CN103414438A - Error amplifier circuit - Google Patents

Error amplifier circuit Download PDF

Info

Publication number
CN103414438A
CN103414438A CN2013103015061A CN201310301506A CN103414438A CN 103414438 A CN103414438 A CN 103414438A CN 2013103015061 A CN2013103015061 A CN 2013103015061A CN 201310301506 A CN201310301506 A CN 201310301506A CN 103414438 A CN103414438 A CN 103414438A
Authority
CN
China
Prior art keywords
nmos transistor
pmos
transistor
source
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103015061A
Other languages
Chinese (zh)
Other versions
CN103414438B (en
Inventor
方健
谷洪波
潘华
彭宜建
赵前利
李源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310301506.1A priority Critical patent/CN103414438B/en
Publication of CN103414438A publication Critical patent/CN103414438A/en
Application granted granted Critical
Publication of CN103414438B publication Critical patent/CN103414438B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

The invention belongs to the technical field of electronics, and relates to an integrated circuit design technology, in particular to a novel current injection/pulling error amplifier circuit. The error amplifier circuit comprises a first transconductance amplifier, a second transconductance amplifier, a first image current source, a second image current source and a first capacitor C1, wherein the input end of the first transconductance amplifier is a first input end Vref of the error amplifier circuit, the output end of the first transconductance amplifier is connected with the first image current source, the input end of the second transconductance amplifier is a second input end Vin of the error amplifier circuit, the output end of the second transconductance amplifier is connected with the second image current source, and the output end of the first image current source and the output end of the second image current source are connected with one end of the first capacitor C1 to serve as an output end Vea of the error amplifier circuit. The error amplifier circuit has the advantages of being capable of adjusting the output voltage, improving the response speed and response accuracy of a system and improving the stability of the system, and is particularly suitable for an error amplifier.

Description

一种误差放大器电路An error amplifier circuit

技术领域technical field

本发明涉及集成电路技术,具体的说是涉及一种新型电流灌入/拉出的误差放大器电路。The invention relates to integrated circuit technology, in particular to a novel current sinking/pulling out error amplifier circuit.

背景技术Background technique

误差放大器一直是开关电源中转换器的核心电路,对系统快速、精确、稳定的工作有重要影响。The error amplifier has always been the core circuit of the converter in the switching power supply, which has an important influence on the fast, accurate and stable operation of the system.

传统的误差放大器如图1所示,传统误差放大器包括偏置PMOS管M6、M7,输入PMOS管M1、M2,NMOS管M3、M4、M5;其中PMOS管M1与M2的源极相连构成差分对,并连接到M6管的源,M6管给运放提供尾电流;PMOS管M1和M2的栅极分别作为误差放大器正相输入端Vin1和反相输入端Vin2;NMOS管M3和M4的栅极相连,构成电流镜结构;NMOS管M5栅极与M1管漏端相连,M5管的漏端与PMOS管M7漏端相连作为误差放大器的输出端,输出电压VoutThe traditional error amplifier is shown in Figure 1. The traditional error amplifier includes bias PMOS transistors M6 and M7, input PMOS transistors M1 and M2, and NMOS transistors M3, M4 and M5; where the sources of PMOS transistors M1 and M2 are connected to form a differential pair , and connected to the source of the M6 tube, the M6 tube provides the tail current for the op amp; the gates of the PMOS tubes M1 and M2 are respectively used as the positive phase input terminal V in1 and the negative phase input terminal V in2 of the error amplifier; the gates of the NMOS tubes M3 and M4 The gates are connected to form a current mirror structure; the gate of the NMOS tube M5 is connected to the drain of the M1 tube, and the drain of the M5 tube is connected to the drain of the PMOS tube M7 as the output of the error amplifier, and the output voltage V out ;

传统的误差放大器设计成电压型,保证了环路高增益,能获得足够的相位裕度使系统稳定,但是放大器的输出电流小瞬态响应慢,且补偿网络的设计复杂。因此设计快瞬态响应、高精度的误差放大器成为目前研究的热点。The traditional error amplifier is designed as a voltage type, which ensures high loop gain and sufficient phase margin to stabilize the system. However, the output current of the amplifier is small and the transient response is slow, and the design of the compensation network is complicated. Therefore, designing an error amplifier with fast transient response and high precision has become a hot research topic at present.

本发明设计了一种结构新颖、高精度、高性能跨导型电流灌入/拉出误差放大器,能采样小电压输出大电流,实现系统快瞬态响应。输入级采用了高精度跨导型放大电路,主极点靠近原点,提高了放大器增益。输出级采用电流源与电流沉分别对电容C1灌入/拉出电流。The invention designs a transconductance type current sinking/pulling out error amplifier with novel structure, high precision and high performance, which can sample small voltage and output large current, and realize fast transient response of the system. The input stage uses a high-precision transconductance amplifier circuit, and the main pole is close to the origin, which improves the amplifier gain. The output stage uses a current source and a current sink to sink/source current to/from the capacitor C1 respectively.

发明内容Contents of the invention

本发明所要解决的技术问题,就是针对传统误差放大器的上述问题,提出一种误差放大器电路。The technical problem to be solved by the present invention is to propose an error amplifier circuit for the above-mentioned problems of the traditional error amplifier.

本发明解决上述技术问题所采用的技术方案是:一种误差放大器电路,其特征在于,包括第一跨导放大器、第二跨导放大器、第一镜像电流、第二镜像电流和第一电容C1,所述第一跨导放大器的输入端为误差放大器电路的第一输入端Vref、输出端接第一镜像电流,所述第二跨导放大器的输入端为误差放大器电路的第二输入端Vin、输出端接第二镜像电流,第一镜像电流的输出端和第二镜像电流的输出端接第一电容C1的一端作为误差放大器电路的输出端Vea,第一电容C1的另一端接地。The technical solution adopted by the present invention to solve the above technical problems is: an error amplifier circuit, characterized in that it includes a first transconductance amplifier, a second transconductance amplifier, a first mirror current, a second mirror current and a first capacitor C1 , the input terminal of the first transconductance amplifier is the first input terminal Vref of the error amplifier circuit, the output terminal is connected to the first mirror current, and the input terminal of the second transconductance amplifier is the second input terminal Vin of the error amplifier circuit 1. The output terminal is connected to the second mirror current, the output terminal of the first mirror current and the output terminal of the second mirror current are connected to one end of the first capacitor C1 as the output terminal Vea of the error amplifier circuit, and the other end of the first capacitor C1 is grounded.

具体的,所述第一跨导放大器包括第一运算放大器AMP1、第二电容C2、第一电阻R1和第一NMOS管N1,所述第二跨导放大器包括第二运算放大器AMP2、第三运算放大器AMP3、第三电容C3、第二电阻R2、第三电阻R3、第四电阻R4和第二NMOS管N2,所述第一镜像电流包括第一PMOS管P1、第二PMOS管P2、第三PMOS管P3和第四PMOS管P4,所述第二镜像电流包括第三NMOS管N3、第四NMOS管N4、第五NMOS管N5和第六NMOS管N6;其中,Specifically, the first transconductance amplifier includes a first operational amplifier AMP1, a second capacitor C2, a first resistor R1, and a first NMOS transistor N1, and the second transconductance amplifier includes a second operational amplifier AMP2, a third operational The amplifier AMP3, the third capacitor C3, the second resistor R2, the third resistor R3, the fourth resistor R4 and the second NMOS transistor N2, the first mirror current includes the first PMOS transistor P1, the second PMOS transistor P2, the third PMOS transistor P3 and fourth PMOS transistor P4, the second mirror current includes a third NMOS transistor N3, a fourth NMOS transistor N4, a fifth NMOS transistor N5, and a sixth NMOS transistor N6; wherein,

第一运算放大器AMP1的同向输入端为误差放大器电路的第一输入端Vref、反向输入端与第一电阻R1的一端和第一NMOS管N1的源极连接、输出端与第二电容C2的一端和第一NMOS管N1的栅极连接;The non-inverting input terminal of the first operational amplifier AMP1 is the first input terminal Vref of the error amplifier circuit, the inverting input terminal is connected to one end of the first resistor R1 and the source of the first NMOS transistor N1, and the output terminal is connected to the second capacitor C2 One end of is connected to the gate of the first NMOS transistor N1;

第二运算放大器AMP2的同向输入端为误差放大器电路的第二输入端Vin、反向输入端与第四电阻R4的一端和第二NMOS管N2的源极连接、输出端与第三电容C3的一端和第二NMOS管N2的栅极连接;The non-inverting input terminal of the second operational amplifier AMP2 is the second input terminal Vin of the error amplifier circuit, the inverting input terminal is connected to one end of the fourth resistor R4 and the source of the second NMOS transistor N2, and the output terminal is connected to the third capacitor C3 One end of is connected to the gate of the second NMOS transistor N2;

第二NMOS管N2的漏极与第二电阻R2的一端连接第三运算放大器AMP3的反向输入端,第三电阻R3的一端和第三NMOS管N3的漏极连接第三运算放大器AMP3的同向输入端,第三运算放大器AMP3的输出端连接第三NMOS管N3的栅极和第四NMOS管N4的栅极;The drain of the second NMOS transistor N2 and one end of the second resistor R2 are connected to the inverting input end of the third operational amplifier AMP3, and one end of the third resistor R3 and the drain of the third NMOS transistor N3 are connected to the same terminal of the third operational amplifier AMP3. To the input end, the output end of the third operational amplifier AMP3 is connected to the gate of the third NMOS transistor N3 and the gate of the fourth NMOS transistor N4;

第一PMOS管P1的栅极和漏极连接第一NMOS管N1的漏极和第二PMOS管P2的栅极、源极连接第三PMOS管P3的漏极,第三PMOS管P3的栅极、第四PMOS管P4的栅极和漏极和第二PMOS管P2的源极连接;The gate and drain of the first PMOS transistor P1 are connected to the drain of the first NMOS transistor N1 and the gate of the second PMOS transistor P2, the source is connected to the drain of the third PMOS transistor P3, and the gate of the third PMOS transistor P3 , the gate and drain of the fourth PMOS transistor P4 are connected to the source of the second PMOS transistor P2;

第二PMOS管P2的漏极、第四NMOS管N4的源极和第一电容C1的一端连接作为误差放大器电路的输出端Vea;The drain of the second PMOS transistor P2, the source of the fourth NMOS transistor N4 and one end of the first capacitor C1 are connected as the output terminal Vea of the error amplifier circuit;

第三NMOS管N3的源极与第五NMOS管N5的漏极连接,第四NMOS管N4的源极、第五NMOS管N5的栅极和第六NMOS管N6的栅极和漏极连接;The source of the third NMOS transistor N3 is connected to the drain of the fifth NMOS transistor N5, the source of the fourth NMOS transistor N4, the gate of the fifth NMOS transistor N5, and the gate and drain of the sixth NMOS transistor N6 are connected;

第三PMOS管P3的源极、第四PMOS管P4的源极、第二电阻R2的另一端、第三电阻R3的另一端和所有PMOS管的衬底均接电源VDD;The source of the third PMOS transistor P3, the source of the fourth PMOS transistor P4, the other end of the second resistor R2, the other end of the third resistor R3 and the substrates of all PMOS transistors are connected to the power supply VDD;

第一电阻R1的另一端、第二电容C2的另一端、第三电容C3的另一端、第四电阻R4的另一端、第五NMOS管N5的源极、第六NMOS管N6的源极和所有NMOS管的衬底均接地。The other end of the first resistor R1, the other end of the second capacitor C2, the other end of the third capacitor C3, the other end of the fourth resistor R4, the source of the fifth NMOS transistor N5, the source of the sixth NMOS transistor N6 and The substrates of all NMOS transistors are grounded.

具体的,所述第一运算放大器AMP1包括第五PMOS管P5、第六PMOS管P6、第七PMOS管P7、第八PMOS管P8、第九PMOS管P9、第十PMOS管P10、第十一PMOS管P11、第十二PMOS管P12、第十三PMOS管P13、第十四PMOS管P14、第七NMOS管N7、第八NMOS管N8、第九NMOS管N9、第十NMOS管N10、第五电阻R5和第一偏置电流源Ibias1;其中,Specifically, the first operational amplifier AMP1 includes a fifth PMOS transistor P5, a sixth PMOS transistor P6, a seventh PMOS transistor P7, an eighth PMOS transistor P8, a ninth PMOS transistor P9, a tenth PMOS transistor P10, and an eleventh PMOS transistor P10. PMOS transistor P11, twelfth PMOS transistor P12, thirteenth PMOS transistor P13, fourteenth PMOS transistor P14, seventh NMOS transistor N7, eighth NMOS transistor N8, ninth NMOS transistor N9, tenth NMOS transistor N10, Five resistors R5 and the first bias current source Ibias1; where,

第五PMOS管P5的栅极连接第一运算放大器AMP1的同向输入端、漏极连接第七NMOS管N7的源极和第八NMOS管N8的漏极,第六PMOS管P6的栅极连接运算放大器AMP的反向输入端、漏极连接第九NMOS管N9的源极和第十NMOS管N10的漏极;The gate of the fifth PMOS transistor P5 is connected to the non-inverting input terminal of the first operational amplifier AMP1, the drain is connected to the source of the seventh NMOS transistor N7 and the drain of the eighth NMOS transistor N8, and the gate of the sixth PMOS transistor P6 is connected to The inverting input terminal and the drain of the operational amplifier AMP are connected to the source of the ninth NMOS transistor N9 and the drain of the tenth NMOS transistor N10;

第七NMOS管N7的漏极连接第五电阻R5的一端、第八NMOS管N8的栅极和第九NMOS管N9的栅极,第五电阻R5的另一端连接第七NMOS管N7的栅极、第八NMOS管N8的栅极和第七PMOS管P7的漏极;The drain of the seventh NMOS transistor N7 is connected to one end of the fifth resistor R5, the gate of the eighth NMOS transistor N8, and the gate of the ninth NMOS transistor N9, and the other end of the fifth resistor R5 is connected to the gate of the seventh NMOS transistor N7 , the gate of the eighth NMOS transistor N8 and the drain of the seventh PMOS transistor P7;

第七PMOS管P7的栅极、第八PMOS管P8的栅极、第十四PMOS管P14的栅极和第十二PMOS管P12的栅极和漏极以及第一偏置电流源Ibias1的正极连接,第十二PMOS管P12的源极与第十一PMOS管P11的漏极和栅极、第十三PMOS管P13的栅极、第九PMOS管P9的栅极和第十PMOS管P10的栅极连接,第十三PMOS管P13的漏极和第十四PMOS管P14的源极连接,第十四PMOS管P14的漏极与第五PMOS管P5的源极和第六PMOS管P6的源极连接;The gate of the seventh PMOS transistor P7, the gate of the eighth PMOS transistor P8, the gate of the fourteenth PMOS transistor P14, the gate and the drain of the twelfth PMOS transistor P12, and the anode of the first bias current source Ibias1 The source of the twelfth PMOS transistor P12 is connected to the drain and gate of the eleventh PMOS transistor P11, the gate of the thirteenth PMOS transistor P13, the gate of the ninth PMOS transistor P9, and the gate of the tenth PMOS transistor P10 Gate connection, the drain of the thirteenth PMOS transistor P13 is connected to the source of the fourteenth PMOS transistor P14, the drain of the fourteenth PMOS transistor P14 is connected to the source of the fifth PMOS transistor P5 and the source of the sixth PMOS transistor P6 source connection;

第七PMOS管P7的源极与第九PMOS管P9的漏极连接,第八PMOS管P8的源极和第十PMOS管P10的漏极连接;The source of the seventh PMOS transistor P7 is connected to the drain of the ninth PMOS transistor P9, and the source of the eighth PMOS transistor P8 is connected to the drain of the tenth PMOS transistor P10;

第八PMOS管P8的漏极和第十NMOS管N10的源极连接作第一运算放大器AMP1的输出端;The drain of the eighth PMOS transistor P8 and the source of the tenth NMOS transistor N10 are connected as the output end of the first operational amplifier AMP1;

第九PMOS管P9的源极、第十PMOS管P10的源极、第十一PMOS管P11的源极、第十三PMOS管P13的源极和所有PMOS管的衬底均连接电源VDD;The source of the ninth PMOS transistor P9, the source of the tenth PMOS transistor P10, the source of the eleventh PMOS transistor P11, the source of the thirteenth PMOS transistor P13 and the substrates of all PMOS transistors are connected to the power supply VDD;

第一偏置电流源Ibias1的负极、第八NMOS管N8的源极、第九NMOS管N9的源极和所有NMOS管的衬底均接地GND。The cathode of the first bias current source Ibias1 , the source of the eighth NMOS transistor N8 , the source of the ninth NMOS transistor N9 and the substrates of all NMOS transistors are grounded to GND.

具体的,所述第二放大器AMP2和第一运算放大器AMP1的结构相同。Specifically, the structure of the second amplifier AMP2 is the same as that of the first operational amplifier AMP1.

具体的,所述第三放大器AMP3包括第十五PMOS管P15、第十六PMOS管P16、第十七PMOS管P17、第十八PMOS管P18、第十九PMOS管P19、第二十PMOS管P20、第二十一PMOS管P21、第二十二PMOS管P22、第十一NMOS管N11、第十二NMOS管N12、第十三NMOS管N13、第十四NMOS管N14、第十五NMOS管N15、第十六NMOS管N16、第十七NMOS管N17、第十八NMOS管N18、第十九NMOS管N19、第二十NMOS管N20、第二十一NMOS管N21、第二十二NMOS管N22、第六电阻R6、第七电阻R7和第二偏置电流源Ibias2;其中,Specifically, the third amplifier AMP3 includes a fifteenth PMOS transistor P15, a sixteenth PMOS transistor P16, a seventeenth PMOS transistor P17, an eighteenth PMOS transistor P18, a nineteenth PMOS transistor P19, a twentieth PMOS transistor P20, twenty-first PMOS transistor P21, twenty-second PMOS transistor P22, eleventh NMOS transistor N11, twelfth NMOS transistor N12, thirteenth NMOS transistor N13, fourteenth NMOS transistor N14, fifteenth NMOS Tube N15, sixteenth NMOS tube N16, seventeenth NMOS tube N17, eighteenth NMOS tube N18, nineteenth NMOS tube N19, twentieth NMOS tube N20, twenty-first NMOS tube N21, twenty-second NMOS transistor N22, the sixth resistor R6, the seventh resistor R7 and the second bias current source Ibias2; wherein,

第十一NMOS管N11的栅极为第三放大器AMP3的同向输入端、漏极与第十五PMOS管P15的源极和第十八PMOS管P18的漏极连接、源极与第十二NMOS管N12的源极和第十四NMOS管N14的漏极连接,第十二NMOS管N12的栅极为第三放大器AMP3的反向输入端、漏极与第十六PMOS管P16的源极和第十七PMOS管P17的漏极连接;The gate of the eleventh NMOS transistor N11 is the non-inverting input terminal of the third amplifier AMP3, the drain is connected to the source of the fifteenth PMOS transistor P15 and the drain of the eighteenth PMOS transistor P18, and the source is connected to the twelfth NMOS transistor P18. The source of the transistor N12 is connected to the drain of the fourteenth NMOS transistor N14, the gate of the twelfth NMOS transistor N12 is the reverse input terminal of the third amplifier AMP3, and the drain is connected to the source of the sixteenth PMOS transistor P16 and the first Seventeen PMOS transistor P17 drain connection;

第十七PMOS管P17的栅极、第十八PMOS管P18的栅极、第二十PMOS管P20的栅极、第十九PMOS管P19的栅极和漏极与第二十一PMOS管P21的源极连接,第十五PMOS管P15的栅极、第十六PMOS管P16的栅极、第二十二PMOS管P22的栅极、第二十一PMOS管P21的栅极和漏极与第二偏置电流源Ibias2的正极连接,第二十PMOS管P20的漏极与第二十二PMOS管P22的源极连接;The gate of the seventeenth PMOS transistor P17, the gate of the eighteenth PMOS transistor P18, the gate of the twentieth PMOS transistor P20, the gate and the drain of the nineteenth PMOS transistor P19 and the twenty-first PMOS transistor P21 The gate of the fifteenth PMOS transistor P15, the gate of the sixteenth PMOS transistor P16, the gate of the twenty-second PMOS transistor P22, the gate and drain of the twenty-first PMOS transistor P21 are connected to The anode of the second bias current source Ibias2 is connected, and the drain of the twentieth PMOS transistor P20 is connected to the source of the twenty-second PMOS transistor P22;

第十三NMOS管N13的栅极和漏极、第十四NMOS管N14的栅极、第六电阻R6的一端和第二十二PMOS管P22的漏极连接,第十三NMOS管N13的源极和第十五NMOS管N15的漏极连接,第十三NMOS管N13的漏极、第六电阻R6的另一端、第十五NMOS管N15的栅极和第十六NMOS管N16的栅极连接,第十四NMOS管N14的源极和第十六NMOS管N16的漏极连接;The gate and drain of the thirteenth NMOS transistor N13, the gate of the fourteenth NMOS transistor N14, one end of the sixth resistor R6 are connected to the drain of the twenty-second PMOS transistor P22, and the source of the thirteenth NMOS transistor N13 pole and the drain of the fifteenth NMOS transistor N15, the drain of the thirteenth NMOS transistor N13, the other end of the sixth resistor R6, the gate of the fifteenth NMOS transistor N15, and the gate of the sixteenth NMOS transistor N16 connection, the source of the fourteenth NMOS transistor N14 is connected to the drain of the sixteenth NMOS transistor N16;

第十七NMOS管N17的栅极和漏极、第十八NMOS管N18的栅极、第七电阻R7的一端和第二十二PMOS管P22的漏极连接,第十七NMOS管N17的源极和第十九NMOS管N19的漏极连接,第十七NMOS管N17的漏极、第七电阻R7的另一端、第十九NMOS管N19的栅极和第二十NMOS管N20的栅极连接,第十八NMOS管N18的源极和第二十NMOS管N20的漏极连接;The gate and drain of the seventeenth NMOS transistor N17, the gate of the eighteenth NMOS transistor N18, one end of the seventh resistor R7 are connected to the drain of the twenty-second PMOS transistor P22, and the source of the seventeenth NMOS transistor N17 pole and the drain of the nineteenth NMOS transistor N19, the drain of the seventeenth NMOS transistor N17, the other end of the seventh resistor R7, the gate of the nineteenth NMOS transistor N19 and the gate of the twentieth NMOS transistor N20 connection, the source of the eighteenth NMOS transistor N18 is connected to the drain of the twentieth NMOS transistor N20;

第十六PMOS管P16的漏极和第十八NMOS管N18的源极连接作第三放大器AMP3的输出端;The drain of the sixteenth PMOS transistor P16 and the source of the eighteenth NMOS transistor N18 are connected as the output terminal of the third amplifier AMP3;

第十七PMOS管P17的源极、第十八PMOS管P18的源极、第十九PMOS管P19的源极、第二十PMOS管P20的源极和所有PMOS管的衬底均接电源VDD;The source of the seventeenth PMOS transistor P17, the source of the eighteenth PMOS transistor P18, the source of the nineteenth PMOS transistor P19, the source of the twentieth PMOS transistor P20 and the substrates of all PMOS transistors are connected to the power supply VDD ;

第二偏置电流源Ibias2的负极、第十五NMOS管N15的源极、第十六NMOS管N16的源极、第十九NMOS管N19的源极、第二十NMOS管N20的源极和所有NMOS管的衬底均接地。The cathode of the second bias current source Ibias2, the source of the fifteenth NMOS transistor N15, the source of the sixteenth NMOS transistor N16, the source of the nineteenth NMOS transistor N19, the source of the twentieth NMOS transistor N20 and The substrates of all NMOS transistors are grounded.

本发明的有益效果为,相比于传统的误差放大器,本发明提出了一种新颖的误差放大器结构,采用两个跨导放大器将电压转化为电流,并分别镜像至两个电流源,实现分别对电容C1灌入/拉出电流,从而调节输出电压大小,提高了系统的响应速度和精度,增加了系统的稳定性,并且输入跨导恒定,输出电阻和低频增益在合适范围内,电源抑制比高,失调电压小,能有效锁定输出电压。The beneficial effect of the present invention is that, compared with the traditional error amplifier, the present invention proposes a novel error amplifier structure, which uses two transconductance amplifiers to convert the voltage into current, and mirrors them to two current sources respectively, realizing respectively Sink/pull current to capacitor C1 to adjust the output voltage, improve the response speed and accuracy of the system, increase the stability of the system, and the input transconductance is constant, the output resistance and low-frequency gain are within the appropriate range, and the power supply is suppressed The ratio is high, the offset voltage is small, and the output voltage can be effectively locked.

附图说明Description of drawings

图1为传统误差放大器电路结构示意图;Fig. 1 is a schematic structural diagram of a traditional error amplifier circuit;

图2为本发明的误差放大器电路的逻辑框图;Fig. 2 is the logical block diagram of error amplifier circuit of the present invention;

图3为本发明的误差放大器电路的电路结构示意图;Fig. 3 is the circuit structural representation of error amplifier circuit of the present invention;

图4为本发明的第一放大器AMP1的电路结构示意图;Fig. 4 is the schematic diagram of the circuit structure of the first amplifier AMP1 of the present invention;

图5为本发明的第三放大器AMP3的电路结构示意图。FIG. 5 is a schematic diagram of the circuit structure of the third amplifier AMP3 of the present invention.

具体实施方式Detailed ways

下面结合附图,详细描述本发明的技术方案:Below in conjunction with accompanying drawing, describe technical scheme of the present invention in detail:

如图2所示,本发明所述的一种误差放大器电路,包括第一跨导放大器、第二跨导放大器、第一镜像电流、第二镜像电流和第一电容C1,所述第一跨导放大器的输入端为误差放大器电路的第一输入端Vref、输出端接第一镜像电流,所述第二跨导放大器的输入端为误差放大器电路的第二输入端Vin、输出端接第二镜像电流,第一镜像电流的输出端和第二镜像电流的输出端接第一电容C1的一端作为误差放大器电路的输出端Vea,第一电容C1的另一端接地。As shown in Fig. 2, a kind of error amplifier circuit described in the present invention includes a first transconductance amplifier, a second transconductance amplifier, a first mirror current, a second mirror current and a first capacitor C1, the first transconductance The input terminal of the conductance amplifier is the first input terminal Vref of the error amplifier circuit, the output terminal is connected to the first mirror current, the input terminal of the second transconductance amplifier is the second input terminal Vin of the error amplifier circuit, and the output terminal is connected to the second For the mirror current, the output terminal of the first mirror current and the output terminal of the second mirror current are connected to one terminal of the first capacitor C1 as the output terminal Vea of the error amplifier circuit, and the other terminal of the first capacitor C1 is grounded.

如图3所示,第一跨导放大器包括第一运算放大器AMP1、第二电容C2、第一电阻R1和第一NMOS管N1,第二跨导放大器包括第二运算放大器AMP2、第三运算放大器AMP3、第三电容C3、第二电阻R2、第三电阻R3、第四电阻R4和第二NMOS管N2,第一镜像电流包括第一PMOS管P1、第二PMOS管P2、第三PMOS管P3和第四PMOS管P4,第二镜像电流包括第三NMOS管N3、第四NMOS管N4、第五NMOS管N5和第六NMOS管N6;其中,As shown in Figure 3, the first transconductance amplifier includes a first operational amplifier AMP1, a second capacitor C2, a first resistor R1 and a first NMOS transistor N1, and the second transconductance amplifier includes a second operational amplifier AMP2, a third operational amplifier AMP3, the third capacitor C3, the second resistor R2, the third resistor R3, the fourth resistor R4 and the second NMOS transistor N2, the first mirror current includes the first PMOS transistor P1, the second PMOS transistor P2, and the third PMOS transistor P3 and the fourth PMOS transistor P4, the second mirror current includes the third NMOS transistor N3, the fourth NMOS transistor N4, the fifth NMOS transistor N5 and the sixth NMOS transistor N6; wherein,

第一运算放大器AMP1的同向输入端为误差放大器电路的第一输入端Vref、反向输入端与第一电阻R1的一端和第一NMOS管N1的源极连接、输出端与第二电容C2的一端和第一NMOS管N1的栅极连接;The non-inverting input terminal of the first operational amplifier AMP1 is the first input terminal Vref of the error amplifier circuit, the inverting input terminal is connected to one end of the first resistor R1 and the source of the first NMOS transistor N1, and the output terminal is connected to the second capacitor C2 One end of is connected to the gate of the first NMOS transistor N1;

第二运算放大器AMP2的同向输入端为误差放大器电路的第二输入端Vin、反向输入端与第四电阻R4的一端和第二NMOS管N2的源极连接、输出端与第三电容C3的一端和第二NMOS管N2的栅极连接;The non-inverting input terminal of the second operational amplifier AMP2 is the second input terminal Vin of the error amplifier circuit, the inverting input terminal is connected to one end of the fourth resistor R4 and the source of the second NMOS transistor N2, and the output terminal is connected to the third capacitor C3 One end of is connected to the gate of the second NMOS transistor N2;

第二NMOS管N2的漏极与第二电阻R2的一端连接第三运算放大器AMP3的反向输入端,第三电阻R3的一端和第三NMOS管N3的漏极连接第三运算放大器AMP3的同向输入端,第三运算放大器AMP3的输出端连接第三NMOS管N3的栅极和第四NMOS管N4的栅极;The drain of the second NMOS transistor N2 and one end of the second resistor R2 are connected to the inverting input end of the third operational amplifier AMP3, and one end of the third resistor R3 and the drain of the third NMOS transistor N3 are connected to the same terminal of the third operational amplifier AMP3. To the input end, the output end of the third operational amplifier AMP3 is connected to the gate of the third NMOS transistor N3 and the gate of the fourth NMOS transistor N4;

第一PMOS管P1的栅极和漏极连接第一NMOS管N1的漏极和第二PMOS管P2的栅极、源极连接第三PMOS管P3的漏极,第三PMOS管P3的栅极、第四PMOS管P4的栅极和漏极和第二PMOS管P2的源极连接;The gate and drain of the first PMOS transistor P1 are connected to the drain of the first NMOS transistor N1 and the gate of the second PMOS transistor P2, the source is connected to the drain of the third PMOS transistor P3, and the gate of the third PMOS transistor P3 , the gate and drain of the fourth PMOS transistor P4 are connected to the source of the second PMOS transistor P2;

第二PMOS管P2的漏极、第四NMOS管N4的源极和第一电容C1的一端连接作为误差放大器电路的输出端Vea;The drain of the second PMOS transistor P2, the source of the fourth NMOS transistor N4 and one end of the first capacitor C1 are connected as the output terminal Vea of the error amplifier circuit;

第三NMOS管N3的源极与第五NMOS管N5的漏极连接,第四NMOS管N4的源极、第五NMOS管N5的栅极和第六NMOS管N6的栅极和漏极连接;The source of the third NMOS transistor N3 is connected to the drain of the fifth NMOS transistor N5, the source of the fourth NMOS transistor N4, the gate of the fifth NMOS transistor N5, and the gate and drain of the sixth NMOS transistor N6 are connected;

第三PMOS管P3的源极、第四PMOS管P4的源极、第二电阻R2的另一端、第三电阻R3的另一端和所有PMOS管的衬底均接电源VDD;The source of the third PMOS transistor P3, the source of the fourth PMOS transistor P4, the other end of the second resistor R2, the other end of the third resistor R3 and the substrates of all PMOS transistors are connected to the power supply VDD;

第一电阻R1的另一端、第二电容C2的另一端、第三电容C3的另一端、第四电阻R4的另一端、第五NMOS管N5的源极、第六NMOS管N6的源极和所有NMOS管的衬底均接地。The other end of the first resistor R1, the other end of the second capacitor C2, the other end of the third capacitor C3, the other end of the fourth resistor R4, the source of the fifth NMOS transistor N5, the source of the sixth NMOS transistor N6 and The substrates of all NMOS transistors are grounded.

如图4所示,第一运算放大器AMP1包括第五PMOS管P5、第六PMOS管P6、第七PMOS管P7、第八PMOS管P8、第九PMOS管P9、第十PMOS管P10、第十一PMOS管P11、第十二PMOS管P12、第十三PMOS管P13、第十四PMOS管P14、第七NMOS管N7、第八NMOS管N8、第九NMOS管N9、第十NMOS管N10、第五电阻R5和第一偏置电流源Ibias1;其中,As shown in FIG. 4, the first operational amplifier AMP1 includes a fifth PMOS transistor P5, a sixth PMOS transistor P6, a seventh PMOS transistor P7, an eighth PMOS transistor P8, a ninth PMOS transistor P9, a tenth PMOS transistor P10, a tenth PMOS transistor One PMOS transistor P11, the twelfth PMOS transistor P12, the thirteenth PMOS transistor P13, the fourteenth PMOS transistor P14, the seventh NMOS transistor N7, the eighth NMOS transistor N8, the ninth NMOS transistor N9, the tenth NMOS transistor N10, The fifth resistor R5 and the first bias current source Ibias1; wherein,

第五PMOS管P5和第六PMOS管P6组成PMOS输入差分对,第五PMOS管P5的栅极连接第一运算放大器AMP1的同向输入端、漏极连接第七NMOS管N7的源极和第八NMOS管N8的漏极,第六PMOS管P6的栅极连接运算放大器AMP的反向输入端、漏极连接第九NMOS管N9的源极和第十NMOS管N10的漏极;The fifth PMOS transistor P5 and the sixth PMOS transistor P6 form a PMOS input differential pair, the gate of the fifth PMOS transistor P5 is connected to the same-inverting input terminal of the first operational amplifier AMP1, and the drain is connected to the source of the seventh NMOS transistor N7 and the The drains of the eight NMOS transistors N8, the gate of the sixth PMOS transistor P6 are connected to the inverting input terminal of the operational amplifier AMP, and the drains are connected to the source of the ninth NMOS transistor N9 and the drain of the tenth NMOS transistor N10;

第七NMOS管N7的漏极连接第五电阻R5的一端、第八NMOS管N8的栅极和第九NMOS管N9的栅极,第五电阻R5的另一端连接第七NMOS管N7的栅极、第八NMOS管N8的栅极和第七PMOS管P7的漏极;The drain of the seventh NMOS transistor N7 is connected to one end of the fifth resistor R5, the gate of the eighth NMOS transistor N8, and the gate of the ninth NMOS transistor N9, and the other end of the fifth resistor R5 is connected to the gate of the seventh NMOS transistor N7 , the gate of the eighth NMOS transistor N8 and the drain of the seventh PMOS transistor P7;

第七PMOS管P7的栅极、第八PMOS管P8的栅极、第十四PMOS管P14的栅极和第十二PMOS管P12的栅极和漏极以及第一偏置电流源Ibias1的正极连接,第十二PMOS管P12的源极与第十一PMOS管P11的漏极和栅极、第十三PMOS管P13的栅极、第九PMOS管P9的栅极和第十PMOS管P10的栅极连接,第十三PMOS管P13的漏极和第十四PMOS管P14的源极连接,第十四PMOS管P14的漏极与第五PMOS管P5的源极和第六PMOS管P6的源极连接;The gate of the seventh PMOS transistor P7, the gate of the eighth PMOS transistor P8, the gate of the fourteenth PMOS transistor P14, the gate and the drain of the twelfth PMOS transistor P12, and the anode of the first bias current source Ibias1 The source of the twelfth PMOS transistor P12 is connected to the drain and gate of the eleventh PMOS transistor P11, the gate of the thirteenth PMOS transistor P13, the gate of the ninth PMOS transistor P9, and the gate of the tenth PMOS transistor P10 Gate connection, the drain of the thirteenth PMOS transistor P13 is connected to the source of the fourteenth PMOS transistor P14, the drain of the fourteenth PMOS transistor P14 is connected to the source of the fifth PMOS transistor P5 and the source of the sixth PMOS transistor P6 source connection;

第七PMOS管P7的源极与第九PMOS管P9的漏极连接,第八PMOS管P8的源极和第十PMOS管P10的漏极连接;The source of the seventh PMOS transistor P7 is connected to the drain of the ninth PMOS transistor P9, and the source of the eighth PMOS transistor P8 is connected to the drain of the tenth PMOS transistor P10;

第八PMOS管P8的漏极和第十NMOS管N10的源极连接作第一运算放大器AMP1的输出端;The drain of the eighth PMOS transistor P8 and the source of the tenth NMOS transistor N10 are connected as the output end of the first operational amplifier AMP1;

第九PMOS管P9的源极、第十PMOS管P10的源极、第十一PMOS管P11的源极、第十三PMOS管P13的源极和所有PMOS管的衬底均连接电源VDD;The source of the ninth PMOS transistor P9, the source of the tenth PMOS transistor P10, the source of the eleventh PMOS transistor P11, the source of the thirteenth PMOS transistor P13 and the substrates of all PMOS transistors are connected to the power supply VDD;

第一偏置电流源Ibias1的负极、第八NMOS管N8的源极、第九NMOS管N9的源极和所有NMOS管的衬底均接地GND。The cathode of the first bias current source Ibias1 , the source of the eighth NMOS transistor N8 , the source of the ninth NMOS transistor N9 and the substrates of all NMOS transistors are grounded to GND.

第二放大器AMP2和第一运算放大器AMP1的结构相同,具体结构如本发明上面所述的第一运算放大器AMP1的结构,在次不再赘述。The structure of the second amplifier AMP2 is the same as that of the first operational amplifier AMP1, and the specific structure is the same as that of the first operational amplifier AMP1 described above in the present invention, which will not be repeated here.

如图5所示,第三放大器AMP3包括第十五PMOS管P15、第十六PMOS管P16、第十七PMOS管P17、第十八PMOS管P18、第十九PMOS管P19、第二十PMOS管P20、第二十一PMOS管P21、第二十二PMOS管P22、第十一NMOS管N11、第十二NMOS管N12、第十三NMOS管N13、第十四NMOS管N14、第十五NMOS管N15、第十六NMOS管N16、第十七NMOS管N17、第十八NMOS管N18、第十九NMOS管N19、第二十NMOS管N20、第二十一NMOS管N21、第二十二NMOS管N22、第六电阻R6、第七电阻R7和第二偏置电流源Ibias2;其中,As shown in FIG. 5, the third amplifier AMP3 includes a fifteenth PMOS transistor P15, a sixteenth PMOS transistor P16, a seventeenth PMOS transistor P17, an eighteenth PMOS transistor P18, a nineteenth PMOS transistor P19, and a twentieth PMOS transistor. Tube P20, twenty-first PMOS tube P21, twenty-second PMOS tube P22, eleventh NMOS tube N11, twelfth NMOS tube N12, thirteenth NMOS tube N13, fourteenth NMOS tube N14, fifteenth NMOS tube N15, sixteenth NMOS tube N16, seventeenth NMOS tube N17, eighteenth NMOS tube N18, nineteenth NMOS tube N19, twenty-first NMOS tube N20, twenty-first NMOS tube N21, twenty-first Two NMOS transistors N22, the sixth resistor R6, the seventh resistor R7 and the second bias current source Ibias2; wherein,

第十一NMOS管N11的栅极为第三放大器AMP3的同向输入端、漏极与第十五PMOS管P15的源极和第十八PMOS管P18的漏极连接、源极与第十二NMOS管N12的源极和第十四NMOS管N14的漏极连接,第十二NMOS管N12的栅极为第三放大器AMP3的反向输入端、漏极与第十六PMOS管P16的源极和第十七PMOS管P17的漏极连接;The gate of the eleventh NMOS transistor N11 is the non-inverting input terminal of the third amplifier AMP3, the drain is connected to the source of the fifteenth PMOS transistor P15 and the drain of the eighteenth PMOS transistor P18, and the source is connected to the twelfth NMOS transistor P18. The source of the transistor N12 is connected to the drain of the fourteenth NMOS transistor N14, the gate of the twelfth NMOS transistor N12 is the reverse input terminal of the third amplifier AMP3, and the drain is connected to the source of the sixteenth PMOS transistor P16 and the first Seventeen PMOS transistor P17 drain connection;

第十七PMOS管P17的栅极、第十八PMOS管P18的栅极、第二十PMOS管P20的栅极、第十九PMOS管P19的栅极和漏极与第二十一PMOS管P21的源极连接,第十五PMOS管P15的栅极、第十六PMOS管P16的栅极、第二十二PMOS管P22的栅极、第二十一PMOS管P21的栅极和漏极与第二偏置电流源Ibias2的正极连接,第二十PMOS管P20的漏极与第二十二PMOS管P22的源极连接;The gate of the seventeenth PMOS transistor P17, the gate of the eighteenth PMOS transistor P18, the gate of the twentieth PMOS transistor P20, the gate and the drain of the nineteenth PMOS transistor P19 and the twenty-first PMOS transistor P21 The gate of the fifteenth PMOS transistor P15, the gate of the sixteenth PMOS transistor P16, the gate of the twenty-second PMOS transistor P22, the gate and drain of the twenty-first PMOS transistor P21 are connected to The anode of the second bias current source Ibias2 is connected, and the drain of the twentieth PMOS transistor P20 is connected to the source of the twenty-second PMOS transistor P22;

第十三NMOS管N13的栅极和漏极、第十四NMOS管N14的栅极、第六电阻R6的一端和第二十二PMOS管P22的漏极连接,第十三NMOS管N13的源极和第十五NMOS管N15的漏极连接,第十三NMOS管N13的漏极、第六电阻R6的另一端、第十五NMOS管N15的栅极和第十六NMOS管N16的栅极连接,第十四NMOS管N14的源极和第十六NMOS管N16的漏极连接;The gate and drain of the thirteenth NMOS transistor N13, the gate of the fourteenth NMOS transistor N14, one end of the sixth resistor R6 are connected to the drain of the twenty-second PMOS transistor P22, and the source of the thirteenth NMOS transistor N13 pole and the drain of the fifteenth NMOS transistor N15, the drain of the thirteenth NMOS transistor N13, the other end of the sixth resistor R6, the gate of the fifteenth NMOS transistor N15, and the gate of the sixteenth NMOS transistor N16 connection, the source of the fourteenth NMOS transistor N14 is connected to the drain of the sixteenth NMOS transistor N16;

第十七NMOS管N17的栅极和漏极、第十八NMOS管N18的栅极、第七电阻R7的一端和第二十二PMOS管P22的漏极连接,第十七NMOS管N17的源极和第十九NMOS管N19的漏极连接,第十七NMOS管N17的漏极、第七电阻R7的另一端、第十九NMOS管N19的栅极和第二十NMOS管N20的栅极连接,第十八NMOS管N18的源极和第二十NMOS管N20的漏极连接;The gate and drain of the seventeenth NMOS transistor N17, the gate of the eighteenth NMOS transistor N18, one end of the seventh resistor R7 are connected to the drain of the twenty-second PMOS transistor P22, and the source of the seventeenth NMOS transistor N17 pole and the drain of the nineteenth NMOS transistor N19, the drain of the seventeenth NMOS transistor N17, the other end of the seventh resistor R7, the gate of the nineteenth NMOS transistor N19 and the gate of the twentieth NMOS transistor N20 connection, the source of the eighteenth NMOS transistor N18 is connected to the drain of the twentieth NMOS transistor N20;

第十六PMOS管P16的漏极和第十八NMOS管N18的源极连接作第三放大器AMP3的输出端;The drain of the sixteenth PMOS transistor P16 and the source of the eighteenth NMOS transistor N18 are connected as the output terminal of the third amplifier AMP3;

第十七PMOS管P17的源极、第十八PMOS管P18的源极、第十九PMOS管P19的源极、第二十PMOS管P20的源极和所有PMOS管的衬底均接电源VDD;The source of the seventeenth PMOS transistor P17, the source of the eighteenth PMOS transistor P18, the source of the nineteenth PMOS transistor P19, the source of the twentieth PMOS transistor P20 and the substrates of all PMOS transistors are connected to the power supply VDD ;

第二偏置电流源Ibias2的负极、第十五NMOS管N15的源极、第十六NMOS管N16的源极、第十九NMOS管N19的源极、第二十NMOS管N20的源极和所有NMOS管的衬底均接地。The cathode of the second bias current source Ibias2, the source of the fifteenth NMOS transistor N15, the source of the sixteenth NMOS transistor N16, the source of the nineteenth NMOS transistor N19, the source of the twentieth NMOS transistor N20 and The substrates of all NMOS transistors are grounded.

本发明的工作原理和流程为:Working principle and flow process of the present invention are:

为了方便说明,下面的内容中第一镜像电流为恒定镜像电流源,第二镜像电流为受控镜像电流沉。For the convenience of description, the first mirror current in the following content is a constant mirror current source, and the second mirror current is a controlled mirror current sink.

第一跨导放大器将输入电压信号Vref转化为电流I1,我们考虑第一运算放大器AMP1的增益足够大,输出电流

Figure BDA00003528656100081
第二电容C2的作用是降低环路主极点的频率,使相位裕度达到60deg。PMOS管P1至P4所构成的电路为威尔逊电流镜,为恒定镜像电流源,它的目的是将电流I1进行精确的放大,并且提供一个很大的输出电阻。其威尔逊电流镜输出电阻表达式为Rout=ro3.(1+gm3.ro4)。The first transconductance amplifier converts the input voltage signal V ref into current I 1 , we consider that the gain of the first operational amplifier AMP1 is large enough, and the output current
Figure BDA00003528656100081
The function of the second capacitor C2 is to reduce the frequency of the main pole of the loop, so that the phase margin reaches 60deg. The circuit formed by PMOS transistors P1 to P4 is a Wilson current mirror, which is a constant mirror current source. Its purpose is to accurately amplify the current I 1 and provide a large output resistance. The expression of the output resistance of the Wilson current mirror is R out =r o3 .(1+g m3 .r o4 ).

第二跨导放大器中的第二运算放大器AMP2与第一跨导放大器中的第一运算放大器AMP1的设计完全相同,因为这样可以使得恒定镜像电流源与受控镜像电流沉的输入尽可能的对称,以减小误差放大器的输入失调电压。The design of the second operational amplifier AMP2 in the second transconductance amplifier is exactly the same as that of the first operational amplifier AMP1 in the first transconductance amplifier, because this can make the input of the constant mirror current source and the controlled mirror current sink as symmetrical as possible , to reduce the input offset voltage of the error amplifier.

第二跨导放大器将输入电压信号Vref转化为电流I4,同样我们考虑运放第二运算放大器AMP2的增益足够大,输出电流

Figure BDA00003528656100082
第三电容C3的作用是降低环路主极点的频率,使相位裕度达到60deg。第三运算放大器AMP3的作用是通过电流采样电压求和负反馈,将I2精确复制到NMOS管构成的威尔逊电流源的输入电流I3,其中I4=I3=I2。并通过威尔逊电流源输出,达到与镜像电流源电路匹配的目的。The second transconductance amplifier converts the input voltage signal V ref into the current I 4 . Similarly, we consider that the gain of the second operational amplifier AMP2 is large enough, and the output current
Figure BDA00003528656100082
The function of the third capacitor C3 is to reduce the frequency of the main pole of the loop, so that the phase margin reaches 60deg. The function of the third operational amplifier AMP3 is to accurately copy I 2 to the input current I 3 of the Wilson current source composed of NMOS transistors through current sampling and voltage summing negative feedback, where I 4 =I 3 =I 2 . And output through the Wilson current source to achieve the purpose of matching with the mirror current source circuit.

恒定镜像电流源输出电流Isource与受控镜像电流沉输出电流Isink会进行电流比较,并对第一电容C1充电或放电,从而改变误差放大器输出端Vea电压。The output current I source of the constant mirror current source is compared with the output current I sink of the controlled mirror current sink, and the first capacitor C1 is charged or discharged, thereby changing the voltage of the output terminal V ea of the error amplifier.

综上可以看出,本发明的误差放大器结构新颖,通过镜像电流源和镜像电流沉的电流比较,对第一电容C1充放电来调节输出电压,提高了系统的响应速度和精度,增加了系统的稳定性。并且输入跨导恒定,输出电阻和低频增益在合适范围内,电源抑制比高,失调电压小,能有效锁定输出电压。In conclusion, it can be seen that the structure of the error amplifier of the present invention is novel, and the output voltage is adjusted by charging and discharging the first capacitor C1 by comparing the currents of the mirror current source and the mirror current sink, which improves the response speed and precision of the system and increases the system stability. And the input transconductance is constant, the output resistance and low-frequency gain are within the appropriate range, the power supply rejection ratio is high, the offset voltage is small, and the output voltage can be effectively locked.

Claims (5)

1. An error amplifier circuit is characterized by comprising a first transconductance amplifier, a second transconductance amplifier, a first mirror current, a second mirror current and a first capacitor C1, wherein the input end of the first transconductance amplifier is a first input end Vref of the error amplifier circuit, the output end of the first mirror current is connected with the first mirror current, the input end of the second transconductance amplifier is a second input end Vin of the error amplifier circuit, the output end of the second mirror current is connected with the second mirror current, the output end of the first mirror current and the output end of the second mirror current are connected with one end of a first capacitor C1 to serve as an output end Vea of the error amplifier circuit, and the other end of the first capacitor C1 is grounded.
2. The error amplifier circuit of claim 1, wherein the first transconductance amplifier comprises a first operational amplifier AMP1, a second capacitor C2, a first resistor R1, and a first NMOS transistor N1, wherein the second transconductance amplifier comprises a second operational amplifier AMP2, a third operational amplifier AMP3, a third capacitor C3, a second resistor R2, a third resistor R3, a fourth resistor R4, and a second NMOS transistor N2, wherein the first mirror current comprises a first PMOS transistor P1, a second PMOS transistor P2, a third PMOS transistor P3, and a fourth PMOS transistor P4, wherein the second mirror current comprises a third NMOS transistor N3, a fourth NMOS transistor N4, a fifth NMOS transistor N5, and a sixth NMOS transistor N6; wherein,
the same-direction input end of the first operational amplifier AMP1 is a first input end Vref of the error amplifier circuit, the reverse-direction input end is connected with one end of a first resistor R1 and the source electrode of a first NMOS transistor N1, and the output end is connected with one end of a second capacitor C2 and the grid electrode of the first NMOS transistor N1;
the same-direction input end of the second operational amplifier AMP2 is a second input end Vin of the error amplifier circuit, the reverse-direction input end is connected with one end of a fourth resistor R4 and the source electrode of the second NMOS transistor N2, and the output end is connected with one end of a third capacitor C3 and the grid electrode of the second NMOS transistor N2;
the drain electrode of the second NMOS transistor N2 and one end of the second resistor R2 are connected with the inverting input end of the third operational amplifier AMP3, one end of the third resistor R3 and the drain electrode of the third NMOS transistor N3 are connected with the homonymous input end of the third operational amplifier AMP3, and the output end of the third operational amplifier AMP3 is connected with the gate electrode of the third NMOS transistor N3 and the gate electrode of the fourth NMOS transistor N4;
the grid and the drain of a first PMOS tube P1 are connected with the drain of a first NMOS tube N1 and the grid of a second PMOS tube P2, the source is connected with the drain of a third PMOS tube P3, the grid and the drain of the third PMOS tube P3 and the grid and the drain of a fourth PMOS tube P4 are connected with the source of a second PMOS tube P2;
the drain electrode of the second PMOS tube P2, the source electrode of the fourth NMOS tube N4 and one end of the first capacitor C1 are connected to serve as the output end Vea of the error amplifier circuit;
the source electrode of the third NMOS transistor N3 is connected with the drain electrode of the fifth NMOS transistor N5, the source electrode of the fourth NMOS transistor N4, the grid electrode of the fifth NMOS transistor N5 and the grid electrode and the drain electrode of the sixth NMOS transistor N6 are connected;
the source electrode of the third PMOS tube P3, the source electrode of the fourth PMOS tube P4, the other end of the second resistor R2, the other end of the third resistor R3 and the substrates of all the PMOS tubes are connected with a power supply VDD;
the other end of the first resistor R1, the other end of the second capacitor C2, the other end of the third capacitor C3, the other end of the fourth resistor R4, the source of the fifth NMOS transistor N5, the source of the sixth NMOS transistor N6 and the substrates of all the NMOS transistors are grounded.
3. The error amplifier circuit as claimed in claim 2, wherein the first operational amplifier AMP1 comprises a fifth PMOS transistor P5, a sixth PMOS transistor P6, a seventh PMOS transistor P7, an eighth PMOS transistor P8, a ninth PMOS transistor P9, a tenth PMOS transistor P10, an eleventh PMOS transistor P11, a twelfth PMOS transistor P12, a thirteenth PMOS transistor P13, a fourteenth PMOS transistor P14, a seventh NMOS transistor N7, an eighth NMOS transistor N8, a ninth NMOS transistor N9, a tenth NMOS transistor N10, a fifth resistor R5 and a first bias current source Ibias 1; wherein,
the grid electrode of the fifth PMOS pipe P5 is connected with the same-direction input end of the first operational amplifier AMP1, the drain electrode of the fifth PMOS pipe P5 is connected with the source electrode of the seventh NMOS pipe N7 and the drain electrode of the eighth NMOS pipe N8, the grid electrode of the sixth PMOS pipe P6 is connected with the reverse-direction input end of the operational amplifier AMP, and the drain electrode of the sixth PMOS pipe P6 is connected with the source electrode of the ninth NMOS pipe N9 and the drain electrode of the tenth NMOS pipe N10;
the drain electrode of the seventh NMOS transistor N7 is connected with one end of a fifth resistor R5, the gate electrode of an eighth NMOS transistor N8 and the gate electrode of a ninth NMOS transistor N9, and the other end of the fifth resistor R5 is connected with the gate electrode of a seventh NMOS transistor N7, the gate electrode of an eighth NMOS transistor N8 and the drain electrode of a seventh PMOS transistor P7;
the grid electrode of the seventh PMOS tube P7, the grid electrode of the eighth PMOS tube P8, the grid electrode of the fourteenth PMOS tube P14, the grid electrode and the drain electrode of the twelfth PMOS tube P12 and the anode of the first bias current source Ibias1 are connected, the source electrode of the twelfth PMOS tube P12 is connected with the drain electrode and the grid electrode of the eleventh PMOS tube P11, the grid electrode of the thirteenth PMOS tube P13, the grid electrode of the ninth PMOS tube P9 and the grid electrode of the tenth PMOS tube P10, the drain electrode of the thirteenth PMOS tube P13 is connected with the source electrode of the fourteenth PMOS tube P14, and the drain electrode of the fourteenth PMOS tube P14 is connected with the source electrode of the fifth PMOS tube P5 and the source electrode of the sixth PMOS tube P6;
the source electrode of the seventh PMOS tube P7 is connected with the drain electrode of the ninth PMOS tube P9, and the source electrode of the eighth PMOS tube P8 is connected with the drain electrode of the tenth PMOS tube P10;
the drain electrode of the eighth PMOS transistor P8 and the source electrode of the tenth NMOS transistor N10 are connected as the output end of the first operational amplifier AMP 1;
the source electrode of the ninth PMOS tube P9, the source electrode of the tenth PMOS tube P10, the source electrode of the eleventh PMOS tube P11, the source electrode of the thirteenth PMOS tube P13 and the substrates of all the PMOS tubes are connected with a power supply VDD;
the cathode of the first bias current source Ibias1, the source of the eighth NMOS transistor N8, the source of the ninth NMOS transistor N9, and the substrates of all the NMOS transistors are grounded GND.
4. The error amplifier circuit of claim 3, wherein the second amplifier AMP2 and the first operational amplifier AMP1 are identical in structure.
5. The error amplifier circuit of claim 4, wherein the third amplifier AMP3 comprises a fifteenth PMOS transistor P15, a sixteenth PMOS transistor P16, a seventeenth PMOS transistor P17, an eighteenth PMOS transistor P18, a nineteenth PMOS transistor P19, a twentieth PMOS transistor P20, a twenty-first PMOS transistor P21, a twenty-second PMOS transistor P22, an eleventh NMOS transistor N11, a twelfth NMOS transistor N12, a thirteenth NMOS transistor N13, a fourteenth NMOS transistor N14, a fifteenth NMOS transistor N15, a sixteenth NMOS transistor N16, a seventeenth NMOS transistor N17, an eighteenth NMOS transistor N18, a nineteenth NMOS transistor N19, a twentieth NMOS transistor N20, a twenty-first NMOS transistor N21, a twenty-second NMOS transistor N22, a sixth resistor R6, a seventh resistor R7 and a second bias current source Ibias 2; wherein,
the gate of the eleventh NMOS transistor N11 is the same-direction input end of the third amplifier AMP3, the drain is connected to the source of the fifteenth PMOS transistor P15 and the drain of the eighteenth PMOS transistor P18, the source is connected to the source of the twelfth NMOS transistor N12 and the drain of the fourteenth NMOS transistor N14, the gate of the twelfth NMOS transistor N12 is the opposite-direction input end of the third amplifier AMP3, and the drain is connected to the source of the sixteenth PMOS transistor P16 and the drain of the seventeenth PMOS transistor P17;
the grid electrode of a seventeenth PMOS tube P17, the grid electrode of an eighteenth PMOS tube P18, the grid electrode of a twentieth PMOS tube P20, the grid electrode and the drain electrode of a nineteenth PMOS tube P19 are connected with the source electrode of a twenty-first PMOS tube P21, the grid electrode of a fifteenth PMOS tube P15, the grid electrode of a sixteenth PMOS tube P16, the grid electrode of a twenty-second PMOS tube P22, the grid electrode and the drain electrode of the twenty-first PMOS tube P21 are connected with the positive electrode of a second bias current source Ibias2, and the drain electrode of the twentieth PMOS tube P20 is connected with the source electrode of a twenty-second PMOS tube P22;
the grid and the drain of a thirteenth NMOS tube N13, the grid of a fourteenth NMOS tube N14, one end of a sixth resistor R6 and the drain of a twenty-second PMOS tube P22 are connected, the source of the thirteenth NMOS tube N13 and the drain of a fifteenth NMOS tube N15 are connected, the drain of the thirteenth NMOS tube N13, the other end of the sixth resistor R6, the grid of the fifteenth NMOS tube N15 and the grid of a sixteenth NMOS tube N16 are connected, and the source of the fourteenth NMOS tube N14 and the drain of the sixteenth NMOS tube N16 are connected;
the grid and the drain of a seventeenth NMOS transistor N17, the grid of an eighteenth NMOS transistor N18, one end of a seventh resistor R7 are connected with the drain of a twenty-second PMOS transistor P22, the source of the seventeenth NMOS transistor N17 is connected with the drain of a nineteenth NMOS transistor N19, the drain of a seventeenth NMOS transistor N17, the other end of the seventh resistor R7, the grid of the nineteenth NMOS transistor N19 is connected with the grid of a twenty NMOS transistor N20, and the source of the eighteenth NMOS transistor N18 is connected with the drain of a twentieth NMOS transistor N20;
the drain electrode of the sixteenth PMOS tube P16 and the source electrode of the eighteenth NMOS tube N18 are connected as the output end of a third amplifier AMP 3;
the source electrode of the seventeenth PMOS tube P17, the source electrode of the eighteenth PMOS tube P18, the source electrode of the nineteenth PMOS tube P19, the source electrode of the twentieth PMOS tube P20 and the substrates of all the PMOS tubes are connected with a power supply VDD;
the cathode of the second bias current source Ibias2, the source of the fifteenth NMOS transistor N15, the source of the sixteenth NMOS transistor N16, the source of the nineteenth NMOS transistor N19, the source of the twentieth NMOS transistor N20 and the substrates of all the NMOS transistors are grounded.
CN201310301506.1A 2013-07-18 2013-07-18 A kind of error amplifier circuit Expired - Fee Related CN103414438B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310301506.1A CN103414438B (en) 2013-07-18 2013-07-18 A kind of error amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310301506.1A CN103414438B (en) 2013-07-18 2013-07-18 A kind of error amplifier circuit

Publications (2)

Publication Number Publication Date
CN103414438A true CN103414438A (en) 2013-11-27
CN103414438B CN103414438B (en) 2017-03-29

Family

ID=49607428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310301506.1A Expired - Fee Related CN103414438B (en) 2013-07-18 2013-07-18 A kind of error amplifier circuit

Country Status (1)

Country Link
CN (1) CN103414438B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811905A (en) * 2014-12-29 2016-07-27 意法半导体研发(深圳)有限公司 Low-dropout amplifier
CN108736834A (en) * 2018-05-23 2018-11-02 中国电子科技集团公司第二十四研究所 A kind of high linearity time amplifier that charged inhibits
CN109861673A (en) * 2019-03-14 2019-06-07 广州金升阳科技有限公司 A kind of current comparator
CN109981054A (en) * 2017-12-28 2019-07-05 圣邦微电子(北京)股份有限公司 It is a kind of to input to current switching control circuit
CN110322673A (en) * 2018-03-30 2019-10-11 温州有达电气有限公司 A kind of intelligent wall special switch of low latency
CN112671237A (en) * 2021-03-17 2021-04-16 四川蕊源集成电路科技有限公司 Circuit structure and method for improving response of current mode BUCK type direct current converter
CN115173817A (en) * 2022-09-05 2022-10-11 深圳市单源半导体有限公司 Differential amplification circuit, error amplification circuit and trimming method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223729A (en) * 1996-05-08 1999-07-21 艾利森电话股份有限公司 Voltage-to-current converter
US20030141935A1 (en) * 2002-01-28 2003-07-31 Yi-Huei Chen High speed differential to single-ended converter
US20060044068A1 (en) * 2004-08-26 2006-03-02 Sergey Alenin Bipolar differential to single ended transfer circuit with gain boost
CN201233548Y (en) * 2008-07-25 2009-05-06 深圳市远望谷信息技术股份有限公司 Voltage-current conversion circuit
WO2013051022A2 (en) * 2011-07-05 2013-04-11 Indian Institute Of Technology, Bombay Frequency to voltage converter
CN103051220A (en) * 2013-01-25 2013-04-17 杭州士兰微电子股份有限公司 Switching power supply and controller thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223729A (en) * 1996-05-08 1999-07-21 艾利森电话股份有限公司 Voltage-to-current converter
US20030141935A1 (en) * 2002-01-28 2003-07-31 Yi-Huei Chen High speed differential to single-ended converter
US20060044068A1 (en) * 2004-08-26 2006-03-02 Sergey Alenin Bipolar differential to single ended transfer circuit with gain boost
CN201233548Y (en) * 2008-07-25 2009-05-06 深圳市远望谷信息技术股份有限公司 Voltage-current conversion circuit
WO2013051022A2 (en) * 2011-07-05 2013-04-11 Indian Institute Of Technology, Bombay Frequency to voltage converter
CN103051220A (en) * 2013-01-25 2013-04-17 杭州士兰微电子股份有限公司 Switching power supply and controller thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105811905A (en) * 2014-12-29 2016-07-27 意法半导体研发(深圳)有限公司 Low-dropout amplifier
CN105811905B (en) * 2014-12-29 2019-05-03 意法半导体研发(深圳)有限公司 Low voltage difference amplifier
CN109981054A (en) * 2017-12-28 2019-07-05 圣邦微电子(北京)股份有限公司 It is a kind of to input to current switching control circuit
CN109981054B (en) * 2017-12-28 2023-08-15 圣邦微电子(北京)股份有限公司 Input pair current switching control circuit
CN110322673A (en) * 2018-03-30 2019-10-11 温州有达电气有限公司 A kind of intelligent wall special switch of low latency
CN108736834A (en) * 2018-05-23 2018-11-02 中国电子科技集团公司第二十四研究所 A kind of high linearity time amplifier that charged inhibits
CN109861673A (en) * 2019-03-14 2019-06-07 广州金升阳科技有限公司 A kind of current comparator
CN109861673B (en) * 2019-03-14 2024-04-12 广州金升阳科技有限公司 Current comparator
CN112671237A (en) * 2021-03-17 2021-04-16 四川蕊源集成电路科技有限公司 Circuit structure and method for improving response of current mode BUCK type direct current converter
CN115173817A (en) * 2022-09-05 2022-10-11 深圳市单源半导体有限公司 Differential amplification circuit, error amplification circuit and trimming method thereof

Also Published As

Publication number Publication date
CN103414438B (en) 2017-03-29

Similar Documents

Publication Publication Date Title
CN103414438B (en) A kind of error amplifier circuit
US9634685B2 (en) Telescopic amplifier with improved common mode settling
CN101471632B (en) Self-biased low-voltage operational transconductance amplifier circuit with controllable loop gain
CN106788434B (en) Source follower buffer circuit
CN103414442B (en) High accuracy fully-differential amplifier based on wave chopping technology
CN104950975B (en) A kind of low pressure difference linear voltage regulator
CN103546127A (en) A low-power high-speed comparator with offset storage
KR102415919B1 (en) Inverting Pseudo-Full Differential Amplifier With Common Mode Feedback Control Circuit
CN103941792B (en) Bandgap voltage reference circuit
CN106067822B (en) A High Speed and High Precision CMOS Latch Comparator
CN104536510A (en) A differential voltage-to-current circuit
CN101944886A (en) Adaptive micro-current amplifier
CN102355212A (en) Rail-to-rail input stage with current compensation function
CN102075151A (en) Complementary circulation folding gain bootstrapping operational amplifier circuit with preamplifier
CN103926966B (en) Low Voltage Bandgap Reference Circuit
CN102983853A (en) Analog squaring circuit
CN103414329B (en) Voltage peak value locking circuit
WO2022027750A1 (en) Comparator and analog-to-digital converter
CN110224700A (en) A kind of high speed complementation type dual power supply operational amplifier
CN101860334A (en) A Circulating Current Transconductance Operational Amplifier with Separated DC and AC Paths
CN104980112B (en) The circular form Folded-cascode amplifier of consumption high gain
CN104104229A (en) Quiescent current control device
CN103368542A (en) High precision and small time-delay continuous time comparator
CN111384940A (en) A High Linearity Wide Swing CMOS Voltage Follower
CN216873190U (en) A Reference Voltage Buffer for Differential Successive Approximation Register ADC

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329

Termination date: 20200718

CF01 Termination of patent right due to non-payment of annual fee