CN103421529B - 一种生物质催化热解的方法及陶瓷固体酸催化剂 - Google Patents

一种生物质催化热解的方法及陶瓷固体酸催化剂 Download PDF

Info

Publication number
CN103421529B
CN103421529B CN201210153139.0A CN201210153139A CN103421529B CN 103421529 B CN103421529 B CN 103421529B CN 201210153139 A CN201210153139 A CN 201210153139A CN 103421529 B CN103421529 B CN 103421529B
Authority
CN
China
Prior art keywords
acid catalyst
biomass
solid
solid ceramic
pyrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210153139.0A
Other languages
English (en)
Other versions
CN103421529A (zh
Inventor
袁国卿
李峰波
闫芳
丁赤民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Yiminbao New Energy Development Co ltd
Institute of Chemistry CAS
Original Assignee
Jilin Yiminbao New Energy Development Co ltd
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Yiminbao New Energy Development Co ltd, Institute of Chemistry CAS filed Critical Jilin Yiminbao New Energy Development Co ltd
Priority to CN201210153139.0A priority Critical patent/CN103421529B/zh
Publication of CN103421529A publication Critical patent/CN103421529A/zh
Application granted granted Critical
Publication of CN103421529B publication Critical patent/CN103421529B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于生物质催化热解技术领域,涉及生物质催化热解的方法及陶瓷固体酸催化剂。本发明以陶瓷固体酸为分散介质和催化剂,将粉碎的生物质固体物料与预热的陶瓷固体酸催化剂混合于热解反应器中并干燥;在热解温度为550℃及陶瓷固体酸催化剂的作用下使生物质固体物料进行快速热解,对生物质固体物料快速热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油。本发明在催化热解的条件下,所得生物质热解油的产率与未加催化剂的直接热解过程相比可提高20~30%,生物质热解油中的组份分布变窄,可以目标性的得到几类化合物。生物质热解油可以直接作为热电站和锅炉的燃料,也可以作为基础化工原料。

Description

一种生物质催化热解的方法及陶瓷固体酸催化剂
技术领域
本发明属于生物质催化热解技术领域,特别涉及一种以陶瓷固体酸为分散介质和催化剂的生物质快速热解的方法,通过这一过程可以将生物质有效液化,生成的生物质热解油为一种可再生的燃料和碳资源。
背景技术
能源是人类社会和经济发展的物质基础,随着世界人口和经济规模的不断增长,对化石能源的需求与消耗也快速增加。由于化石能源的不可再生性,地球的化石能源由于人类无节制的开采已濒临枯竭,同时化石能源的使用向大气中排放大量的二氧化碳,由此造成严重的环境和生态问题,如:全球变暖,海洋酸化,土壤富营养化等。
目前,我国温室气体的排放超过世界排放总量要求的13%,随着经济的快速增长,温室气体的排放呈快速增长趋势。发展可再生能源是提高我国能源安全,优化能源结构,已经得到国家的高度重视。2005年2月28日第十届全国人大常委会第14会议通过《中华人民共和国可再生资源法》第十六条明确指出“国家鼓励清洁、高效地开发利用生物质燃料,鼓励发展能源作物。国家鼓励生产和利用生物液体燃料”。
生物质是把光能以化学能形式存储起来的有机物质。其主要的组成包括:半纤维素、纤维素和木质素。生物质能源的利用途径有两种:热化学转化和生化过程转化。热化学转化有三种方式:在过量空气中生物质直接燃烧产生热,在部分空气条件下气化为合成气,在无氧条件下快速热解为生物质液体燃料;通过生化转化过程可以得到生物乙醇、沼气、氢和其它化学品。生物质作为一种可再生的能源形式,其有四点优势,其一,它是在未来可持续开发的可再生资源;其二,取代化石能源,能减少温室气体的排放和氮氧化合物及含硫污染物的排放;其三,可以发展农村区域的经济,增加农民收入;其四,开发边际土地及不适粮食作物的农田种植能源作物。但生物质原料并不是一种理想的燃料形式,其一,较高的含水量降低了其燃烧值;其二,生物质种植分散,收集和存储需要大量的时间和财力以及场地;其三,生物质为季节性,供应连续性存在问题。通过快速热解过程,可将生物质原料转化为高能量密度的生物质油。液态的生物质燃料可以解决以上的三个主要问题。
生物质快速热解是在隔绝氧气条件下生物质的快速热分解过程。这一过程相当于生物质燃烧或气化的初始步。如果过程温度过低或接触时间太长,生物质主要发生炭化;高温和长的接触时间会导致生物质气化;只有在适中的温度和较短的接触温度下才会使生物质有效液化。在热解接触时间为1秒左右,热解温度接近500℃,液化产物的产率达到75%,其它为12%的炭,13%的气态产物。热解温度为500℃左右,热解接触时间为10~30秒,液化产物的产率为50%(分为两相),炭和气态产物分别为25%。290℃时,接触时间为30分钟左右,80%的产物为炭。在温度为750~900℃,接触时间在数小时左右,85%的产物为气体。要得到高产率的生物质热解油有四点关键因素:1)快速有效的热传递过程,通常用于热解的生物质固体颗粒小于3毫米;2)需要精确控制过程温度,热解温度为500℃左右,气化产物的温度为400~450℃;3)热解产物受热时间一般小于2秒;4)热解气化物应迅速冷凝为生物质热解油。用于生物质直接热解的反应器有:鼓泡流化床、循环流化床、旋转倒锥和剥离热解床。前三种反应器可适用于较大规模的生物质热解反应生产生物质热解油,通常要加入热解介质(如石英砂);剥离热解床只适用较小规模的生物质热解反应进行生产生物质热解油的试验。
生物质热解油具有较高的燃烧热(17MJ/kg),其几乎不含有硫和氮,是一种环保的可再生燃料。但其成份很复杂,化合物种类超过160种,另外其含氧量超过30%,pH值在2.5左右,这些不足限制了生物质热解油作为一种化工基础原料的应用。但通过催化热解的过程,可以有效地控制生物热解的过程和方向,可以集中的得到同一类化合物。经过催化热解过程,可以目标性地得到一些化合物,这使得生物质热解油不单只作为燃料,也可以用于生产高附加值的基础化学品。
目前,生物质的热解还是主要是直接热解过程,直接热解过程的技术开发还存在一些问题,国内目前还没有大型的工业化装置,直接热解的液体产物主要用作热电站,供热供暖的潜在燃料。生物质催化快速热解的过程的研究还处在起步阶段,国内外的研究主要还集中在单步过程。生物质催化快速热解的催化剂为固体酸,例如:硅铝分子筛,硫酸化氧化物,复合氧化物等。生物质催化热解需要更深入研究具有实际应用价值的催化体系及催化过程,这些问题的解决有利于得到具有更高附加值的生物质热解产品。
发明内容
本发明的目的在于提供一种生物质催化快速热解的方法。
本发明的另一个目的在于提供一种用于生物质催化快速热解过程的陶瓷固体酸催化剂及其制备方法。
本发明的生物质催化快速热解的方法为:将粉碎(可采用机械方法进行粉碎)的生物质固体物料与预热的陶瓷固体酸催化剂混合于热解反应器中并干燥;在热解温度为550℃及陶瓷固体酸催化剂的作用下使生物质固体物料进行快速热解,对生物质固体物料快速热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油。
所述的生物质固体物料与预热的陶瓷固体酸催化剂的质量比值为2.3~9。
所述的预热的陶瓷固体酸催化剂的预热温度为200~250℃。
所述的陶瓷固体酸催化剂是WO3-ZrO2陶瓷固体酸催化剂、WO3-SnO2陶瓷固体酸催化剂或WO3-Al2O3陶瓷固体酸催化剂。
所述的WO3-ZrO2陶瓷固体酸催化剂中的氧化钨优选相当于氧化锆质量的5~20%;
所述的WO3-SnO2陶瓷固体酸催化剂中的氧化钨优选相当于氧化锡质量的5~20%;
所述的WO3-Al2O3陶瓷固体酸催化剂中的氧化钨优选相当于氧化铝质量的5~20%。
所述的生物质固体物料的颗粒大小优选为3mm左右。
所述的生物质固体物料可选自速生林木、草本植物以及农业作物(包括农业作物的废弃物)等中的一种或几种。
所述的高温气态产物进行冷凝是采用分步冷凝,可得到含水量不同的生物质热解油,经初步冷凝可以得到含水量较高的生物质热解油。所述的冷凝的过程优选分为多级冷凝,每个冷凝级别得到的生物质热解油的含水量不同及产物分布不同。根据用途的不同,对不同冷凝级别得到的生物质热解油进行分别处理。
所得生物质热解油可根据不同的用途,依据生物质热解油的密度和相对于水的极性对生物质热解油的冷凝组份进行分级或混合;所述的分级是依照所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时得到的生物质热解油进行分级;所述的混合是将所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时分别得到的轻质生物质热解油或重质生物质热解油进行分别混合;利用分步冷凝得到的低沸点的液态产物(200℃以下)对所述的生物质固体物料热解后得到的固体混合物(陶瓷固体酸催化剂和炭)进行洗涤,以得到吸附在陶瓷固体酸催化剂和炭上的重质生物质油。
在热解完成之后,处理经低沸点的液态产物洗涤后得到的固体混合物(陶瓷固体酸催化剂和炭),以除去炭和残留的重质生物油,可得到循环应用的所述的陶瓷固体酸催化剂。将与陶瓷固体酸催化剂混合的炭和残留在陶瓷固体酸催化剂上的重质生物油一起直接燃烧,可以起到再生陶瓷固体酸催化剂的作用,由此得到再生的陶瓷固体酸催化剂,同时也可以起到对陶瓷固体酸催化剂进行预热的目的,燃烧时产生的热也可以用于生物质原料的干燥。
所述的生物质固体物料进行快速热解的过程中产生的气体产物,经冷凝后仍为热的气体产物可作为所述的干燥用热源,或作为陶瓷固体酸催化剂在预热时的热源。
本发明得到的生物质热解油的产率高,品质高,生物质热解油中的C5~C6的化合物可达到生物质热解油总重量的70%以上,余量为木质素裂解片段及C2和C3的醇、醛和酸类化合物;经过本发明的催化快速热解的过程,可以降低所得生物质热解油中的重质生物油的产量,避免生物质热解油的分层。
所述的陶瓷固体酸催化剂为一种具有较高的机械强度的耐高温、耐水、耐酸和耐磨的催化剂,其是由以下方法制备得到的:
将31.1g四丁醇锆溶解于60ml的乙醇与乙酰丙酮的混合溶剂(优选所述的乙醇与乙酰丙酮的体积比为4:1)中得到四丁醇锆溶液,将0.53~2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(优选所述的乙醇与水的体积比为4:1)中后加入到所述的四丁醇锆溶液中得到混合液,在温度为25℃下搅拌(一般搅拌的时间为24小时左右),得到凝胶;将得到的凝胶在温度为60℃下进行干燥(一般干燥的时间为12小时左右),得到固体;将得到的固体于空气中,及温度为1000℃下进行煅烧5小时,制得WO3-ZrO2陶瓷固体酸催化剂。
将27.3g四丁醇锡溶解于60ml的乙醇与乙酰丙酮的混合溶剂(优选所述的乙醇与乙酰丙酮的体积比为4:1)中得到四丁醇锡溶液,将0.53~2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(优选所述的乙醇与水的体积比为4:1)中后加入到所述的四丁醇锡溶液中得到混合液;在温度为25℃下搅拌(一般搅拌的时间为24小时左右),得到凝胶;将得到的凝胶在温度为60℃下进行干燥(一般干燥的时间为12小时左右),得到固体;将得到的固体于空气中,及在温度为1000℃下进行煅烧5小时,制得WO3-SnO2陶瓷固体酸催化剂。
将40.1g三异丙醇铝溶解于60ml的乙醇与乙酰丙酮的混合溶剂(优选所述的乙醇与乙酰丙酮的体积比为4:1)中得到三异丙醇铝溶液,将0.53~2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(优选所述的乙醇与水的体积比为4:1)中后加入到所述的三异丙醇铝溶液中得到混合液;在温度为25℃下搅拌(一般搅拌的时间为24小时左右),得到凝胶;将得到的凝胶在温度为60℃下干燥(一般干燥的时间为12小时左右),得到固体;将得到的固体于空气中,及在温度为1000℃下进行煅烧5小时,制得WO3-Al2O3陶瓷固体酸催化剂。
所述的WO3-ZrO2陶瓷固体酸催化剂中的氧化钨优选相当于氧化锆质量的5~20%;
所述的WO3-SnO2陶瓷固体酸催化剂中的氧化钨优选相当于氧化锡质量的5~20%;
所述的WO3-Al2O3陶瓷固体酸催化剂中的氧化钨优选相当于氧化铝质量的5~20%。
本发明的生物质催化快速热解的方法,可以通过催化热解的过程将生物质固体物料高效液化,所得到的生物质热解油中成份分布单一,主要为C5-C6化合物,其不单只作为燃料,也可以作为生产高附加值化学品的基础原料。本发明所用的催化剂为陶瓷固体酸,具有耐高温,耐水,耐酸,耐磨的特性,能在催化系统中反复循环使用。
本发明的生物质催化快速热解的方法,在催化热解的条件下,所得生物质热解油的产率与未加催化剂的直接热解过程相比可提高20~30%,生物质热解油中的组份分布变窄,可以目标性的得到几类化合物。生物质热解油可以直接作为热电站和锅炉的燃料,也可以作为基础化工原料。
具体实施方式
实施例1
将经粉碎的速生落叶松木料(速生落叶松木料的颗粒大小为3mm左右)与在温度为200~250℃下预热的WO3-ZrO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锆质量的5%、10%及20%)混合于热解反应器中并干燥(速生落叶松木料与预热的WO3-ZrO2陶瓷固体酸催化剂的质量比值分别为2.3、4及9);在热解温度为550℃及WO3-ZrO2陶瓷固体酸催化剂的作用下使速生落叶松木料进行快速热解,对速生落叶松木料快速热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油。
所述的WO3-ZrO2陶瓷固体酸催化剂是由以下方法制备得到的:
将31.1g四丁醇锆溶解于60ml的乙醇与乙酰丙酮的混合溶剂(乙醇与乙酰丙酮的体积比为4:1)中得到四丁醇锆溶液,分别将0.53g、1.06g及2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(乙醇与水的体积比为4:1)中后加入到所述的四丁醇锆溶液中得到混合液,在温度为25℃下搅拌24小时左右,得到凝胶;将得到的凝胶在温度为60℃下进行干燥12小时左右,得到固体;将得到的固体于空气中,及温度为1000℃下进行煅烧5小时,由此制得WO3-ZrO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锆质量的5%、10%及20%)。
所述的高温气态产物进行冷凝是采用分步冷凝,并依据生物质热解油的密度和相对于水的极性对生物质热解油的冷凝组份进行分级或混合;所述的分级是依照所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时得到的生物质热解油进行分级;所述的混合是将所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时分别得到的轻质生物质热解油或重质生物质热解油进行分别混合。
利用200℃以下冷凝时得到的低沸点的液态产物对所述的速生落叶松木料热解后得到的WO3-ZrO2陶瓷固体酸催化剂和炭的固体混合物进行洗涤,以得到吸附在陶瓷固体酸催化剂和炭上的重质生物质油。
将上述经低沸点的液态产物洗涤后得到的WO3-ZrO2陶瓷固体酸催化剂和炭的固体混合物,与残留在WO3-ZrO2陶瓷固体酸催化剂上的重质生物油一起直接燃烧,得到再生的WO3-ZrO2陶瓷固体酸催化剂。
利用上述的速生落叶松木料进行热解的过程中产生的气体产物,经冷凝后仍为热的气体产物作为所述的干燥用热源,或作为陶瓷固体酸催化剂在预热时的热源。
上述的WO3-ZrO2陶瓷固体酸催化剂对速生落叶松木料进行快速热解的实验结果见表1。
表1
实施例2
将经粉碎的稻草(稻草的颗粒大小为3mm左右)与在温度为200~250℃下预热的WO3-ZrO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锆质量的5%、10%及20%)混合于热解反应器中并干燥(稻草与预热的WO3-ZrO2陶瓷固体酸催化剂的质量比值分别为2.3、4及9);在热解温度为550℃及WO3-ZrO2陶瓷固体酸催化剂的作用下使稻草进行快速热解,对稻草快速热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油。
所述的WO3-ZrO2陶瓷固体酸催化剂是由以下方法制备得到的:
将31.1g四丁醇锆溶解于60ml的乙醇与乙酰丙酮的混合溶剂(乙醇与乙酰丙酮的体积比为4:1)中得到四丁醇锆溶液,分别将0.53g、1.06g及2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(乙醇与水的体积比为4:1)中后加入到所述的四丁醇锆溶液中得到混合液,在温度为25℃下搅拌24小时左右,得到凝胶;将得到的凝胶在温度为60℃下进行干燥12小时左右,得到固体;将得到的固体于空气中,及温度为1000℃下进行煅烧5小时,由此制得WO3-ZrO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锆质量的5%、10%及20%)。
所述的高温气态产物进行冷凝是采用分步冷凝,并依据生物质热解油的密度和相对于水的极性对生物质热解油的冷凝组份进行分级或混合;所述的分级是依照所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时得到的生物质热解油进行分级;所述的混合是将所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时分别得到的轻质生物质热解油或重质生物质热解油进行分别混合。
利用200℃以下冷凝时得到的低沸点的液态产物对所述的稻草热解后得到的WO3-ZrO2陶瓷固体酸催化剂和炭的固体混合物进行洗涤,以得到吸附在陶瓷固体酸催化剂和炭上的重质生物质油。
将上述经低沸点的液态产物洗涤后得到的WO3-ZrO2陶瓷固体酸催化剂和炭的固体混合物,与残留在WO3-ZrO2陶瓷固体酸催化剂上的重质生物油一起直接燃烧,得到再生的WO3-ZrO2陶瓷固体酸催化剂。
利用上述的稻草进行热解的过程中产生的气体产物,经冷凝后仍为热的气体产物作为所述的干燥用热源,或作为陶瓷固体酸催化剂在预热时的热源。
上述的WO3-ZrO2陶瓷固体酸催化剂对稻草进行快速热解的实验结果见表2。
表2
实施例3
将经粉碎的秸秆(秸秆的颗粒大小为3mm左右)与在温度为200~250℃下预热的WO3-ZrO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锆质量的5%、10%及20%)混合于热解反应器中并干燥(秸秆与预热的WO3-ZrO2陶瓷固体酸催化剂的质量比值分别为2.3、4及9);在热解温度为550℃及WO3-ZrO2陶瓷固体酸催化剂的作用下使秸秆进行快速热解,对秸秆快速热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油。
所述的WO3-ZrO2陶瓷固体酸催化剂是由以下方法制备得到的:
将31.1g四丁醇锆溶解于60ml的乙醇与乙酰丙酮的混合溶剂(乙醇与乙酰丙酮的体积比为4:1)中得到四丁醇锆溶液,分别将0.53g、1.06g及2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(乙醇与水的体积比为4:1)中后加入到所述的四丁醇锆溶液中得到混合液,在温度为25℃下搅拌24小时左右,得到凝胶;将得到的凝胶在温度为60℃下进行干燥12小时左右,得到固体;将得到的固体于空气中,及温度为1000℃下进行煅烧5小时,由此制得WO3-ZrO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锆质量的5%、10%及20%)。
所述的高温气态产物进行冷凝是采用分步冷凝,并依据生物质热解油的密度和相对于水的极性对生物质热解油的冷凝组份进行分级或混合;所述的分级是依照所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时得到的生物质热解油进行分级;所述的混合是将所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时分别得到的轻质生物质热解油或重质生物质热解油进行分别混合。
利用200℃以下冷凝时得到的低沸点的液态产物对所述的秸秆热解后得到的WO3-ZrO2陶瓷固体酸催化剂和炭的固体混合物进行洗涤,以得到吸附在陶瓷固体酸催化剂和炭上的重质生物质油。
将上述经低沸点的液态产物洗涤后得到的WO3-ZrO2陶瓷固体酸催化剂和炭的固体混合物,与残留在WO3-ZrO2陶瓷固体酸催化剂上的重质生物油一起直接燃烧,得到再生的WO3-ZrO2陶瓷固体酸催化剂。
利用上述的秸秆进行热解的过程中产生的气体产物,经冷凝后仍为热的气体产物作为所述的干燥用热源,或作为陶瓷固体酸催化剂在预热时的热源。
上述的WO3-ZrO2陶瓷固体酸催化剂对秸秆进行快速热解的实验结果见表3。
表3
实施例4
将经粉碎的速生落叶松木料(速生落叶松木料的颗粒大小为3mm左右)与在温度为200~250℃下预热的WO3-SnO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锡质量的5%、10%及20%)混合于热解反应器中并干燥(速生落叶松木料与预热的WO3-SnO2陶瓷固体酸催化剂的质量比值分别为2.3、4及9);在热解温度为550℃及WO3-SnO2陶瓷固体酸催化剂的作用下使速生落叶松木料进行快速热解,对速生落叶松木料快速热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油。
所述的WO3-SnO2陶瓷固体酸催化剂是由以下方法制备得到的:
将27.3g四丁醇锡溶解于60ml的乙醇与乙酰丙酮的混合溶剂(乙醇与乙酰丙酮的体积比为4:1)中得到四丁醇锡溶液,分别将0.53g、1.06g及2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(乙醇与水的体积比为4:1)中后加入到所述的四丁醇锡溶液中得到混合液,在温度为25℃下搅拌24小时左右,得到凝胶;将得到的凝胶在温度为60℃下进行干燥12小时左右,得到固体;将得到的固体于空气中,及温度为1000℃下进行煅烧5小时,由此制得WO3-SnO2陶瓷固体酸催化剂(氧化钨分别相当于氧化锡质量的5%、10%及20%)。
所述的高温气态产物进行冷凝是采用分步冷凝,并依据生物质热解油的密度和相对于水的极性对生物质热解油的冷凝组份进行分级或混合;所述的分级是依照所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时得到的生物质热解油进行分级;所述的混合是将所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时分别得到的轻质生物质热解油或重质生物质热解油进行分别混合。
利用200℃以下冷凝时得到的低沸点的液态产物对所述的速生落叶松木料热解后得到的WO3-SnO2陶瓷固体酸催化剂和炭的固体混合物进行洗涤,以得到吸附在陶瓷固体酸催化剂和炭上的重质生物质油。
将上述经低沸点的液态产物洗涤后得到的WO3-SnO2陶瓷固体酸催化剂和炭的固体混合物,与残留在WO3-SnO2陶瓷固体酸催化剂上的重质生物油一起直接燃烧,得到再生的WO3-SnO2陶瓷固体酸催化剂。
利用上述的速生落叶松木料进行热解的过程中产生的气体产物,经冷凝后仍为热的气体产物作为所述的干燥用热源,或作为陶瓷固体酸催化剂在预热时的热源。
上述的WO3-SnO2陶瓷固体酸催化剂对速生落叶松木料进行快速热解的实验结果见表4。
表4
实施例5
将经粉碎的速生落叶松木料(速生落叶松木料的颗粒大小为3mm左右)与在温度为200~250℃下预热的WO3-Al2O3陶瓷固体酸催化剂(氧化钨分别相当于氧化铝质量的5%、10%及20%)混合于热解反应器中并干燥(速生落叶松木料与预热的WO3-Al2O3陶瓷固体酸催化剂的质量比值分别为2.3、4及9);在热解温度为550℃及WO3-Al2O3陶瓷固体酸催化剂的作用下使速生落叶松木料进行快速热解,对速生落叶松木料快速热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油。
所述的WO3-Al2O3陶瓷固体酸催化剂是由以下方法制备得到的:
将40.1g三异丙醇铝溶解于60ml的乙醇与乙酰丙酮的混合溶剂(乙醇与乙酰丙酮的体积比为4:1)中得到三异丙醇铝溶液,分别将0.53g、1.06g及2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂(乙醇与水的体积比为4:1)中后加入到所述的三异丙醇铝溶液中得到混合液,在温度为25℃下搅拌24小时左右,得到凝胶;将得到的凝胶在温度为60℃下进行干燥12小时左右,得到固体;将得到的固体于空气中,及温度为1000℃下进行煅烧5小时,由此制得WO3-Al2O3陶瓷固体酸催化剂(氧化钨分别相当于氧化铝质量的5%、10%及20%)。
所述的高温气态产物进行冷凝是采用分步冷凝,并依据生物质热解油的密度和相对于水的极性对生物质热解油的冷凝组份进行分级或混合;所述的分级是依照所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时得到的生物质热解油进行分级;所述的混合是将所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时分别得到的轻质生物质热解油或重质生物质热解油进行分别混合。
利用200℃以下冷凝时得到的低沸点的液态产物对所述的速生落叶松木料热解后得到的WO3-Al2O3陶瓷固体酸催化剂和炭的固体混合物进行洗涤,以得到吸附在陶瓷固体酸催化剂和炭上的重质生物质油。
将上述经低沸点的液态产物洗涤后得到的WO3-Al2O3陶瓷固体酸催化剂和炭的固体混合物,与残留在WO3-Al2O3陶瓷固体酸催化剂上的重质生物油一起直接燃烧,得到再生的WO3-Al2O3陶瓷固体酸催化剂。
利用上述的速生落叶松木料进行热解的过程中产生的气体产物,经冷凝后仍为热的气体产物作为所述的干燥用热源,或作为陶瓷固体酸催化剂在预热时的热源。
上述的WO3-Al2O3陶瓷固体酸催化剂对速生落叶松木料进行快速热解的实验结果见表5。
表5
上述具体实施方式不以任何形式限制本发明的技术方案,凡是采用等同替换或等效变换的方式所获得的技术方案均落在本发明的保护范围。

Claims (10)

1.一种生物质催化热解的方法,其特征是:将粉碎的生物质固体物料与预热的陶瓷固体酸催化剂混合于热解反应器中并干燥;在热解温度为550℃及陶瓷固体酸催化剂的作用下使生物质固体物料进行热解,对生物质固体物料热解产生的高温气态产物进行冷凝,经冷凝,得到生物质热解油;
所述的生物质固体物料与预热的陶瓷固体酸催化剂的质量比值为2.3~9;
所述的陶瓷固体酸催化剂是WO3-ZrO2陶瓷固体酸催化剂、WO3-SnO2陶瓷固体酸催化剂或WO3-Al2O3陶瓷固体酸催化剂。
2.根据权利要求1所述的方法,其特征是:所述的WO3-ZrO2陶瓷固体酸催化剂中的氧化钨相当于氧化锆质量的5~20%;
所述的WO3-SnO2陶瓷固体酸催化剂中的氧化钨相当于氧化锡质量的5~20%;
所述的WO3-Al2O3陶瓷固体酸催化剂中的氧化钨相当于氧化铝质量的5~20%。
3.根据权利要求1所述的方法,其特征是:所述的预热的陶瓷固体酸催化剂的预热温度为200~250℃。
4.根据权利要求1所述的方法,其特征是:所述的生物质固体物料选自速生林木、草本植物以及农业作物中的一种或几种。
5.根据权利要求1所述的方法,其特征是:所述的高温气态产物进行冷凝是采用分步冷凝,依据生物质热解油的密度和相对于水的极性对生物质热解油的冷凝组份进行分级或混合;所述的分级是依照所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时得到的生物质热解油进行分级;所述的混合是将所述的生物质热解油在200℃以下,200~400℃,400~500℃冷凝时分别得到的轻质生物质热解油或重质生物质热解油进行分别混合。
6.根据权利要求5所述的方法,其特征是:利用200℃以下冷凝时得到的低沸点的液态产物对所述的生物质固体物料热解后得到的陶瓷固体酸催化剂和炭的固体混合物进行洗涤,以得到吸附在陶瓷固体酸催化剂和炭上的重质生物质油。
7.根据权利要求6所述的方法,其特征是:将经低沸点的液态产物洗涤后得到的陶瓷固体酸催化剂和炭的固体混合物,与残留在陶瓷固体酸催化剂上的重质生物油一起直接燃烧,得到再生的陶瓷固体酸催化剂。
8.根据权利要求1所述的方法,其特征是:所述的生物质固体物料进行热解的过程中产生的气体产物,经冷凝后仍为热的气体产物作为所述的干燥用热源,或作为陶瓷固体酸催化剂在预热时的热源。
9.根据权利要求1、2、3、6或7所述的方法,其特征是:所述的陶瓷固体酸催化剂是由以下方法制备得到的:
将31.1g四丁醇锆溶解于60ml的乙醇与乙酰丙酮的混合溶剂中得到四丁醇锆溶液,将0.53~2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂中后加入到所述的四丁醇锆溶液中得到混合液,在温度为25℃下搅拌,得到凝胶;将得到的凝胶在温度为60℃下进行干燥,得到固体;将得到的固体于空气中,及温度为1000℃下进行煅烧5小时,制得WO3-ZrO2陶瓷固体酸催化剂;
将27.3g四丁醇锡溶解于60ml的乙醇与乙酰丙酮的混合溶剂中得到四丁醇锡溶液,将0.53~2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂中后加入到所述的四丁醇锡溶液中得到混合液;在温度为25℃下搅拌,得到凝胶;将得到的凝胶在温度为60℃下进行干燥,得到固体;将得到的固体于空气中,及在温度为1000℃下进行煅烧5小时,制得WO3-SnO2陶瓷固体酸催化剂;
将40.1g三异丙醇铝溶解于60ml的乙醇与乙酰丙酮的混合溶剂中得到三异丙醇铝溶液,将0.53~2.12g的(NH4)6(H2W12O40)溶于20ml的乙醇与水的混合溶剂中后加入到所述的三异丙醇铝溶液中得到混合液;在温度为25℃下搅拌,得到凝胶;将得到的凝胶在温度为60℃下干燥,得到固体;将得到的固体于空气中,及在温度为1000℃下进行煅烧5小时,制得WO3-Al2O3陶瓷固体酸催化剂。
10.根据权利要求9所述的方法,其特征是:所述的乙醇与乙酰丙酮的体积比为4:1;所述的乙醇与水的体积比为4:1。
CN201210153139.0A 2012-05-16 2012-05-16 一种生物质催化热解的方法及陶瓷固体酸催化剂 Expired - Fee Related CN103421529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210153139.0A CN103421529B (zh) 2012-05-16 2012-05-16 一种生物质催化热解的方法及陶瓷固体酸催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210153139.0A CN103421529B (zh) 2012-05-16 2012-05-16 一种生物质催化热解的方法及陶瓷固体酸催化剂

Publications (2)

Publication Number Publication Date
CN103421529A CN103421529A (zh) 2013-12-04
CN103421529B true CN103421529B (zh) 2015-01-21

Family

ID=49646926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210153139.0A Expired - Fee Related CN103421529B (zh) 2012-05-16 2012-05-16 一种生物质催化热解的方法及陶瓷固体酸催化剂

Country Status (1)

Country Link
CN (1) CN103421529B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441095B (zh) * 2015-10-09 2018-05-04 青海威德生物技术有限公司 一种利用微波热解菊芋渣产生物质气的方法
CN111359602B (zh) * 2020-03-26 2021-04-06 中国科学院化学研究所 一种固体酸催化剂、泡沫结构碳材料及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200647A (zh) * 2007-11-28 2008-06-18 厦门大学 用杜氏藻藻粉制备燃料油气的方法
WO2010065872A1 (en) * 2008-12-05 2010-06-10 Kior Inc. Biomass conversion using solid base catalyst
WO2011096912A1 (en) * 2010-02-08 2011-08-11 Kior Inc. Two-step process for producing high yields of oil from biomass
CN102250158A (zh) * 2011-05-23 2011-11-23 中国科学技术大学 一种制备左旋葡萄糖酮的方法
CN102430414A (zh) * 2011-08-25 2012-05-02 华北电力大学 锆基磁性固体超强酸催化剂及其制备及其催化热解纤维素或生物质制备左旋葡萄糖酮的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125369A1 (en) * 2005-02-07 2007-06-07 Olson Edwin S Process for converting anhydrosugars to glucose and other fermentable sugars
US20120116135A1 (en) * 2010-11-09 2012-05-10 Conocophillips Company Heat integrated process for producing high quality pyrolysis oil from biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200647A (zh) * 2007-11-28 2008-06-18 厦门大学 用杜氏藻藻粉制备燃料油气的方法
WO2010065872A1 (en) * 2008-12-05 2010-06-10 Kior Inc. Biomass conversion using solid base catalyst
WO2011096912A1 (en) * 2010-02-08 2011-08-11 Kior Inc. Two-step process for producing high yields of oil from biomass
CN102250158A (zh) * 2011-05-23 2011-11-23 中国科学技术大学 一种制备左旋葡萄糖酮的方法
CN102430414A (zh) * 2011-08-25 2012-05-02 华北电力大学 锆基磁性固体超强酸催化剂及其制备及其催化热解纤维素或生物质制备左旋葡萄糖酮的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"An overview of fast pyrolysis of biomass";A.V.Bridgwater;《Organic Geochemistry》;19991231;第30卷(第12期);1479-1493 *
principle and practice of biomass fast pyrolysis processes for liquids;A.V.Bridgwater;《Journal of Analytical and Applied Pyrolysis》;19990731;第51卷;3-22 *
固体热载体和生物质粉沿倾斜管流动和传热的计算;何芳等;《农业工程学报》;20031130;第19卷(第06期);190-193 *
陶瓷颗粒和小麦秸秆粉混合物堆密度的研究;何芳等;《淄博学院学报(自然科学与工程版)》;20020630;第4卷(第02期);29-31 *

Also Published As

Publication number Publication date
CN103421529A (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
Ghodake et al. Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy
CN102260506B (zh) 一种橡胶树加工板材的废弃料综合利用的方法
CN104910946A (zh) 一种生物质水热炭化联产生物油的工艺
CN102786994A (zh) 一种生物质自催化气化制备富甲烷气体的方法
CN102031131A (zh) 一种将秸秆直接转化为汽、柴油的热解工艺与装置
CN105419848A (zh) 一种藻类和废弃橡胶共热解催化加氢制备生物油的方法
CN101407727A (zh) 一种由生物质催化液化制备生物质液化油的方法
Wang et al. Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials
CN101624530A (zh) 生物质液化油及其制备方法
Karaeva et al. Co-pyrolysis of agricultural waste and estimation of the applicability of pyrolysis in the integrated technology of biorenewable hydrogen production
CN109233879A (zh) 一种生物质秸秆热裂解的处理方法
CN101445736A (zh) 生物质制备合成醇醚用气的方法及装置
Adeniyi et al. Conversion of biomass to biochar using top‐lit updraft technology: a review
CN101805647A (zh) 生物质物料热裂解制备天然气的方法及所使用的热裂解炉
CN103421529B (zh) 一种生物质催化热解的方法及陶瓷固体酸催化剂
CN103484163A (zh) 一种生物质双模式重整气化制备纯净合成气的方法
CN103421543B (zh) 一种生物质热解油的催化精炼的方法
CN105600751B (zh) 沼气发酵废液联合贫煤成浆共气化系统
CN106590763A (zh) 一种生物质肥料制备方法及其系统
CN103131498B (zh) 一种热压塑化成型秸秆炭及其制造方法
CN201704260U (zh) 生物质物料热裂解炉
CN214270854U (zh) 一种生物质发酵制氢的装置
CN100384341C (zh) 一种制备复合型动物饲料强化剂的方法
Sarangi et al. Agricultural waste to fuels and chemicals
Wang et al. Bio-based Carbon Materials for Anaerobic Digestion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150121

Termination date: 20160516

CF01 Termination of patent right due to non-payment of annual fee