CN103306900A - 用于减轻离岸风力涡轮机中负载的方法和系统 - Google Patents

用于减轻离岸风力涡轮机中负载的方法和系统 Download PDF

Info

Publication number
CN103306900A
CN103306900A CN201310073307XA CN201310073307A CN103306900A CN 103306900 A CN103306900 A CN 103306900A CN 201310073307X A CN201310073307X A CN 201310073307XA CN 201310073307 A CN201310073307 A CN 201310073307A CN 103306900 A CN103306900 A CN 103306900A
Authority
CN
China
Prior art keywords
wind
apart
slurry
vector
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310073307XA
Other languages
English (en)
Other versions
CN103306900B (zh
Inventor
埃乌杰尼奥·普莱诺·莫里略
伊格纳西奥·费尔南德斯·罗梅罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gamesa Eolica SA
Original Assignee
Gamesa Eolica SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gamesa Eolica SA filed Critical Gamesa Eolica SA
Publication of CN103306900A publication Critical patent/CN103306900A/zh
Application granted granted Critical
Publication of CN103306900B publication Critical patent/CN103306900B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/96Mounting on supporting structures or systems as part of a wind turbine farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/71Adjusting of angle of incidence or attack of rotating blades as a function of flow velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/845Redundancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/966Preventing, counteracting or reducing vibration or noise by correcting static or dynamic imbalance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/326Rotor angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/329Azimuth or yaw angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Wind Motors (AREA)

Abstract

风力涡轮机的控制方法和系统,风力涡轮机属于离岸风厂,在负载测量系统故障情况下使用下面浆距矢量之一来计算每个叶片的变浆距指令:-浆距矢量同时应用在负载测量系统正常工作的风厂的一个风力涡轮机中,-浆距矢量的平均值同时应用在负载测量系统正常工作的风厂的一组风力涡轮机中;-如果前面的浆距矢量无法使用,则使用从控制律得到的桨距矢量,所述控制律是从负载测量系统正常工作时的风力涡轮机的历史记录获得的,其将该桨距矢量定义为至少风速V的函数。

Description

用于减轻离岸风力涡轮机中负载的方法和系统
技术领域
本发明涉及在风力涡轮机,且特别是离岸风力涡轮机中减轻由于风不对称产生的负载的方法和系统。
背景技术
当风力涡轮机叶片绕“转子盘”扫过,由于风切变、塔影效应、偏航误差和湍流作用,风力涡轮机经历风速和方向的改变。随着转子尺寸相对于湍流涡旋的典型尺寸增加,转子盘上湍流风速变化的重要性提高。
这些变化导致大的一个循环一次或叶片负载中的1P部件,和这些频率如2P、3P、4P等等谐频。对于三叶转子,这些负载部件在三个叶片之间会有120°异相,因此,毂和结构的其他部件将经历3P、6P等等的谐频,1P部件和其他谐频将抵消。
尽管,这个取消依赖于静止和直线性的假设,但当风力涡轮机与湍流的长度尺寸相比变得更大时,这些假设变得更少有效。
也就是说,来自1P部件和其他谐频的不对称负载不再抵消,且在这些频率上的负载分量非常有助于毂、轴、偏航轴承、塔架等的疲劳负载。
为了减少所述的损害效应,现有技术教会使用增加到总浆距控制的变桨距控制和偏航控制。用于减少所述不对称负载的浆距和/或偏航指令使用负载或由其产生的位移的测量来计算。
理论上,1P负载分量在大型风力涡轮机上特别大。可以通过在1P频率、三个叶片120°异相频率的变桨距操作来减少这些负载。这个在1P频率的变桨距操作通过控制用作输入、叶片平面外负载的控制算法来计算。
这个技术的实施例公开在US2006/002792中,描述了在风力涡轮机中减少负载并提供偏航对准的方法,包括在风力涡轮机中不对称负载的位移或力矩测量。这些测量的力矩或位移用于确定桨叶浆距角分量,努力减少或抵消不对称转子负载且使偏航系统容易对准。
如果上述位移或力矩的测量装置失效,结果是无法执行变桨距操作,现有技术指示在低产量水平运转风力涡轮机,来减少不对称转子负载,直到故障修复。
在离岸风力涡轮机的情况下,测量装置的维修可能延迟很长一段时间,涉及重要产量损失。
发明内容
本发明的一个目的是提供一个在具有用于抵消转子不对称负载的变浆距控制系统的离岸风力涡轮机的变浆距控制系统用的负载测量系统故障时,提高离岸风力涡轮机的电力产量的控制方法和系统。
本发明的另一个目的是提供一个在具有用于抵消转子不对称的变浆距控制系统的离岸风力涡轮机的变浆距控制系统用的负载测量系统故障时,减轻离岸风力涡轮机的负载的控制方法和系统。
一方面,控制方法遇到这些或其他目的,控制方法包括在负载测量系统故障情况下使用下面浆距矢量来计算每个叶片的变浆距指令的步骤:
-浆距矢量同时应用在负载测量系统正常工作的风厂的一个风力涡轮机(优选最靠近风力涡轮机)中,或浆距矢量的平均值同时应用在负载测量系统正常工作的风厂的一组风力涡轮机中;
-如果前面的浆距矢量无法使用,则使用从控制律得到的桨距矢量,所述控制律是从负载测量系统正常工作时的风力涡轮机的历史记录获得的,其将该桨距矢量定义为至少风速V的函数。
另一个方面,控制系统遇到上面提到的目的,控制系统用于执行对根据低于断流风速Vout的风速的预定功率曲线的风力涡轮机的调整,该调整包含基于负载测量系统的每个叶片的变浆距调整,其中,控制系统还用于执行替代调整,在根据替代功率曲线的负载测量系统失效情况下,相对于预定功率曲线减少电力产量,和包括用于抵消转子不对称负载的替代变浆距控制,用下面的浆距矢量来计算每个叶片的变浆距指令:
-浆距矢量同时应用在负载测量系统正常工作的风厂的至少一个风力涡轮机中,或浆距矢量的平均值同时应用在负载测量系统正常工作的风厂的一组风力涡轮机中;
-如果前面的浆距矢量无法使用,则使用从控制律得到的桨距矢量,所述控制律是从负载测量系统正常工作时的风力涡轮机的历史记录获得的,其将该桨距矢量定义为至少风速V的函数。
当风力涡轮机负载测量系统失效时,应用在风力涡轮机上的浆距矢量可以在提到的三种情况下从风厂的控制器获得或从另一个风力涡轮机(如果他们配备通讯装置)获得,或者在自己的风力涡轮机中获得(浆距矢量来源于控制律的情况下)。
结合附图、随后的发明的详细描述和所附权利要求使离岸风力涡轮机的上述方法和系统的其他合适的特征和优点变得清楚。
附图说明
图1是风力涡轮机的侧视剖面示意图。
图2是风力涡轮机的典型的功率曲线。
图3是显示总的浆距调整的浆距指令和在风力涡轮机叶片的循环中增加循环调整的浆距指令的图表。
图4显示用于本发明考虑的三种情况下风力涡轮机调整的功率曲线。
图5a和5b显示了根据本发明的变浆距控制的控制律。
具体实施方式
风厂的典型的离岸风力涡轮机11包括支撑吊舱21的塔架13,吊舱罩着将风力涡轮机转子的旋转能转换成电能的发电机19。风力涡轮机转子包括转子毂15和典型的三个叶片17。转子毂15或直接连接或通过齿轮箱连接到将转子15产生的扭矩传递给发电机19的风力涡轮机的发电机19,并提高轴转速,来获得发电机转子合适的转速。
风力涡轮机功率输出通常由调整转子叶片的浆距角和发电机扭矩的控制系统来控制。因此,风力涡轮机的转子转速和功率输出最初就被控制。
断流风速Vout以下,风力涡轮机控制系统用于根据曲线调整电力产量,该曲线定义了功率和速度之间获得理想输出的期望函数关系。这种类型的曲线是图2中的曲线25,显示了电力产量P从最小风速Vmin增加到标定风速Vn,且在标定功率值Pn保持不变,直到达到断流风速Vout时降为0。
为了实现所述调整,控制单元接受诸如风速V、发电机转速Ω、浆距角θ、功率P等来自已知测量装置的输入数据并分别发送输出数据到改变叶片17角度位置的浆距致动系统和改变电力产量参数的发电机指令单元。
控制系统还将变浆距指令应用到每个叶片,来减少由负载测量系统提供的数据计算的不对称负载。这个变浆距叠加到总浆距,用于根据图2的功率曲线25来调节电力产量。
图3中,线13代表应用在所有叶片上的总浆距指令,如沿一个叶片循环不变的浆距;而线33代表应用在沿一个叶片循环的一个叶片上的浆距指令,该浆距指令是将变浆距指令增加到总浆距指令的结果。
提供给每个叶片的变浆距指令产生如下:
-三个叶片平面外弯曲力矩信号B1、B2、B3(从来自负载测量系统的摆振(Flapwise)与挥舞(Edgewise)信号得出)转换成用帕克(Park)变换的两个正交的力矩My和Mz。
-每个轴的控制器产生浆距分量Z-Pitch和Y-Pitch,来减少或抵消不对称转子负载。
-浆距矢量,由模数M和参数A定义,用方程式M=(Z-Pitch2+Y-Pitch2)1/2,A=atan(Z-Pitch/Y-Pitch)来计算。
-浆距矢量由控制系统使用来计算应用到每个叶片的变浆距指令,首先用方程式Z-Pitch=Msin(A),Y-Pitch=Mcos(A)转换成两个正交的浆距角参数,然后用帕克(Park)变换的逆和转子方位角产生变浆距指令。
风力涡轮机的负载测量系统失效时,结果每个叶片的变浆距指令不能产生,发明目的是使用下面的浆距矢量来获得应用于每个叶片的变浆距指令:
-首先,浆距矢量同时应用在转子负载的负载测量系统正常工作的风厂的一个风力涡轮机中,或浆距矢量的平均值同时应用在负载测量系统正常工作的风厂的一组风力涡轮机中;
-其次(如果没有前面的浆距矢量可以使用),从控制律来获得浆距矢量,控制律基于负载测量系统正常工作时风力涡轮机的历史记录,定义浆距矢量至少作为风速的函数。
离岸风厂比在岸风厂的环境条件稳定性更高,允许风力涡轮机的负载系统损坏时使用可替换的浆距矢量来避免电力产量的损失。无论如何,当使用可替换的任何浆距矢量时,风力涡轮机的调整将依照次佳电力产量曲线来做以避免危险。
图4显示了分别显示了风力涡轮机标定状态、由于负载测量系统失灵而没有变浆距控制的状态和根据本发明具有可替换变浆距控制状态的功率曲线25、25’、25’’。
在上面提到的第一替换中,优选选项是用于最靠近的风力涡轮机的浆距矢量和用于风厂的浆距矢量的平均值。在第一种情况下,如果风力涡轮机具有通讯装置,涡轮机可以直接接受来自最靠近风力涡轮机的浆距矢量或其他情况下接受来自风厂控制器的浆距矢量。在第二种情况,风力涡轮机接受来自风厂控制器的浆距矢量。
上面提到的第二替换,是当第一替换由于如与风厂控制器的通讯问题而不能执行控制律时的选择,用于从负载测量系统工作正常时自己的风力涡轮机内的历史数据中获得且存储在风力涡轮机控制系统的储存装置中。
所述控制律可以是作为图5a和5b中显示的控制律的单变量规则或多变量规则,单变量规则中模数M和使用的浆距矢量的角度A只取决于风速V,多变量规则如控制律中模数M和浆距矢量的角度A取决于风速、风向。偏航位置、风切变和年周期,即,该规则将包含不同工作情况的不同曲线。
图5a和5b的曲线是二阶多项等式,从模拟离岸风力涡轮机行为带有接近1的相关因子的一套数据获得,从而,可以假定负载测量系统工作正常时,风力涡轮机控制系统使用的浆距矢量可以由上面提到的控制律来表现。
根据本发明的可替换的变浆距控制的执行是由典型的风力涡轮机控制器来实现,包括由该控制器决定的总浆距指令之后的变浆距分量。总浆距依旧是控制器关于报警和操作设置点的标准浆距参考。
根据本发明的变浆距控制的主要优点是:
-在这些用变浆距致动系统操作的离岸风力涡轮机中容易实现。
-当离岸风力涡轮机负载测量系统损坏时,可以提高涡轮机电力产量10%左右。
虽然已经结合不同实施例描述了本发明,从说明书应该理解可以做出元件的组合,变化或改进,且都在本发明的范围内。

Claims (11)

1.风力涡轮机的控制方法,风力涡轮机属于离岸风厂,具有变浆距控制系统,用于基于负载测量系统抵消转子不对称负载,其特征在于,包括在负载测量系统故障情况下使用下面浆距矢量来计算每个叶片的变浆距指令的步骤:
-浆距矢量同时应用在负载测量系统正常工作的风厂的一个风力涡轮机中,或浆距矢量的平均值同时应用在负载测量系统正常工作的风厂的一组风力涡轮机中;
-如果前面的浆距矢量无法使用,则使用从控制律得到的桨距矢量,所述控制律是从负载测量系统正常工作时的风力涡轮机的历史记录获得的,其将该桨距矢量定义为至少风速V的函数。
2.如权利要求1所述的风力涡轮机控制方法,其特征在于,风力涡轮机使用的浆距矢量是应用于最靠近的风力涡轮机的浆距矢量。
3.如权利要求1所述的风力涡轮机控制方法,其特征在于,所述控制律是风速和下述变量中的一个或多个的函数:
-风向;
-风切变;
-偏航位置;
-年周期。
4.属于离岸风厂的风力涡轮机控制系统:
-控制系统连接到负载测量系统和测量装置,该测量装置是每个叶片的风速V、风向、浆距角θ、每个叶片的方位角位置ψ的至少一个的测量装置;
-控制系统至少连接到每个叶片的变浆距控制致动器和扭矩控制致动器;
-控制系统具有与风厂控制器通讯的通讯装置;
-控制系统用于根据预定功率曲线(25)来实现风力涡轮机的调整,功率曲线(25)用于低于断流风速Vout的风速,包括基于负载测量系统的每个叶片的变浆距调整;
其特征在于,控制系统还用于在负载测量系统失效情况下,根据替代功率曲线(25″)执行替代调整,相对于预定功率曲线(25)减少电力产量,和包括用于抵消转子不对称负载的替代变浆距控制,用下面的浆距矢量来计算每个叶片的变浆距指令:
-浆距矢量同时应用在负载测量系统正常工作的风厂的至少一个风力涡轮机中,或浆距矢量的平均值同时应用在负载测量系统正常工作的风厂的一组风力涡轮机中;
-如果前面的浆距矢量无法使用,则使用从控制律得到的桨距矢量,所述控制律是从负载测量系统正常工作时的风力涡轮机的历史记录获得的,其将该桨距矢量定义为至少风速V的函数。
5.根据权利要求4所述的控制系统,其特征在于,用在风力涡轮机中的浆距矢量是从风厂控制器中接收的、应用在最近的风力涡轮机的浆距矢量。
6.根据权利要求4所述的控制系统,其特征在于,用在风力涡轮机中的浆距矢量是从风厂控制器中接收的、同时应用在风厂的一组风力涡轮机中的浆距矢量的平均值。
7.根据权利要求4所述的控制系统,其特征在于,还包括与属于风厂的所有风力涡轮机通讯的直接通讯装置,其中,用在风力涡轮机中的浆距矢量是从通讯装置接收的、应用在最近的风力涡轮机的浆距矢量。
8.根据权利要求4所述的控制系统,其特征在于,控制律存储在风厂控制器中。
9.根据权利要求4所述的控制系统,其特征在于,控制律存储在控制系统的控制装置中。
10.根据权利要求8或9所述的控制系统,其特征在于,所述控制律是风速和下述变量中的一个或多个的函数:
-风向;
-风切变;
-偏航位置;
-年周期。
11.离岸风力涡轮机,包括根据权利要求4-10所述的控制系统。
CN201310073307.XA 2012-03-08 2013-03-07 用于减轻离岸风力涡轮机中负载的方法和系统 Expired - Fee Related CN103306900B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ES201200239A ES2422562B1 (es) 2012-03-08 2012-03-08 Métodos y sistemas para aliviar cargas en aerogeneradores marinos
ESES201200239 2012-03-08
ES201200239 2012-03-08

Publications (2)

Publication Number Publication Date
CN103306900A true CN103306900A (zh) 2013-09-18
CN103306900B CN103306900B (zh) 2017-11-21

Family

ID=47844031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310073307.XA Expired - Fee Related CN103306900B (zh) 2012-03-08 2013-03-07 用于减轻离岸风力涡轮机中负载的方法和系统

Country Status (6)

Country Link
US (1) US10451034B2 (zh)
EP (1) EP2636895B1 (zh)
CN (1) CN103306900B (zh)
BR (1) BR102013005519B1 (zh)
ES (2) ES2422562B1 (zh)
PL (1) PL2636895T3 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415003A (zh) * 2014-06-20 2017-02-15 米塔科技有限公司 动态螺距控制系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA99876C2 (ru) * 2011-05-19 2012-10-10 Мита-Текник А/С Способ управления ориентацией ветрового генератора и ветровой генератор
CN103742362B (zh) * 2014-01-15 2017-03-01 北京金风科创风电设备有限公司 直驱永磁风力发电机组的独立变桨控制系统及方法
DK179221B1 (en) * 2016-03-18 2018-02-12 Mita Teknik As High Yaw Error and Gust Ride Through
DE102017009838A1 (de) * 2017-10-23 2019-04-25 Senvion Gmbh Steuerungssystem und Verfahren zum Betreiben mehrerer Windenergieanlagen
US11698052B2 (en) * 2020-02-06 2023-07-11 General Electric Company Pitch control of a wind turbine based position data from position localization sensors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026537A1 (ja) * 2003-09-10 2005-03-24 Mitsubishi Heavy Industries, Ltd. ブレードピッチ角度制御装置及び風力発電装置
US20080078228A1 (en) * 2006-09-29 2008-04-03 Jaco Johannes Nies Methods and apparatus for evaluating sensors and/or for controlling operation of an apparatus that includes a sensor
WO2009026930A2 (en) * 2007-08-31 2009-03-05 Vestas Wind Systems A/S Method for controlling at least one adjustment mechanism of a wind turbine, a wind turbine and a wind park
WO2009109655A1 (en) * 2008-03-07 2009-09-11 Vestas Wind Systems A/S A control system and a method for controlling a wind turbine
US20100133815A1 (en) * 2009-06-22 2010-06-03 Ge Wind Energy Gmbh Method and Apparatus for Operating a Wind Turbine During a Loss of Communication
US20110098975A1 (en) * 2010-10-29 2011-04-28 Maria Cecilia Mazzaro Control system and methods of verifying operation of at least one wind turbine sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4468751B2 (ja) * 2004-06-30 2010-05-26 富士重工業株式会社 水平軸風車およびその待機方法
US7118339B2 (en) 2004-06-30 2006-10-10 General Electric Company Methods and apparatus for reduction of asymmetric rotor loads in wind turbines
US8805595B2 (en) * 2008-01-17 2014-08-12 General Electric Company Wind turbine arranged for independent operation of its components and related method and computer program
US8043054B2 (en) * 2010-08-25 2011-10-25 General Electric Company Method and system for monitoring wind turbine
US8202049B2 (en) * 2010-08-31 2012-06-19 Catch the Wind, Inc. Independent blade pitch control
US20110074155A1 (en) * 2010-12-03 2011-03-31 Scholte-Wassink Harmut Floating offshore wind farm, a floating offshore wind turbine and a method for positioning a floating offshore wind turbine
US9109577B2 (en) * 2011-03-02 2015-08-18 General Electric Company Method and system for operating a wind turbine
US20120027589A1 (en) * 2011-05-26 2012-02-02 Christian Haag Method and apparatus for control of asymmetric loading of a wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026537A1 (ja) * 2003-09-10 2005-03-24 Mitsubishi Heavy Industries, Ltd. ブレードピッチ角度制御装置及び風力発電装置
US20080078228A1 (en) * 2006-09-29 2008-04-03 Jaco Johannes Nies Methods and apparatus for evaluating sensors and/or for controlling operation of an apparatus that includes a sensor
WO2009026930A2 (en) * 2007-08-31 2009-03-05 Vestas Wind Systems A/S Method for controlling at least one adjustment mechanism of a wind turbine, a wind turbine and a wind park
WO2009109655A1 (en) * 2008-03-07 2009-09-11 Vestas Wind Systems A/S A control system and a method for controlling a wind turbine
US20100133815A1 (en) * 2009-06-22 2010-06-03 Ge Wind Energy Gmbh Method and Apparatus for Operating a Wind Turbine During a Loss of Communication
US20110098975A1 (en) * 2010-10-29 2011-04-28 Maria Cecilia Mazzaro Control system and methods of verifying operation of at least one wind turbine sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐大平 等: "《风力发电原理》", 1 October 2011, 机械工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106415003A (zh) * 2014-06-20 2017-02-15 米塔科技有限公司 动态螺距控制系统
US10151298B2 (en) 2014-06-20 2018-12-11 Mita-Teknik A/S System for dynamic pitch control

Also Published As

Publication number Publication date
CN103306900B (zh) 2017-11-21
ES2422562B1 (es) 2014-09-30
BR102013005519A2 (pt) 2015-07-07
EP2636895A2 (en) 2013-09-11
EP2636895A3 (en) 2015-03-04
US10451034B2 (en) 2019-10-22
ES2613181T3 (es) 2017-05-23
EP2636895B1 (en) 2016-08-31
BR102013005519B1 (pt) 2020-07-07
ES2422562A2 (es) 2013-09-12
US20140255185A1 (en) 2014-09-11
PL2636895T3 (pl) 2017-02-28
ES2422562R1 (es) 2013-12-16

Similar Documents

Publication Publication Date Title
Jiang et al. Dynamic response analysis of wind turbines under blade pitch system fault, grid loss, and shutdown events
CN103306900A (zh) 用于减轻离岸风力涡轮机中负载的方法和系统
US8128362B2 (en) Method of operating a wind turbine, a wind turbine and a cluster of wind turbines
EP2581600B1 (en) Method and system for control of wind turbines
CN104428531B (zh) 操作风力涡轮机的方法以及适合于所述方法的系统
CN108475929B (zh) 用于控制风力发电厂的方法
EP2657518B1 (en) Methods and systems for operating a wind turbine in noise reduced operation modes
WO2018171852A1 (en) System and method to manage torsional oscillation of a wind turbine tower
CN107735567B (zh) 风力涡轮机控制函数的初始化
CN108533451B (zh) 一种风力发电机组的变桨控制方法
EP3271576A1 (en) Damping oscillations in a wind turbine
US20150275860A1 (en) Fatigue in wind turbines
CN103807096A (zh) 风力涡轮机及其控制方法
US11136961B2 (en) System and method for optimizing power output of a wind turbine during an operational constraint
US10294920B2 (en) Wind turbine and method for operating a wind turbine
CN103742357A (zh) 一种风力发电机组风轮非对称载荷控制方法
DK201470481A1 (en) Improvements relating to wind turbine operation
Petrović et al. Wind tunnel setup for experimental validation of wind turbine control concepts under tailor-made reproducible wind conditions
Fischer et al. Balancing rotor speed regulation and drive train loads of floating wind turbines
CN113494418A (zh) 用于减轻作用于风力涡轮的转子叶片的负载的系统和方法
Kim et al. Control allocation based compensation for faulty blade actuator of wind turbine
Abdullah et al. An overview of the current state of wind energy technology development in the US
Anuchin et al. Wind turbine control system with compensation of wind flow fluctuations and tacking into account shadow effect
Stubkier et al. State of the art-hydraulic yaw systems for wind turbines
Viveiros et al. On wind turbine model predictive pitch control: an event-based simulation approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171121