CN103460406A - 用于制造太阳能电池的方法 - Google Patents

用于制造太阳能电池的方法 Download PDF

Info

Publication number
CN103460406A
CN103460406A CN2012800166260A CN201280016626A CN103460406A CN 103460406 A CN103460406 A CN 103460406A CN 2012800166260 A CN2012800166260 A CN 2012800166260A CN 201280016626 A CN201280016626 A CN 201280016626A CN 103460406 A CN103460406 A CN 103460406A
Authority
CN
China
Prior art keywords
coating
substrate
doping
layer
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012800166260A
Other languages
English (en)
Other versions
CN103460406B (zh
Inventor
T.伯斯克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Industries Thueringen GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN103460406A publication Critical patent/CN103460406A/zh
Application granted granted Critical
Publication of CN103460406B publication Critical patent/CN103460406B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/061Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being of the point-contact type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

描述了一种用于制造具有由结晶硅构成的衬底(1)的太阳能电池的方法,其中在Si衬底(1)的表面(1a)中,通过该表面(1a)被含P的层(3)的整个面的冷覆盖、接着来自含P的层(3)的P原子的局部激光束(L)掺杂和随后的P原子从掺杂区域出发的热驱入来产生被局部地定义的n掺杂的发射极区域。

Description

用于制造太阳能电池的方法
技术领域
本发明涉及一种用于制造具有由结晶硅构成的衬底的太阳能电池的方法,其中在硅衬底的表面中通过将磷(P)原子从含P的层掺杂/驱入(Eintreiben)到该衬底中来形成被局部地定义的n掺杂的发射极区域。
背景技术
在作为电流产生的替代方法的、光电池的最近几年中爆炸式发展的大规模使用的范围内,基于结晶硅的太阳能电池一如既往具有突出的意义。这首要地由其高效率、但也由被证实的、长的、具有高收益的使用寿命以及由用于其制造的所设立的和高生产率的工艺决定。
尽管如此,与其他的电流产生方法的竞争和资助的国民经济上急需的急剧的减少迫使制造者不断地降低成本。由于成本降低潜力在材料方面受限制,所以寻找用于在太阳能电池的制造过程中以及在形成太阳能模块和太阳能板的后置的步骤中提高效率的可能性。
在具有单晶Si衬底(特别是基于CZ硅)的太阳能电池中,已经设立了具有指状结构的选择性掺杂的发射极,这些发射极特别是通过磷掺杂来形成。
在申请人处研发了用于根据“结构化的”源的方案制造具有选择性的发射极的太阳能电池的过程流(请参见下文;表1A)。在该过程流中,首先以磷玻璃(PSG)覆盖晶片,该磷玻璃随后经由喷墨(注入)印刷以蜡来掩蔽,并且以湿化学法在指间区域中被去除。在去除蜡掩蔽(Wachsmaskierung)后,在氧气环境中进行第二个驱入步骤,通过该驱入步骤,掺杂在指间区域中被深度地驱入,并且同时表面浓度被降低。由于在驱入的时间点没有磷玻璃位于这些区域中,所以相对纯的氧化物生长,该氧化物可以在SiO/SiN堆栈中被用于钝化。
通过结合深度驱入的发射极和好的氧化物钝化,可以实现很低的发射极饱和电流和发射极的好的蓝光灵敏度。这种方法的缺点在于喷墨掩蔽的高的成本。这是由材料消耗(蜡)、和用于去除蜡的分离的湿法步骤的必要性引起的。
根据T. C. Röder、P. Grabitz、S. J. Eisele、J. R. Köhler和J. H. Werner,“0.4% Absolute Efficiency Gain of Industrial Solar Cells by Laser Doped Selective Emitter”,34th Photovoltaic Specialists Conf, edited by:IEEE Publishing Service,Piscataway,NY(2009),替代的方法在于激光掺杂的使用,具有单级的扩散(请参见下文;表1B)。在此通过PSG涂层利用随后的扩散首先制造相对高欧姆的平的扩散。随后借助激光在指状区域中使硅熔化直到几百nm的深度,由此较大数量的磷可以从存在的PSG渗入到衬底中。
这种方法与上述的通过使用喷墨印刷方法的“结构化”源的方案相比明显是成本更低的,因为为了结构化不需要抗蚀剂(Resist)并且仅需高温步骤。但是不利的是,通过单级的扩散只能产生质量较差的发射极。这是由下述原因引起的,即不能实现深的扩散,因为表面必须保持以高掺杂的PSG覆盖。同样该高掺杂的PSG不能被用于钝化,使得该钝化必须以质量较差的SiN进行。进一步的问题在于激光掺杂区域中的晶体缺陷,该晶体缺陷提高在金属化区域中的重组。
两个上面提到的方案在随后的表格式的列表中(表1A和1B)被简短地说明:
表1A:结构化源,利用喷墨方法产生
1   纹理
2   以POCl3覆盖
3   指状区域的印刷
4   PSG蚀刻(HF)
5   注入抗蚀剂的条带
6   发射极的驱入(O2)
7   氧化物蚀刻
8   PECVD氮化物VS
9   印刷
10  燃烧
表1B:在发射极扩散后的激光掺杂
1  纹理
2  浅发射极扩散(POCl3
3  在指状区域中的激光掺杂
4  PSG蚀刻(HF)
5  PECVD氮化物VS
6  燃烧 。
发明内容
利用本发明提出具有权利要求1的特征的方法。本发明的符合目的的改进方案是从属权利要求的主题。
提出的方法包括以含磷的层例如通过POCl3过程整个面地覆盖表面。随后根据选择性发射极的预定的几何配置使P原子从该层局部掺杂到Si衬底中。根据本发明的进一步的部分构想,该掺杂借助以受控制的方式在该层上被引导的激光束来实现。根据本发明的进一步的部分构想,随后P掺杂到该衬底中的驱入以热的方式被实施。在该步骤中,温度特别是处于750°C到1000°C。
在本发明的实施中,发射极区域通过激光束相对于衬底表面的坐标控制特别是作为指状结构被局部地定义。应理解,在此该激光束或该衬底或两者能够被移动,更确切地说,能够利用可以一方面由该层中P浓度和所期望的掺杂轮廓并且另一方面由激光辐射的重要的参数(特别是其平均功率)导出的参数被移动。
根据本发明的方法实施允许在实施中相对高地设置在该层(磷玻璃)中的P浓度,使得通过激光掺杂的步骤能够在相对短的过程时间内实现相对大的掺杂浓度。
在本发明的进一步的实施中,P原子的热驱入的步骤被实施,使得在激光束掺杂的步骤中被局部地定义的掺杂区域侧向地被加宽。
在进一步的实施中,在P原子的热驱入的步骤中在衬底表面上构造厚的氧化物层(特别是具有5 nm到100 nm的厚度)并且使其厚度的至少一部分保留在那里用于表面钝化。在一种构造方案中规定,氧化物层的厚度的一部分被蚀刻掉,并且SiNx层被沉积到剩下的厚度上。
下表以与上述的表1A和1B相似的方式给出重要的过程步骤的简洁的描述。
表1C:利用激光掺杂的结构化源
1  纹理
2  通过POCl3过程以磷硅酸盐玻璃覆盖
3  在指状区域中的激光掺杂
4  PSG蚀刻(HF)
5  发射极的驱入(O2)
6  氧化物蚀刻(可选的)
7  PECVD氮化物VS
8  印刷
9  燃烧 。
附图说明
此外,本发明的优点和目的性借助图1A到1F/b由根据本发明的方法的实施例的下述描述得出,图1A到1F/b涉及在太阳能电池的制造过程的不同步骤中Si衬底的近表面区域的、平面的截面图(细节视图)。
具体实施方式
图1A示出工序,在该工序中在Si太阳能电池衬底1的第一表面1a(该表面稍后在太阳能电池的使用状态下将对应于其正面)上布置含磷的层(磷玻璃)3。根据图1B,在含磷的层3上激光辐射L局部地产生影响,通过该激光辐射产生P掺杂区域5,该P掺杂区域从表面1a延伸进入到衬底的深处。在产生掺杂区域5后,从整个表面1a又去除该磷玻璃3,由此形成在图1C中所示的状态。
随后在(由波状箭头象征性表示的)热处理步骤中优选地在750℃到1000℃的情况下从掺杂区域5出发执行P掺杂到该衬底1中的驱入。在此,厚的(热的)氧化物SiOx生长到表面1a上,该氧化物在这里以数字7标明。该热氧化物可以在进一步的方法实施的第一变形方案中完全被蚀刻掉,并且由用作抗反射层的SiNx层9代替(参看图1F/a)。在第二变形方案中该氧化物层7仅被回蚀刻,使得平面化的剩余氧化物层7′保持存在(参看图1E/b)。随后将相对于第一变形方案更薄的氮化物层9′施加到该剩余氧化物层7′上。另外的变形方案在于,直接将SiNx层沉积到未加工的氧化物层7上(未在图中示出)。
要指出,太阳能电池的制造的其他的主要的方法步骤、如对应于掺杂区域5被布置的接触区域(“接触指”)借助丝网印刷在太阳能电池正面1a上的施加或背面金属化在(图中未示出的)太阳能电池背面上的安置和燃烧在图中未被示出并且在相关的描述中没有进一步被说明。这些步骤以本领域技术人员已知的方式被实施。
此外,本发明的实施并不局限于上述的例子和本发明的上面被强调的方面,而是同样可以实现在专业处理的范围内的大量的改变。

Claims (7)

1.用于制造具有由结晶硅构成的衬底(1)的太阳能电池的方法,其中在Si衬底(1)的表面(1a)中,通过该表面被含P的层的整个面的覆盖、接着来自含P的层(3)的P原子的局部激光束(L)掺杂和随后的P原子从掺杂区域(5)出发的热驱入来产生被局部地定义的n掺杂的发射极区域。
2.根据权利要求1所述的方法,其中所述发射极区域通过激光束(L)相对于衬底表面的坐标控制特别是作为指状结构被局部地定义。
3.根据权利要求1或2所述的方法,其中所述P原子的热驱入的步骤被实施,使得在所述激光束(L)掺杂的步骤中被局部地定义的掺杂区域(5)被扩大。
4.根据上述权利要求之一所述的方法,其中在所述P原子的热驱入的步骤中,特别是具有在5 nm到100 nm的范围内的厚度的氧化物层(7)在衬底表面(1a)上被构造,并且其厚度的至少一部分被保留在那里用于表面钝化。
5.根据权利要求4所述的方法,其中氧化物层(7)的厚度的一部分被蚀刻掉并且SiNx层(9′)被沉积到剩下的厚度上。
6.根据权利要求4所述的方法,其中SiNx层直接被沉积到未加工的氧化物层(7)上。
7.根据权利要求1到3之一所述的方法,其中在所述P原子的热驱入的步骤中,特别是具有在5 nm到100 nm的范围内的厚度的氧化物层(7)在衬底表面(1a)上被构造,并且随后所述氧化物层(7)完全被蚀刻掉并且由SiNx层(9)代替。
CN201280016626.0A 2011-04-01 2012-02-23 用于制造太阳能电池的方法 Expired - Fee Related CN103460406B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011006624A DE102011006624A1 (de) 2011-04-01 2011-04-01 Verfahren zur Herstellung einer Solarzelle
DE102011006624.1 2011-04-01
PCT/EP2012/053041 WO2012130534A1 (de) 2011-04-01 2012-02-23 Verfahren zur herstellung einer solarzelle

Publications (2)

Publication Number Publication Date
CN103460406A true CN103460406A (zh) 2013-12-18
CN103460406B CN103460406B (zh) 2016-11-09

Family

ID=45808792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280016626.0A Expired - Fee Related CN103460406B (zh) 2011-04-01 2012-02-23 用于制造太阳能电池的方法

Country Status (5)

Country Link
US (1) US9299565B2 (zh)
EP (1) EP2695206B1 (zh)
CN (1) CN103460406B (zh)
DE (1) DE102011006624A1 (zh)
WO (1) WO2012130534A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997060A (zh) * 2010-10-25 2011-03-30 山东力诺太阳能电力股份有限公司 一种晶体硅太阳能电池的选择性扩散工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP437598A0 (en) 1998-06-29 1998-07-23 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
JP4387091B2 (ja) * 2002-11-05 2009-12-16 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
AU2006317554A1 (en) * 2005-11-24 2007-05-31 Newsouth Innovations Pty Limited Low area screen printed metal contact structure and method
DE102010024309A1 (de) * 2010-06-18 2011-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer photovoltaischen Solarzelle
DE102010061296A1 (de) * 2010-12-16 2012-06-21 Schott Solar Ag Verfahren zum Herstellen von elektrisch leitenden Kontakten auf Solarzellen sowie Solarzelle
WO2012096699A1 (en) * 2011-01-10 2012-07-19 Applied Materials, Inc. Integrated in-line processing system for selective emitter solar cells
US8884159B2 (en) * 2011-09-14 2014-11-11 International Business Machines Corporation Photovoltaic devices with metal semiconductor alloy metallization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997060A (zh) * 2010-10-25 2011-03-30 山东力诺太阳能电力股份有限公司 一种晶体硅太阳能电池的选择性扩散工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S. MACK ET AL: "SIMULTANEOUS FRONT EMITTER AND REAR SURFACE PASSIVATION BY THERMAL OXIDATION –AN INDUSTRIALLY FEASIBLE APPROACH TO A 19 % EFFICIENT PERC DEVICE", 《25ND EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE,PROCEEDINGS OF THE 25ND INTERNATIONAL CONFERENCE,WIP-RENEWABLE ENERGIES》, 6 September 2010 (2010-09-06) *
SEBASTIAN MACK ET AL: "TOWARDS 19% EFFICIENT INDUSTRIAL PERC DEVICES USING SIMULTANEOUS FRONT EMITTER AND REAR SURFACE PASSIVATION BY THERMAL OXIDATION", 《35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE》, 20 June 2010 (2010-06-20) *

Also Published As

Publication number Publication date
EP2695206B1 (de) 2020-06-24
US20140206125A1 (en) 2014-07-24
DE102011006624A1 (de) 2012-10-04
WO2012130534A1 (de) 2012-10-04
CN103460406B (zh) 2016-11-09
EP2695206A1 (de) 2014-02-12
US9299565B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
CN201812825U (zh) 具有形成的发射极的前触点太阳能电池
KR101145928B1 (ko) 태양 전지 및 태양 전지의 제조 방법
CN101331614B (zh) 背接触式光伏电池
US8298850B2 (en) Bifacial solar cells with overlaid back grid surface
JP6352940B2 (ja) 太陽電池
CN202948939U (zh) 背接触薄片电池
KR100997113B1 (ko) 태양전지 및 그의 제조방법
JP2010521824A (ja) 太陽電池
CN106057980A (zh) 一种晶体硅太阳能电池的磷扩散方法
TWI604627B (zh) 太陽電池之製造方法
US20140179054A1 (en) Method for forming patterns of differently doped regions
CN102544215A (zh) 利用激光掺杂加刻蚀制备选择性发射结太阳电池的方法
CN108987499A (zh) 太阳能电池中的相对掺杂物浓度水平
CN104300032A (zh) 一种单晶硅太阳能离子注入工艺
CN105122461A (zh) 太阳能电池的制造方法
CN113284982B (zh) 一种具有钝化接触结构的ibc电池的加工工艺
US20180040747A1 (en) Solar cell and method for manufacturing solar cell
CN103460406A (zh) 用于制造太阳能电池的方法
JP2007019259A (ja) 太陽電池およびその製造方法
CN105723520A (zh) 用于制造太阳能电池的方法
KR20100078813A (ko) 태양전지의 선택적 에미터 형성방법, 및 태양전지와 그 제조방법
CN204067375U (zh) 一种n型局域铝背晶体硅太阳能电池
CN102737964B (zh) 一种晶体硅片及其扩散方法
TWI686958B (zh) 太陽能電池及其製造方法
CN103996751B (zh) 并联双结太阳能电池的制造工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20161008

Address after: German Arne Skei Tate

Applicant after: SOLARWORLD INDUSTRIES THUERINGEN GMBH

Address before: Stuttgart, Germany

Applicant before: Robert Bosch Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161109

Termination date: 20210223

CF01 Termination of patent right due to non-payment of annual fee