CN113284982B - 一种具有钝化接触结构的ibc电池的加工工艺 - Google Patents

一种具有钝化接触结构的ibc电池的加工工艺 Download PDF

Info

Publication number
CN113284982B
CN113284982B CN202110594395.2A CN202110594395A CN113284982B CN 113284982 B CN113284982 B CN 113284982B CN 202110594395 A CN202110594395 A CN 202110594395A CN 113284982 B CN113284982 B CN 113284982B
Authority
CN
China
Prior art keywords
type doped
doped polysilicon
type
battery
passivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110594395.2A
Other languages
English (en)
Other versions
CN113284982A (zh
Inventor
郭方箐
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Aiko Solar Energy Technology Co Ltd
Guangdong Aiko Technology Co Ltd
Tianjin Aiko Solar Energy Technology Co Ltd
Original Assignee
Zhejiang Aiko Solar Energy Technology Co Ltd
Guangdong Aiko Technology Co Ltd
Tianjin Aiko Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Aiko Solar Energy Technology Co Ltd, Guangdong Aiko Technology Co Ltd, Tianjin Aiko Solar Energy Technology Co Ltd filed Critical Zhejiang Aiko Solar Energy Technology Co Ltd
Priority to CN202110594395.2A priority Critical patent/CN113284982B/zh
Publication of CN113284982A publication Critical patent/CN113284982A/zh
Application granted granted Critical
Publication of CN113284982B publication Critical patent/CN113284982B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明适用太阳能电池技术领域,提供了一种具有钝化接触结构的IBC电池的加工工艺,包括将N型单晶硅片进行制绒、抛光、背面生长隧穿氧化层、背面沉积P型/N型掺杂多晶硅、正面磷扩散、正面沉积减反射层、背面沉积钝化层;在P型/N型掺杂多晶硅印刷栅线位置利用激光消融刻蚀钝化层以形成凹槽;利用银浆一次性在P型/N型掺杂多晶硅对应凹槽丝网印刷栅线;低温烧结得到电池成品,烧结温度为400~690℃。本发明的具有钝化接触结构的IBC电池的加工工艺通过在P型/N型掺杂多晶硅印刷栅线位置利用激光消融刻蚀凹槽,利用低温烧结即可实现栅线与多晶硅欧姆接触,避免对多晶硅及隧穿氧化层破坏,确保电池钝化效果,且减少栅线区域的金属诱导复合,提高电池效率。

Description

一种具有钝化接触结构的IBC电池的加工工艺
技术领域
本发明涉及太阳能电池加工技术领域,具体涉及一种具有钝化接触结构的IBC电池的加工工艺。
背景技术
随着太阳能电池技术的发展,太阳能电池的可靠性越受关注。其中,IBC(Interdigitated back contact)电池是一种将P型掺杂多晶硅及N型掺杂多晶硅均放置在电池背面的太阳能电池,为了减小电池表面复合速率,一般的IBC电池通常采用氮化硅、二氧化硅等薄膜进行表面钝化,利用钝化结构可以减小表面复合速率,对开路电压的提升有一定帮助。
现有技术中,具有钝化接触接触结构的IBC电池的加工工艺通常为:将N型单晶硅片进行制绒、抛光、背面生成隧穿氧化层、背面沉积P型掺杂多晶硅及N型掺杂多晶硅、正面磷扩散、背面沉积钝化层,并通过至少两道丝网印刷,利用银浆料在N型掺杂多晶硅位置印刷负极栅线,并利用银铝浆料在P型掺杂多晶硅位置印刷正极栅线,然后通过高温烧结电池片,利用浆料的玻璃粉在700~900℃高温烧结刻蚀钝化层,以使负极栅线与N型掺杂多晶硅及形成欧姆接触,正极栅线与P型掺杂多晶硅形成欧姆接触。
由于电池片在高温烧结过程中,浆料中玻璃粉对钝化层的烧穿刻蚀并非均匀刻蚀,烧穿性难以控制,浆料在烧穿钝化层的同时,也会对隧穿氧化层产生破坏,降低钝化效果;且高温浆料对P型/N型掺杂多晶硅具有破坏性,易导致栅线区域金属诱导复合随温度升高而升高,从而降低电池效率;而如果降低烧结温度会造成钝化层刻蚀不足,无法使栅线与P型/N型掺杂多晶硅形成欧姆接触,造成较大的接触电阻,从而同样会降低电池效率。
发明内容
本发明提供一种具有钝化接触结构的IBC电池的加工工艺,旨在解决现有技术的具有钝化接触结构的IBC电池利用高温烧结浆料刻蚀钝化层实现栅线与多晶硅欧姆接触,存在高温浆料易破坏隧穿氧化层而降低电池钝化效果,且高温浆料易破坏多晶硅导致栅线区域金属诱导复合升高而降低电池效率的问题。
本发明提供一种具有钝化接触结构的IBC电池的加工工艺,包括以下步骤:
将N型单晶硅片进行制绒、抛光、背面生长隧穿氧化层、背面沉积P型掺杂多晶硅及N型掺杂多晶硅、正面磷扩散、正面沉积减反射层、背面沉积钝化层;
在所述P型掺杂多晶硅及所述N型掺杂多晶硅对应印刷栅线位置利用激光消融方式刻蚀所述钝化层以形成凹槽;
利用银浆一次性在所述P型掺杂多晶硅及所述N型掺杂多晶硅的对应所述凹槽丝网印刷所述栅线;
将完成丝网印刷的硅片低温烧结得到电池成品,烧结温度为400~690℃。
优选的,所述钝化层包括氮化硅膜、氧化硅膜、氮氧化硅膜、氧化铝膜中任意的一者或任意组合。
优选的,所述凹槽为宽度10~100um的激光线槽。
优选的,所述凹槽为宽度40um的激光线槽。
优选的,所述栅线的宽度为10~150um。
优选的,所述烧结温度为500~600℃。
优选的,所述激光消融具体采用紫外皮秒激光器。
优选的,所述将完成丝网印刷的硅片低温烧结得到电池成品的步骤之前还包括:
将完成丝网印刷的硅片进行烘干,烘干温度为200~300℃。
优选的,所述隧穿氧化层的厚度为1~10nm。
优选的,所述P型掺杂多晶硅及所述N型掺杂多晶硅的厚度均为50~300nm。
本发明提供一种具有钝化接触结构的IBC电池的加工工艺通过在P型掺杂多晶硅及N型掺杂多晶硅对应印刷栅线位置利用激光消融方式刻蚀钝化层以形成凹槽,再利用银浆一次性在P型掺杂多晶硅及N型掺杂多晶硅的对应凹槽丝网印刷栅线,并通过400~690℃低温烧结得到电池成品,由于通过激光消融方式开槽,银浆可以利用低温烧结即可实现栅线与P型/N型掺杂多晶硅良好的欧姆接触,在保证较低接触电阻的同时,减少栅线区域的金属诱导复合,提高电池效率,且避免了高温烧结浆料对P型/N型掺杂多晶硅具有破坏性而导致栅线区域金属诱导复合随温度升高而降低电池效率的问题;同时,也避免高温烧结浆料对隧穿氧化层产生破坏,确保电池的钝化效果。另外,利用银浆一次性丝网印刷P型掺杂多晶硅和N型掺杂多晶硅对应的栅线,无需分两次印刷栅线,减少了印刷步骤,简化了工艺,降低了加工难度。
附图说明
图1为本发明实施例一提供的一种具有钝化接触结构的IBC电池的结构示意图;
图2为本发明实施例二提供的一种具有钝化接触结构的IBC电池的加工工艺的流程图;
图3为本发明实施例三提供的一种具有钝化接触结构的IBC电池的加工工艺的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供一种具有钝化接触结构的IBC电池的加工工艺通过在P型掺杂多晶硅及N型掺杂多晶硅对应印刷栅线位置利用激光消融方式刻蚀钝化层以形成凹槽,再利用银浆一次性在P型掺杂多晶硅及N型掺杂多晶硅的对应凹槽丝网印刷栅线,并通过400~690℃低温烧结得到电池成品,由于通过激光消融方式开槽,银浆可以利用低温烧结即可实现栅线与P型/N型掺杂多晶硅良好的欧姆接触,在保证较低接触电阻的同时,减少栅线区域的金属诱导复合,提高电池效率,且避免了高温烧结浆料对P型/N型掺杂多晶硅具有破坏性而导致栅线区域金属诱导复合随温度升高而降低电池效率的问题;同时,也避免高温烧结浆料对隧穿氧化层产生破坏,确保电池的钝化效果。另外,利用银浆一次性丝网印刷P型掺杂多晶硅和N型掺杂多晶硅对应的栅线,无需分两次进行印刷,减少了印刷步骤,简化了工艺,降低了加工难度。
实施例一
请参照图1,本实施例提供一种具有钝化接触结构的IBC电池,包括:N型单晶硅片1,N型单晶硅片1的正面从上到下依次设置减反射层2、N+掺杂层3,N型单晶硅基体1的背面从上到下依次设置隧穿氧化层4、交替间隔分布的N型掺杂多晶硅5和P型掺杂多晶硅6、钝化层7,N型掺杂多晶硅5及P型掺杂多晶硅6的背面分别设置有栅线8,其中,P型掺杂多晶硅6背面的栅线8为正极栅线,正极栅线与P型掺杂多晶硅6形成欧姆接触;N型掺杂多晶硅5背面的栅线8为负极栅线,负极栅线与N型掺杂多晶硅5形成欧姆接触。
在本发明实施例中,减反射层2为氮化硅膜,钝化层7包括自N型单晶硅基体1的背面从到下依次设置的氧化铝膜71以及氮化硅膜72,利用氧化铝膜71以及氮化硅膜72实现电池背面钝化,以提升电池钝化效果,提升电池效率。
实施例二
请参照图2,本实施例提供一种具有钝化接触结构的IBC电池的加工工艺,该加工工艺用于制备上述实施例一的具有钝化接触结构的IBC电池,包括以下步骤:
步骤S10,将N型单晶硅片1进行制绒、抛光、背面生长隧穿氧化层4、背面沉积P型掺杂多晶硅6及N型掺杂多晶硅5、正面磷扩散、正面沉积减反射层2、背面沉积钝化层7;
本步骤中,选用N型单晶硅片1作为硅片基底,将N型单晶硅片1采用湿法刻蚀技术进行制绒,以在N型单晶硅片1背面和正面形成绒面,以减少光的反射,有利于提高光电转换效率。在N型单晶硅片1完成制绒后,进行清洗,而后使用碱溶液将硅片进行抛光,然后在700-1000℃温度下进行退火,同时在N型单晶硅片1背面热生长二氧化硅作为隧穿氧化层4。优选的,隧穿氧化层4的厚度为1~10nm,确保电池良好的钝化效果。
在N型单晶硅片1背面生成隧穿氧化层4后,利用LPCVD设备在硅片背面沉积P型掺杂多晶硅6,然后在N型单晶硅片1背面沉积N型掺杂多晶硅5,形成交替间隔分布的N型掺杂多晶硅5和P型掺杂多晶硅6。优选的,P型掺杂多晶硅6及N型掺杂多晶硅5的厚度为50~300nm。
在完成P型掺杂多晶硅6及N型掺杂多晶硅5后,再使用低压高温扩散炉对N型单晶硅片1正面进行磷扩散得到N+掺杂层3,然后使用PECVD设备在N型单晶硅片1正面沉积减反射层2,最后使用PECVD设备在N型单晶硅片1背面沉积钝化层7,从而可以得到未金属化的半成品镀膜电池片。
作为本发明的一个实施例,钝化层7包括氮化硅膜、氧化硅膜、氮氧化硅膜、氧化铝膜中任意的一者或任意组合。
在本实施例中,钝化层7包括自N型单晶硅基体1的背面从上到下依次设置的氧化铝膜71以及氮化硅膜72。当完成N型单晶硅片1背面沉积N型掺杂多晶硅5和P型掺杂多晶硅6后,在N型单晶硅片1背面沉积氧化铝膜71,然后在氧化铝膜71之上再沉积氮化硅膜72,以实现IBC电池的背面钝化。其中,氧化铝膜71以及氮化硅膜72的厚度具体不限。
步骤S20,在P型掺杂多晶硅6及N型掺杂多晶硅5对应印刷栅线8位置利用激光消融方式刻蚀钝化层7以形成凹槽;
作为本发明的一个实施例,凹槽为宽度10~100um的激光线槽,便于后续栅线的丝网印刷。
作为本发明的一个优选实施例,凹槽为宽度40um的激光线槽。
本步骤中,激光消融具体采用紫外皮秒激光器,利用紫外皮秒激光器将P型掺杂多晶硅6对应印刷栅线8位置的钝化层7进行激光消融,以刻蚀钝化层7进行开槽,以露出P型掺杂多晶硅6;利用紫外皮秒激光器将N型掺杂多晶硅5对应印刷栅线8位置的钝化层7进行激光消融,以刻蚀钝化层7进行开槽,以露出N型掺杂多晶硅5。具体的,利用紫外皮秒激光器产生的激光将氮化硅膜72及氧化铝膜71刻蚀,以形成印刷栅线8的凹槽,以便后续在凹槽对应印刷栅线8。
本实施例中,由于采用激光消融方式刻蚀钝化层7,便于控制刻蚀凹槽的宽度和深度,可以实现精确开槽,且避免对P型/N型掺杂多晶硅5及隧穿氧化层4的造成破坏,且避免取代传统技术中采用浆料高温烧结蚀刻钝化层7造成破坏P型/N型掺杂多晶硅5及隧穿氧化层4的问题,从而最大程度保持电池钝化效果,同时可以确保栅线8与P型/N型掺杂多晶硅5之间形成良好欧姆接触,并可以减少一步丝网印刷的步骤,降低了加工难度。
步骤S30,利用银浆一次性在P型掺杂多晶硅6及N型掺杂多晶硅5对应凹槽丝网印刷栅线8;
本步骤中,采用银浆在步骤S20中激光消融刻蚀形成的各凹槽进行丝网印刷栅线8,银浆烧结形成的栅线8分别与P型掺杂多晶硅6及N型掺杂多晶硅5形成欧姆接触。
本实施例中,由于可以采用银浆料一次性可以印刷P型掺杂多晶硅6及N型掺杂多晶硅5,从而可以一次性完成正、负极栅线的印刷,无需采用两种浆料分两次印刷正负极栅线,减少一步丝网印刷步骤,降低了加工难度,提高了加工效率。
作为本发明的一个实施例,栅线8的宽度为10~150um,使得栅线8可以完全覆盖上述步骤S20中激光消融形成的凹槽。
步骤S40,将完成丝网印刷的硅片低温烧结得到电池成品,烧结温度为400~690℃。
本发明实施例中,由于同时在P型掺杂多晶硅6及N型掺杂多晶硅5对应印刷栅线位置利用激光消融刻蚀钝化层7以形成凹槽,以露出P型掺杂多晶硅6及N型掺杂多晶硅5,丝网印刷后的银浆直接与P型/N型掺杂多晶硅5良好接触,这样电池片烧结过程中无需采用700℃以上的高温烧结浆料来烧蚀钝化层7实现浆料与P型掺杂多晶硅6及N型掺杂多晶硅5的欧姆接触,因而本发明利用400~690℃温度的低温烧结即可,这样既可以避免高温烧结浆料导致隧穿氧化层4破坏的问题,从而可以最大程度保持电池钝化效果,同时可以形成良好的欧姆接触;而且也避免高温烧结下,浆料对P型掺杂多晶硅6及N型掺杂多晶硅5的破坏性,避免金属栅线区域金属诱导复合随温度升高而升高,从而可以提升电池效率。
作为本发明的一个优选实施例,烧结温度为500~600℃。这样既可以最大程度保持电池钝化效果,同时可以使栅线8与P型掺杂多晶硅6及N型掺杂多晶硅5形成良好的欧姆接触。而且,也避免高温烧结浆料对P型掺杂多晶硅6及N型掺杂多晶硅5的破坏性,避免金属栅线区域金属诱导复合升高而降低电池效率。
实施例三
请参照图3,在实施例二的基础上,将完成丝网印刷的硅片低温烧结得到电池成品的步骤之前还包括:
步骤S35,将完成丝网印刷的硅片进行烘干,烘干温度为200~300℃。
本实施例中,在低温烧结之前,利用200~300℃温度将完成丝网印刷的硅片进行烘干,便于后续低温烧结工艺。
本发明实施例提供一种具有钝化接触结构的IBC电池的加工工艺通过在P型掺杂多晶硅及N型掺杂多晶硅对应印刷栅线位置利用激光消融方式刻蚀钝化层以形成凹槽,再利用银浆一次性在P型掺杂多晶硅及N型掺杂多晶硅的对应凹槽丝网印刷栅线,并通过400~690℃低温烧结得到电池成品,由于通过激光消融方式开槽,银浆可以利用低温烧结即可实现栅线与P型/N型掺杂多晶硅良好的欧姆接触,在保证较低接触电阻的同时,减少栅线区域的金属诱导复合,提高电池效率,且避免了高温烧结浆料对P型/N型掺杂多晶硅具有破坏性而导致栅线区域金属诱导复合随温度升高而降低电池效率的问题;同时,也避免高温烧结浆料对隧穿氧化层产生破坏,确保电池的钝化效果。另外,利用银浆一次性丝网印刷P型掺杂多晶硅和N型掺杂多晶硅对应的栅线,无需分两次进行印刷,减少了印刷步骤,简化了工艺,降低了加工难度。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种具有钝化接触结构的IBC电池的加工工艺,其特征在于,包括:
将N型单晶硅片进行制绒、抛光;
在700-1000℃温度下进行退火,同时在N型单晶硅片背面热生长二氧化硅作为隧穿氧化层;
利用LPCVD设备在N型单晶硅片背面沉积P型掺杂多晶硅,然后在N型单晶硅片背面沉积N型掺杂多晶硅,形成交替间隔分布的N型掺杂多晶硅和P型掺杂多晶硅;
使用低压高温扩散炉对N型单晶硅片正面进行磷扩散得到N+掺杂层,然后使用PECVD设备在N型单晶硅片正面沉积减反射层;
使用PECVD设备在N型单晶硅片背面沉积钝化层;
同时在所述P型掺杂多晶硅及所述N型掺杂多晶硅对应印刷栅线位置利用激光消融方式刻蚀所述钝化层以形成凹槽,所述激光消融采用紫外皮秒激光器,所述凹槽为宽度10~100um的激光线槽;
利用银浆一次性在所述P型掺杂多晶硅及所述N型掺杂多晶硅对应所述凹槽丝网印刷所述栅线;
将完成丝网印刷的硅片低温烧结得到电池成品,烧结温度为500~600℃。
2.根据权利要求1所述的一种具有钝化接触结构的IBC电池的加工工艺,其特征在于,所述钝化层包括氮化硅膜、氧化硅膜、氮氧化硅膜、氧化铝膜中任意的一者或任意组合。
3.根据权利要求1所述的一种具有钝化接触结构的IBC电池的加工工艺,其特征在于,所述凹槽为宽度40um的激光线槽。
4.根据权利要求1或3所述的一种具有钝化接触结构的IBC电池的加工工艺,其特征在于,所述栅线的宽度为10~150um。
5.根据权利要求1所述的一种具有钝化接触结构的IBC电池的加工工艺,其特征在于,所述将完成丝网印刷的硅片低温烧结得到电池成品的步骤之前还包括:
将完成丝网印刷的硅片进行烘干,烘干温度为200~300℃。
6.根据权利要求1所述的一种具有钝化接触结构的IBC电池的加工工艺,其特征在于,所述隧穿氧化层的厚度为1~10nm。
7.根据权利要求1所述的一种具有钝化接触结构的IBC电池的加工工艺,其特征在于,所述P型掺杂多晶硅及所述N型掺杂多晶硅的厚度均为50~300nm。
CN202110594395.2A 2021-05-28 2021-05-28 一种具有钝化接触结构的ibc电池的加工工艺 Active CN113284982B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110594395.2A CN113284982B (zh) 2021-05-28 2021-05-28 一种具有钝化接触结构的ibc电池的加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110594395.2A CN113284982B (zh) 2021-05-28 2021-05-28 一种具有钝化接触结构的ibc电池的加工工艺

Publications (2)

Publication Number Publication Date
CN113284982A CN113284982A (zh) 2021-08-20
CN113284982B true CN113284982B (zh) 2023-10-03

Family

ID=77282628

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110594395.2A Active CN113284982B (zh) 2021-05-28 2021-05-28 一种具有钝化接触结构的ibc电池的加工工艺

Country Status (1)

Country Link
CN (1) CN113284982B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114203856B (zh) * 2021-11-26 2022-09-06 深圳市拉普拉斯能源技术有限公司 一种太阳能光伏电池低压水平磷扩散生产线
CN115084299B (zh) * 2022-06-23 2024-10-01 广东爱旭科技有限公司 一种p型太阳能电池及其制作方法、电池组件和光伏系统
CN116130530B (zh) * 2022-09-07 2024-07-05 隆基绿能科技股份有限公司 Topcon太阳能电池及其制备方法
CN116722079B (zh) * 2023-08-09 2024-05-28 浙江晶科能源有限公司 太阳能电池的制造方法、太阳能电池及光伏组件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576084A (zh) * 2016-03-17 2016-05-11 西安电子科技大学 N型ibc电池结构及其制备方法
CN108649079A (zh) * 2018-07-11 2018-10-12 泰州隆基乐叶光伏科技有限公司 具有钝化接触结构的指状交叉背接触太阳电池及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904138A (zh) * 2012-12-27 2014-07-02 北京汉能创昱科技有限公司 一种全背面接触晶硅电池及其制备方法
CN104269457B (zh) * 2014-09-05 2016-08-24 奥特斯维能源(太仓)有限公司 一种基于离子注入工艺的n型ibc硅太阳能电池制作方法
CN106374009A (zh) * 2016-09-20 2017-02-01 泰州中来光电科技有限公司 一种钝化接触的ibc电池及其制备方法和组件、系统
CN108336154A (zh) * 2018-02-02 2018-07-27 中国科学院微电子研究所 晶体硅太阳能电池及其制备方法
CN108538962A (zh) * 2018-05-07 2018-09-14 泰州中来光电科技有限公司 一种钝化接触的ibc电池的制备方法
CN109192809B (zh) * 2018-07-20 2019-10-11 常州大学 一种全背电极电池及其高效陷光和选择性掺杂制造方法
CN212750903U (zh) * 2020-10-15 2021-03-19 嘉兴阿特斯光伏技术有限公司 太阳能电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576084A (zh) * 2016-03-17 2016-05-11 西安电子科技大学 N型ibc电池结构及其制备方法
CN108649079A (zh) * 2018-07-11 2018-10-12 泰州隆基乐叶光伏科技有限公司 具有钝化接触结构的指状交叉背接触太阳电池及其制备方法

Also Published As

Publication number Publication date
CN113284982A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
CN113284982B (zh) 一种具有钝化接触结构的ibc电池的加工工艺
CN110828583B (zh) 正面局域钝化接触的晶硅太阳电池及其制备方法
CN113345970A (zh) 一种p型背接触式晶硅太阳能电池、制备方法及电池组件
WO2023178918A1 (zh) 一种低成本接触钝化全背电极太阳能电池及其制备方法
CN109713065B (zh) 一种印刷金属电极的钝化太阳能电池及其制备方法
WO2017020689A1 (zh) 基于p型硅衬底的背接触式太阳能电池及其制备方法
CN110838536A (zh) 具有多种隧道结结构的背接触太阳能电池及其制备方法
CN112310231A (zh) 具有隧穿钝化的p型晶体硅太阳能电池及其制备方法
CN212750903U (zh) 太阳能电池
CN210926046U (zh) 太阳能电池
CN108666376B (zh) 一种p型背接触太阳电池及其制备方法
CN111864008A (zh) P型异质结全背电极接触晶硅光伏电池制备方法
CN111739982B (zh) 一种选择性发射极的制备方法和太阳能电池
WO2023072165A1 (zh) 一种钝化接触的太阳能电池
CN110610998A (zh) 一种正面局域钝化接触的晶硅太阳电池及其制备方法
CN214753793U (zh) 一种p型背接触式晶硅太阳能电池及太阳能电池组件
CN108666386B (zh) 一种p型背接触太阳电池及其制备方法
WO2017020690A1 (zh) 基于p型硅衬底的背接触式太阳能电池
CN113809205B (zh) 太阳能电池的制备方法
CN112951927A (zh) 太阳能电池的制备方法
WO2024000399A1 (zh) 太阳能电池结构及其制作方法
CN112820793A (zh) 太阳能电池及其制备方法
CN116207167B (zh) 太阳能电池及其制造方法
CN114430000A (zh) 太阳能电池的制备方法及太阳能电池
CN110634973A (zh) 一种新型晶硅太阳电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant