旋转平移变换法,由此确定给定截面测量点P和设计模板曲线Ct之间的初始变换T0:{R0,t0};初始变换后的模板曲线为Ct 0=T0Ct;具体过程是测量点P上取不共线的三点pj(j=0,1,2),模板曲线上与之对应的三点为qj(j=0,1,2)。构造以p0为原点的局部坐标系τp=(x(p),y(p),z(p)):
x ( p ) = p 1 - p 0 | p 1 - p 0 | y ( p ) = x ( p ) × p 2 - p 0 | p 2 - p 0 | z ( p ) = x ( p ) × y ( p ) - - - ( 3 )
同样道理,可构造q0为原点的局部坐标系τq=(x(q),y(q),z(q))。最后确定旋和平移的初始变换阵T0:{R0,t0}:
R 0 = [ x ( q ) , y ( q ) , z ( q ) ] T · [ x ( p ) , y ( p ) , z ( p ) ] t 0 = μ p - μ q R 0 - - - ( 4 )
式(4)中μp=(p0+p1+p2)/3,μq=(q0+q1+q2)/3;
(5)置配准精度要求ξ;
(6)k=0,将利用快速迭代法计算确定截面测量数据{pj}在步骤4中初始变换后的设计模板曲线Ct 0上的对应点Q0,计算目标函数
Figure FDA0000385622880000024
(7)k=k+1,利用ICP配准技术计算对应点Qk-1与截面测量数据P精确配准Tk:{Rk,tk};精确配准Tk:{Rk,tk}中旋转平移变换可分为两步计算,1)计算使目标函数取得最小值的旋转变换Rk;2)按tk=CQ k-RkCP计算平移矢量,式中
Figure FDA0000385622880000031
分别表示Qk-1和P的质心。采用奇异值分解法(SVD)求解旋转变换矩阵Rk,首先计算P和Qk-1之间的协方差矩阵Hk
H k = Σ j = 0 m ( Q j k - 1 - C Q k ) ( P j - C P ) T - - - ( 5 )
对Hk进行奇异值分解可得,Hk=UΛVT,X=VUT
旋转矩阵Rk=X;求得旋转矩阵后,进而求解平移矢量tk
(8)将自由变形过程中将采用多点距离约束,计算出模板曲线的控制点变形量δk,使模板曲线进一步向截面测量点贴合。假设在模板曲线上取L个点作为约束点,它们对应的参数分别为uj(j=0,1,Λ,L),模板曲线上约束点的移动量为ΔDj k(j=0,1,Λ,L),于是模版曲线多点约束方程组可写为:
N ( u j ) δ k = Δ D j k ( j = 0,1 , Λ , L ) - - - ( 6 )
通过求N(uj)的广义逆,其矩阵形式为N+保证约束方程最小二乘解,
使模板曲线控制点变形量δk达到最小δk=N+ΔDk
(9)步骤7,8中确定了非刚性配准第一次迭代变换阵fk:{Tkk},变换后的模板曲线为Ct k=fkCt k-1;截面测量点P在变换后的模板曲线Ct k上的对应点为Qk=Corresp(Ct k);
(10)计算最小二乘目标函数:
Figure FDA0000385622880000034
(11)计算σ=1-Fk/Fk-1,对于给定ξ,如果σ≥ξ,则转至第7步继续迭代,否则迭代终止,得到最佳变换f使模板曲线与缺损截面测量点最大限度地贴合,重建破损零件的截面轮廓;
第二步,由于蒙皮操作将曲面建模问题转化为两步曲线的拟合或插值问题,所以对第一步的截面轮廓进行蒙皮操作生成复杂曲面,从而达到恢复缺损区域几何形状的目的;假设生成的NURBS曲面为:
S ( u , v ) = Σ i = 0 n Σ r = 0 h b i , j N i , w ( u ) N r , w ( v ) - - - ( 7 )
式(7)中Ni,w(u)Nr,w(v)分别为U,V方向上的基函数,w为样条基的次数,通过对第一步生成的一系列截面曲线的控制点逼近确定曲面控制点bi,j
CN201310435159.1A 2013-09-23 2013-09-23 一种复杂曲面零件破损区域的几何修复方法 Active CN103488832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310435159.1A CN103488832B (zh) 2013-09-23 2013-09-23 一种复杂曲面零件破损区域的几何修复方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310435159.1A CN103488832B (zh) 2013-09-23 2013-09-23 一种复杂曲面零件破损区域的几何修复方法

Publications (2)

Publication Number Publication Date
CN103488832A true CN103488832A (zh) 2014-01-01
CN103488832B CN103488832B (zh) 2016-07-06

Family

ID=49829052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310435159.1A Active CN103488832B (zh) 2013-09-23 2013-09-23 一种复杂曲面零件破损区域的几何修复方法

Country Status (1)

Country Link
CN (1) CN103488832B (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934727A (zh) * 2014-04-09 2014-07-23 大连理工大学 一种等角螺旋线分区变参数控精密加工方法
CN104152893A (zh) * 2014-06-13 2014-11-19 韶关学院 粉末热锻浮动油封环耐磨有孔激光熔覆涂层的形成方法
CN104573191A (zh) * 2014-12-18 2015-04-29 西安工业大学 一种战时损伤武器装备零件快速再制造造型方法
CN105447910A (zh) * 2015-12-31 2016-03-30 河北工业大学 一种航空发动机压气机叶片叶尖缺损部位三维重建方法
CN106354098A (zh) * 2016-11-04 2017-01-25 大连理工大学 一种nurbs组合曲面上刀具加工轨迹生成方法
CN106709996A (zh) * 2017-01-16 2017-05-24 南开大学 一种光滑物体缺损部位轮廓模型的三维重建方法
CN106934822A (zh) * 2017-03-13 2017-07-07 浙江优迈德智能装备有限公司 一种基于线性混合形变的汽车工件非刚体三维点云配准方法
CN108053477A (zh) * 2017-12-20 2018-05-18 北京华航无线电测量研究所 一种管道内变形的数值处理方法
CN108274187A (zh) * 2018-04-27 2018-07-13 苏州艾弗伦智能技术有限公司 一种复杂曲面零件缺陷修复系统及修复方法
CN108544181A (zh) * 2018-03-27 2018-09-18 西北工业大学 一种整体叶盘损伤叶片的修复方法
CN110033454A (zh) * 2019-04-19 2019-07-19 河北大学 Ct图像中大面积粘连肺边界组织的肺肿瘤的分割方法
CN110053787A (zh) * 2019-05-10 2019-07-26 中国人民解放军国防科技大学 基于智能蒙皮的复杂曲面高动态形变测量系统及测量方法
CN110103071A (zh) * 2019-05-28 2019-08-09 内蒙古大学 一种变形复杂零件的数字化寻位加工方法
CN110378941A (zh) * 2019-07-16 2019-10-25 北京大学口腔医学院 一种获取面中部缺损目标参照数据的刚性配准方法
CN110442917A (zh) * 2019-07-09 2019-11-12 武汉工程大学 基于点云的参数化模型重建方法
CN110851967A (zh) * 2019-10-31 2020-02-28 山西大学 非完整测量数据下的空心涡轮叶片精铸蜡型模型重构方法
CN111259557A (zh) * 2020-01-21 2020-06-09 山西大学 基于陶芯定位补偿的空心涡轮叶片壁厚偏差逆向调控方法
CN111806720A (zh) * 2020-06-24 2020-10-23 成都飞机工业(集团)有限责任公司 一种基于翼身对接实测数据的整流蒙皮构造方法
CN111922484A (zh) * 2020-06-30 2020-11-13 武汉理工大学 热锻模具型腔的复杂曲面随形梯度增材再制造方法
CN112132161A (zh) * 2020-09-07 2020-12-25 桂林电子科技大学 磨损零件的修复方法、设备和计算机可读存储介质
CN113155957A (zh) * 2021-03-03 2021-07-23 广东工业大学 一种针对大变形零件内部结构曲面的超声波导向方法
CN113566737A (zh) * 2021-07-28 2021-10-29 赤湾集装箱码头有限公司 岸边起重机船体离梆监测方法及其岸边起重机
CN114004940A (zh) * 2021-12-31 2022-02-01 北京大学口腔医学院 面部缺损参照数据的非刚性生成方法、装置及设备
CN115146405A (zh) * 2022-06-24 2022-10-04 南京航空航天大学 一种基于非刚性配准变形的薄壁零件模型重构方法
CN117494534A (zh) * 2024-01-03 2024-02-02 南京航空航天大学 一种基于点云与有限元分析的飞机蒙皮修配方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135656A1 (fr) * 2007-03-20 2008-11-13 Snecma Procédé de réparation de pièces usinées telles que des aubes de turbomachines ou des pales de dam
CN101692257A (zh) * 2009-09-25 2010-04-07 华东理工大学 一种复杂曲面的配准方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135656A1 (fr) * 2007-03-20 2008-11-13 Snecma Procédé de réparation de pièces usinées telles que des aubes de turbomachines ou des pales de dam
CN101692257A (zh) * 2009-09-25 2010-04-07 华东理工大学 一种复杂曲面的配准方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
玉荣等: "基于变形模板的复杂截面轮廓重构方法研究", 《大连理工大学学报》 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934727B (zh) * 2014-04-09 2016-04-06 大连理工大学 一种等角螺旋线分区变参数控精密加工方法
CN103934727A (zh) * 2014-04-09 2014-07-23 大连理工大学 一种等角螺旋线分区变参数控精密加工方法
CN104152893A (zh) * 2014-06-13 2014-11-19 韶关学院 粉末热锻浮动油封环耐磨有孔激光熔覆涂层的形成方法
CN104573191A (zh) * 2014-12-18 2015-04-29 西安工业大学 一种战时损伤武器装备零件快速再制造造型方法
CN105447910B (zh) * 2015-12-31 2018-06-15 河北工业大学 一种航空发动机压气机叶片叶尖缺损部位三维重建方法
CN105447910A (zh) * 2015-12-31 2016-03-30 河北工业大学 一种航空发动机压气机叶片叶尖缺损部位三维重建方法
CN106354098A (zh) * 2016-11-04 2017-01-25 大连理工大学 一种nurbs组合曲面上刀具加工轨迹生成方法
CN106354098B (zh) * 2016-11-04 2018-09-04 大连理工大学 一种nurbs组合曲面上刀具加工轨迹生成方法
CN106709996A (zh) * 2017-01-16 2017-05-24 南开大学 一种光滑物体缺损部位轮廓模型的三维重建方法
CN106934822A (zh) * 2017-03-13 2017-07-07 浙江优迈德智能装备有限公司 一种基于线性混合形变的汽车工件非刚体三维点云配准方法
CN106934822B (zh) * 2017-03-13 2019-09-13 浙江优迈德智能装备有限公司 基于线性混合形变的汽车工件非刚体三维点云配准方法
CN108053477A (zh) * 2017-12-20 2018-05-18 北京华航无线电测量研究所 一种管道内变形的数值处理方法
CN108053477B (zh) * 2017-12-20 2021-07-02 北京华航无线电测量研究所 一种管道内变形的数值处理方法
CN108544181A (zh) * 2018-03-27 2018-09-18 西北工业大学 一种整体叶盘损伤叶片的修复方法
CN108274187A (zh) * 2018-04-27 2018-07-13 苏州艾弗伦智能技术有限公司 一种复杂曲面零件缺陷修复系统及修复方法
CN110033454A (zh) * 2019-04-19 2019-07-19 河北大学 Ct图像中大面积粘连肺边界组织的肺肿瘤的分割方法
CN110033454B (zh) * 2019-04-19 2021-01-05 河北大学 Ct图像中大面积粘连肺边界组织的肺肿瘤的分割方法
CN110053787A (zh) * 2019-05-10 2019-07-26 中国人民解放军国防科技大学 基于智能蒙皮的复杂曲面高动态形变测量系统及测量方法
CN110053787B (zh) * 2019-05-10 2020-08-14 中国人民解放军国防科技大学 基于智能蒙皮的复杂曲面高动态形变测量系统及测量方法
CN110103071A (zh) * 2019-05-28 2019-08-09 内蒙古大学 一种变形复杂零件的数字化寻位加工方法
CN110442917A (zh) * 2019-07-09 2019-11-12 武汉工程大学 基于点云的参数化模型重建方法
CN110378941A (zh) * 2019-07-16 2019-10-25 北京大学口腔医学院 一种获取面中部缺损目标参照数据的刚性配准方法
CN110851967A (zh) * 2019-10-31 2020-02-28 山西大学 非完整测量数据下的空心涡轮叶片精铸蜡型模型重构方法
CN111259557B (zh) * 2020-01-21 2022-05-20 山西大学 基于陶芯定位补偿的空心涡轮叶片壁厚偏差逆向调控方法
CN111259557A (zh) * 2020-01-21 2020-06-09 山西大学 基于陶芯定位补偿的空心涡轮叶片壁厚偏差逆向调控方法
CN111806720A (zh) * 2020-06-24 2020-10-23 成都飞机工业(集团)有限责任公司 一种基于翼身对接实测数据的整流蒙皮构造方法
CN111806720B (zh) * 2020-06-24 2021-12-07 成都飞机工业(集团)有限责任公司 一种基于翼身对接实测数据的整流蒙皮构造方法
CN111922484A (zh) * 2020-06-30 2020-11-13 武汉理工大学 热锻模具型腔的复杂曲面随形梯度增材再制造方法
CN111922484B (zh) * 2020-06-30 2021-09-21 武汉理工大学 热锻模具型腔的复杂曲面随形梯度增材再制造方法
CN112132161A (zh) * 2020-09-07 2020-12-25 桂林电子科技大学 磨损零件的修复方法、设备和计算机可读存储介质
CN113155957A (zh) * 2021-03-03 2021-07-23 广东工业大学 一种针对大变形零件内部结构曲面的超声波导向方法
CN113566737A (zh) * 2021-07-28 2021-10-29 赤湾集装箱码头有限公司 岸边起重机船体离梆监测方法及其岸边起重机
CN114004940A (zh) * 2021-12-31 2022-02-01 北京大学口腔医学院 面部缺损参照数据的非刚性生成方法、装置及设备
CN115146405A (zh) * 2022-06-24 2022-10-04 南京航空航天大学 一种基于非刚性配准变形的薄壁零件模型重构方法
CN115146405B (zh) * 2022-06-24 2024-02-20 南京航空航天大学 一种基于非刚性配准变形的薄壁零件模型重构方法
CN117494534A (zh) * 2024-01-03 2024-02-02 南京航空航天大学 一种基于点云与有限元分析的飞机蒙皮修配方法
CN117494534B (zh) * 2024-01-03 2024-03-22 南京航空航天大学 一种基于点云与有限元分析的飞机蒙皮修配方法

Also Published As

Publication number Publication date
CN103488832B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN103488832A (zh) 一种复杂曲面零件破损区域的几何修复方法
Li et al. An integrated approach of reverse engineering aided remanufacturing process for worn components
JP5087794B2 (ja) ダムブレードのターボ機械翼などの加工片を修復する方法
Gao et al. Adaptive restoration of complex geometry parts through reverse engineering application
CN105739440A (zh) 一种宽弦空心风扇叶片的自适应加工方法
CN103093065A (zh) 一种航空发动机叶片叶尖缺失部位三维模型重建方法
CN102735175B (zh) 一种基于移动最小二乘法确定叶片最大厚度的方法
CN104697462A (zh) 一种基于中轴线的航空叶片型面特征参数提取方法
CN104484507A (zh) 一种基于逆向工程的零部件再制造方法
CN108274187A (zh) 一种复杂曲面零件缺陷修复系统及修复方法
CN108145393A (zh) 一种航空发动机压气机叶片及其加工方法
CN108544181B (zh) 一种整体叶盘损伤叶片的修复方法
CN110103071B (zh) 一种变形复杂零件的数字化寻位加工方法
CN104573191A (zh) 一种战时损伤武器装备零件快速再制造造型方法
CN106994483A (zh) 一种汽车覆盖件拉延模具精确型面加工的方法
Wu et al. Adaptive location of repaired blade for multi-axis milling
CN106202822A (zh) 面向叶片自适应加工的b样条曲面模型重构方法
Li et al. Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface
CN110837715B (zh) 一种基于逆向工程技术的复杂曲面加工误差补偿方法
Praniewicz et al. Adaptive geometry transformation and repair for hybrid manufacturing
CN105107901B (zh) 船舶双向曲率板自动成型加工路径确定及成型效果检测方法
Young et al. An integrated machining approach for a centrifugal impeller
CN106681278B (zh) 五轴侧铣加工过程中刀具与工件瞬时接触轮廓提取方法
Wu et al. A review of geometric reconstruction algorithm and repairing methodologies for gas turbine components
He et al. A failure feature identification method for adaptive remanufacturing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant