CN103342759B - 酶催化可控释放一氧化氮的生物材料及其制备方法 - Google Patents

酶催化可控释放一氧化氮的生物材料及其制备方法 Download PDF

Info

Publication number
CN103342759B
CN103342759B CN201310296773.4A CN201310296773A CN103342759B CN 103342759 B CN103342759 B CN 103342759B CN 201310296773 A CN201310296773 A CN 201310296773A CN 103342759 B CN103342759 B CN 103342759B
Authority
CN
China
Prior art keywords
chitosan
nitric oxide
oxide production
enzyme catalysis
biomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310296773.4A
Other languages
English (en)
Other versions
CN103342759A (zh
Inventor
赵强
孔德领
张计敏
王淑芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201310296773.4A priority Critical patent/CN103342759B/zh
Publication of CN103342759A publication Critical patent/CN103342759A/zh
Application granted granted Critical
Publication of CN103342759B publication Critical patent/CN103342759B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)

Abstract

本发明公开了酶催化可控释放一氧化氮的生物材料及其制备方法,是用糖基化稳定的一氧化氮供体化合物与天然聚合物壳聚糖通过共价键连方式,制备的一种酶催化可控释放一氧化氮的生物材料CS-NO。该材料具有良好的加工性,能制备成可注射溶液、薄膜、多孔支架、以及静电纺丝纤维膜等多种产品。由于一氧化氮能够可控按需释放,CS-NO及其复合材料可用于治疗糖尿病下肢缺血、皮肤损伤和心梗疾病。

Description

酶催化可控释放一氧化氮的生物材料及其制备方法
技术领域
本专利涉及一种具有酶催化可控释放一氧化氮的生物材料制备方法,还涉及由这类材料加工成的医用产品以及其在缺血性疾病治疗、皮肤创伤愈合以及心血管植入器械中的应用。
背景技术
心血管疾病现在已成为威胁人类健康的重大疾患之一,无论是发病率还是死亡率均居各类疾病之首,被医学界公认为是危害人类身体健康的“第一杀手”。根据卫生部心血管病防治研究中心发布的《中国心血管病报告2011》数据显示,目前我国心血管病患者人数约为2.3亿,相当于每10个成年人中有2人患病。高额的医疗支出成为巨大的经济负担。
一氧化氮(nitric oxide,NO)是一种具有多种生物学活性的气体小分子物质(生物信使分子),其广泛分布于生物体内各组织中。一氧化氮最主要的功能是作为心血管系统的生理性调节分子,许多血管疾病都与血管内皮功能失调和NO代谢有关系。一氧化氮具有:1)调节血管张力和心肌收缩力,参与动脉血压及器官组织血流量的调节;2)维持内皮细胞完整、促进血管新生;3)抑制平滑肌细胞粘附、增殖和迁移;4)抑制血小板在局部的粘附、聚集和白细胞在血管内皮的粘附从而抑制血栓的形成等作用。
由于药物化学的快速发展,现在已能成功合成多种不同结构的NO化合物,包括有机硝酸酯类、亚硝基硫醇类、氮烯醇类等。氮烯醇类化合物(Diazeniumdiolate)是目前研究最多的一种NO供体,一般是由胺类化合物与NO反应生成的产物。其主要的问题是很难稳定储存,易自发分解,其分解的速率随着温度的升高而加快。酸性或碱性pH值条件都会加快一氧化氮的释放。因此,王鹏等人合成了糖基化的NO供体化合物,采用半乳糖单元稳定氮烯醇化合物,其具有较高的稳定性,在半乳糖苷酶催化下能够可控释放一氧化氮。
将NO化合物与高分子材料结合,进一步制备具有NO释放功能的心血管介入材料是近年来一个新的研究方向。一些研究组将氮烯醇(或亚硝基硫醇)等NO供体通过物理共混的方法与高分子材料复合制备医用材料。由于极性的差异,NO供体易于聚集,造成突释。此外,疏水性基体材料,限制了水分子的迁移,影响了材料内部的NO有效利用。
发明内容
本发明专利的第一部分,提供了一种具有酶催化可控释放一氧化氮的壳聚糖大分子生物材料CS-NO。具体合成方法包括:将一种具有酶催化可控分解释放一氧化氮的氮烯醇类NO供体化合物4-(2-叠氮乙醇)哌嗪-1-(O2-半乳糖)氮烯醇通过化学反应接枝到壳聚糖分子侧链。首先将大分子壳聚糖分散于水相中,加入戊炔酸,其中壳聚糖重复单元与戊炔酸的摩尔比为:1∶0.05-1∶0.5,在1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐催化下冰浴中反应24小时,从而通过酰胺化反应将炔基接枝到壳聚糖分子侧基上,产物经透析纯化。第二步是通过点击化学反应将NO供体化合物4-(2-叠氮乙醇)哌嗪-1-(O2-半乳糖)氮烯醇与炔基化壳聚糖反应,采用无水硫酸铜、抗坏血酸钠做催化剂,恒温37℃搅拌反应24小时,产物经水透析3天,冷冻干燥得接枝NO供体的壳聚糖大分子CS-NO。该材料具有良好的生物相容性、生物降解性和可加工性。并可与其他天然大分子如胶原、明胶等复合制备复合材料。
发明专利的第二部分,提供了一种具有酶催化可控释放一氧化氮的壳聚糖大分子生物材料CS-NO的不同制备方法。可将该材料制备成不同浓度的溶液用于局部注射,具体方法包括:将CS-NO以1-15毫克/毫升的浓度在水中分散,室温搅拌至完全溶解,即可制得CS-NO溶液。
也可以通过浇铸方法制备薄膜,具体方法包括:将CS-NO配制成浓度5-15%的水溶液,均匀涂布在盖玻片上,室温晾干,真空干燥24小时。
还可以通过冷冻干燥和静电纺丝等方法制备成多孔支架或微纳米纤维支架。CS-NO材料可进一步通过溶液共混的方法与天然大分子如胶原、明胶、透明质酸、海藻酸钠等复合,获得不同组成比例和性能的天然复合材料。具体方法包括:将明胶、胶原等制成浓度为2%水溶液,冷却至室温后加入质量浓度为0.1-3%的CS-NO,充分搅拌至均匀,冷冻干燥得CS-NO/胶原复合多孔支架。
发明专利的第三部分,提供了利用具有酶催化可控释放一氧化氮的壳聚糖大分子生物材料CS-NO治疗糖尿病下肢缺血、皮肤损伤和心梗的方法。具体用方法一所制备的可控释放一氧化氮的壳聚糖材料CS-NO溶液通过局部注射治疗糖尿病患者下肢缺血。还可以通过局部注射CS-NO溶液促进血管新生,治疗心梗。此外,CS-NO与天然聚合物,如明胶、胶原、透明质酸、海藻酸钠等的复合多孔海绵或纤维膜可用于治疗皮肤损伤,一氧化氮缓释能够有效促进伤口愈合和皮肤再生。
本发明专利与现有技术相比,突出的优点在于,采用化学键连的方法将NO供体化合物4-(2-叠氮乙醇)哌嗪-1-(O2-半乳糖)氮烯醇与亲水性的天然聚合物结合,将二者的优势相结合,该材料具有良好的生物相容性、生物降解性和可加工性,并可与其它天然大分子如胶原、明胶等复合制备复合材料。制备出具有可控释放NO功能的生物医用材料,用于心血管疾病的治疗或促进伤口愈合和皮肤修复。
具体实施方式
实施例1:具有酶催化可控释放一氧化氮功能的壳聚糖大分子CS-NO的合成
将0.5克粘均分子量为50000脱乙酰度为90%的壳聚糖搅拌分散于50毫升水中,加入戊炔酸搅拌均匀,其中壳聚糖重复单元与戊炔酸的摩尔比为:1∶0.2。若壳聚糖仍不能完全溶解,滴加1摩尔/升的盐酸溶液至壳聚糖刚好完全溶解,在冰浴中体系加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDC,戊炔酸与EDC摩尔比为1∶3,反应24小时,产物先于5毫摩/升盐酸和1%氯化钠的混合溶液中透析72小时,再于1毫摩/升盐酸中透析48小时,最后于4℃水溶液中透析72小时,每24小时换一次透析液,最后经冷冻干燥得到炔基化的壳聚糖alkynyl-CS产物。
将alkynyl-CS先溶于水搅拌溶解均匀,氮气保护,加入NO供体化合物4-(2-叠氮乙醇)哌嗪-1-(O2-半乳糖)氮烯醇的水溶液、无水硫酸铜、抗坏血酸钠,恒温37℃搅拌反应24小时,反应在避光的条件下进行,水溶液透析3天,冷冻干燥得接枝NO供体的壳聚糖CS-NO产物。
实施例2:具有酶催化可控释放一氧化氮的CS-NO材料的制备
CS-NO溶液的制备
取0.15克CS-NO在10毫升水中分散,搅拌至完全溶解,即可制得浓度为15毫克/毫升的CS-NO溶液。
CS-NO薄膜的制备
将CS-NO配制成浓度15%的水溶液,取150微升溶液在直径为1cm的盖玻片上涂膜,自然晾干。将晾干的CS-NO膜浸泡于0.01摩尔/升的PBS缓冲溶液中,得到CS-NO膜。
CS-NO多孔支架的制备
将粘均分子量为60万脱乙酰度为90%的壳聚糖溶于3%乙酸中搅拌至完全溶解,用1M的氢氧化钠中和至pH约为6,将CS-NO配制成10毫克/毫升的水溶液,按照CS∶CS-NO质量比=5∶1混合后搅拌均匀,冷冻干燥制得CS-NO多孔支架。
CS-NO与天然胶原复合多孔支架的制备
将胶原制成浓度为2%水溶液,冷却至室温后加入CS-NO使其质量浓度为0.4%,充分搅拌至均匀,混合液经冷冻干燥得CS-NO/胶原复合多孔支架。
实施例3:局部注射CS-NO溶液用于治疗糖尿病小鼠下肢缺血
采用C57小鼠,实验动物分三组,分别为盐水组、CS组和CS-NO组,每组6只。通过将小鼠下肢股动脉结扎离断制造下肢缺血模型。将一定浓度的CS-NO溶液在结扎处周围肌肉多点注射,总量为50微升/只。术后通过血管造影观察血管新生情况。CS-NO组缺血严重性和坏死程度显著轻于其它两组。并于7、14、21、28天分别取材。免疫荧光染色分析肌肉组织中的中的小血管及毛细血管分布,NO释放有效促进了血管新生,血管密度显著提高。
实施例4:应用CS-NO与天然胶原复合多孔支架修复治疗皮肤损伤
取约350g的SD大鼠进行皮肤损伤愈合实验,分别观察并分析皮肤损伤后7天、14天、21天老鼠皮肤损坏处愈合情况。老鼠先麻醉,然后在每只老鼠于背部正中线上剪一直径为8mm的急性皮肤损伤,厚度达皮肤全层,前中后各一个孔。按照实验组将材料贴到老鼠损伤皮肤处,对照组每天分别滴一次PBS溶液,实验组每天分别滴一次0.005毫克/毫升的半乳糖苷酶溶液,到相应的时间点取材,分别测量伤口的大小,取材用多聚甲醛固定24h,后转到70%乙醇中保存,脱水,石蜡包埋,切片染色。结果显示NO可控缓释有效提高了伤口的愈合率和愈合质量。

Claims (6)

1.一种具有酶催化可控释放一氧化氮的壳聚糖大分子生物材料CS-NO,其特征在于具体合成方法包括:将一种具有酶催化可控分解释放一氧化氮的氮烯醇类NO供体化合物4-(2-叠氮乙醇)哌嗪-1-(O2-半乳糖)氮烯醇通过化学反应接枝到壳聚糖分子侧链;首先将大分子壳聚糖分散于水相中,加入戊炔酸,其中壳聚糖重复单元与戊炔酸的摩尔比为:1∶0.05-1∶0.5,在1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐催化下冰浴中反应24小时,从而通过酰胺化反应将炔基接枝到壳聚糖分子侧基上,产物经透析纯化得炔基化壳聚糖;第二步是通过点击化学反应将NO供体化合物4-(2-叠氮乙醇)哌嗪-1-(O2-半乳糖)氮烯醇与炔基化壳聚糖反应,采用无水硫酸铜、抗坏血酸钠做催化剂,恒温37℃搅拌反应24小时,产物经水透析3天,冷冻干燥得接枝NO供体的壳聚糖大分子CS-NO。
2.一种制备用于局部注射溶液的方法,其特征在于其具体方法包括:将权利要求1所述的CS-NO以1-15毫克/毫升的浓度在水中分散,室温搅拌至完全溶解,即可制得不同浓度的CS-NO溶液。
3.一种通过浇铸方法制备薄膜的方法,其特征在于其具体方法包括:将权利要求1所述的CS-NO配制成浓度5-15%的水溶液,均匀涂布在盖玻片上,室温晾干,真空干燥24小时。
4.一种制备多孔支架或微纳米纤维支架的方法,其特征在于将权利要求1所述的CS-NO通过冷冻干燥或静电纺丝的方法制备。
5.一种制备CS-NO/天然大分子复合多孔支架的方法,其特征在于其具体方法包括:将权利要求1所述的CS-NO进一步通过溶液共混的方法与天然大分子复合,获得不同组成比例和性能的CS-NO/天然大分子复合多孔支架,其中所述的天然大分子为胶原或明胶或透明质酸或海藻酸钠。
6.根据权利要求5所述的制备CS-NO/天然大分子复合多孔支架的方法,其特征在于其具体方法包括:将胶原制成浓度为2%的水溶液,冷却至室温后加入质量浓度为0.1-3%的CS-NO,充分搅拌至均匀,冷冻干燥得CS-NO/胶原复合多孔支架。
CN201310296773.4A 2013-07-16 2013-07-16 酶催化可控释放一氧化氮的生物材料及其制备方法 Active CN103342759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310296773.4A CN103342759B (zh) 2013-07-16 2013-07-16 酶催化可控释放一氧化氮的生物材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310296773.4A CN103342759B (zh) 2013-07-16 2013-07-16 酶催化可控释放一氧化氮的生物材料及其制备方法

Publications (2)

Publication Number Publication Date
CN103342759A CN103342759A (zh) 2013-10-09
CN103342759B true CN103342759B (zh) 2015-09-30

Family

ID=49277593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310296773.4A Active CN103342759B (zh) 2013-07-16 2013-07-16 酶催化可控释放一氧化氮的生物材料及其制备方法

Country Status (1)

Country Link
CN (1) CN103342759B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105920590A (zh) * 2016-04-28 2016-09-07 福建省乐华医药科技有限公司 医用射线防护喷剂
CN105920589A (zh) * 2016-04-28 2016-09-07 福建省乐华医药科技有限公司 医用射线防护喷剂及其生产工艺
CN111548482B (zh) * 2020-04-02 2022-09-13 复旦大学 一氧化氮供体修饰的共聚物、包含其的缓释制剂及其制备方法与应用
CN111603616B (zh) * 2020-06-04 2021-04-30 青岛大学 具有双药负载和分阶缓释功能的纳米纤维血管支架材料及其制备方法
CN114376965B (zh) * 2021-12-24 2024-02-20 南开大学 促进肿瘤血管正常化和放疗增敏的一氧化氮水凝胶及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700611A1 (en) * 2005-02-11 2006-09-13 NOLabs AB Device for treatment of disorders in the oral cavity, and manufacturing process for the same
CN101195031B (zh) * 2007-12-20 2011-04-20 上海交通大学 葡萄糖酸改性壳聚糖亲核no供体及其合成方法
KR101255337B1 (ko) * 2010-10-04 2013-04-16 한국과학기술연구원 온도 감응성 합성 고분자를 이용한 일산화질소 전달체

Also Published As

Publication number Publication date
CN103342759A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
CN103342759B (zh) 酶催化可控释放一氧化氮的生物材料及其制备方法
Subhedar et al. Nanocellulose in biomedical and biosensing applications: A review
Gu et al. Construction of nanofibrous scaffolds with interconnected perfusable microchannel networks for engineering of vascularized bone tissue
Zhang et al. Sustained local release of NGF from a chitosan–sericin composite scaffold for treating chronic nerve compression
Guo et al. Creating 3D angiogenic growth factor gradients in fibrous constructs to guide fast angiogenesis
Zamani et al. A biomimetic heparinized composite silk-based vascular scaffold with sustained antithrombogenicity
EP2979710B1 (en) Cell tissue gel containing collagen and hyaluronan
Arunkumar et al. Sustained release of basic fibroblast growth factor (bFGF) encapsulated polycaprolactone (PCL) microspheres promote angiogenesis in vivo
JP6162132B2 (ja) 医療、薬学および整形外科への応用のための、血管、組織および骨を模倣したコラーゲン−多糖類材料、ならびにその製造プロセス
Wong et al. Cytokine and growth factor delivery from implanted platelet-rich fibrin enhances rabbit Achilles tendon healing
Wei et al. In situ fabrication of nerve growth factor encapsulated chitosan nanoparticles in oxidized bacterial nanocellulose for rat sciatic nerve regeneration
Doǧan et al. Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo
CN108653198A (zh) 一种可透皮给药的水凝胶及其制备方法和应用
Chen et al. Preparation, characterization, and potential biomedical application of composite sponges based on collagen from silver carp skin
CN105960243A (zh) 藻酸盐低聚物作为血液抗凝剂的应用
Hu et al. Designed and fabrication of triple-layered vascular scaffold with microchannels
CN102133432A (zh) 一种丝素蛋白微孔支架的制备方法
Tilakaratne et al. Characterizing short-term release and neovascularization potential of multi-protein growth supplement delivered via alginate hollow fiber devices
JP6186572B2 (ja) 薬剤徐放担体及び薬剤徐放方法
Asano et al. Sprouting from arteriovenous shunt vessels with increased blood flow
Tagandurdyyeva et al. Properties of resorbable conduits based on poly (l-lactide) nanofibers and chitosan fibers for peripheral nerve regeneration
Lee et al. Comparison of angiogenic activities of three neuropeptides, substance P, secretoneurin, and neuropeptide Y using myocardial infarction
CN104307040B (zh) 一种组织工程用具控释能力的注射式水凝胶及其应用
Shen et al. Pre-vascularized electrospun graphene oxide–gelatin chamber for intestinal wall defect repair
Brănișteanu et al. Use of textile biomaterials for the topic treatment of chronic venous disease

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant