CN103295845B - 螺线管装置 - Google Patents

螺线管装置 Download PDF

Info

Publication number
CN103295845B
CN103295845B CN201310063155.5A CN201310063155A CN103295845B CN 103295845 B CN103295845 B CN 103295845B CN 201310063155 A CN201310063155 A CN 201310063155A CN 103295845 B CN103295845 B CN 103295845B
Authority
CN
China
Prior art keywords
plunger
magnetic
yoke
solenoid
magnetic core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310063155.5A
Other languages
English (en)
Other versions
CN103295845A (zh
Inventor
大德修
田中智明
田中健
加藤智也
小岛清成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ande Co Ltd
Original Assignee
Ande Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ande Co Ltd filed Critical Ande Co Ltd
Publication of CN103295845A publication Critical patent/CN103295845A/zh
Application granted granted Critical
Publication of CN103295845B publication Critical patent/CN103295845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1877Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings controlling a plurality of loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/163Details concerning air-gaps, e.g. anti-remanence, damping, anti-corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/18Movable parts of magnetic circuits, e.g. armature
    • H01H50/30Mechanical arrangements for preventing or damping vibration or shock, e.g. by balancing of armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/40Branched or multiple-limb main magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/20Non-polarised relays with two or more independent armatures

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

本发明公开了一种螺线管装置(1),包括:第一电磁线圈(2a);第一和第二柱塞(3a,3b),可根据第一电磁线圈的通电而移动;第一和第二固定磁芯(5a,5b),分别面对第一和第二柱塞;以及磁轭(4)。当第一电磁线圈未通电时,第一和第二间隙(G1,G2)分别形成在第一与第二柱塞以及第一和第二固定磁芯之间。当第一电磁线圈通电时,磁通在第一磁回路(C1)和第二磁回路(C2)中流动,第一磁回路经由第一间隙由第一柱塞、第一固定磁芯和磁轭提供,第二磁回路经由第一和第二间隙由第一和第二柱塞、第一和第二固定磁芯和磁轭提供,使得第一和第二柱塞被朝向第一和第二固定磁芯吸引。

Description

螺线管装置
技术领域
本公开内容涉及一种具有电磁线圈和多个柱塞的螺线管装置。
背景技术
已知一种具有通电时产生磁通量的电磁线圈、多个柱塞和由软磁材料制成的固定磁芯(core)的螺线管装置(参见日本未审专利申请公开No.2005-222871)。
螺线管装置构造成通过使电磁线圈通电来产生磁力使得柱塞被固定磁芯吸引。弹簧构件设置在柱塞与固定磁芯之间。当停止电磁线圈的通电时,磁力减小,通过弹簧构件的弹力使柱塞与固定磁芯分离。按照这种方式,柱塞向前/向后移动。例如,通过柱塞的向前/向后动作(operation),螺线管装置用于接通/关断开关或打开/关闭阀。
存在多个柱塞按预定顺序被吸引的螺线管装置。例如,这种螺线管装置用于按预定顺序接通多个开关的电路。螺线管装置设置有多个电磁线圈,柱塞设置在每个电磁线圈的中心。通过使每个电磁线圈通电,而单独地吸引多个柱塞。通过连接到电磁线圈的控制电路来控制吸引柱塞的顺序。
然而,在现有的螺线管装置中,需要与柱塞相同数量的电磁线圈来按顺序吸引多个柱塞,从而电磁线圈的数量增大。导致螺线管装置的制造成本趋于变高的问题。因此,需要能够按预定顺序吸引多个柱塞且其制造成本低的螺线管装置。
发明内容
本公开内容的一个目的是提供一种可以按预定顺序吸引多个柱塞的低制造成本螺线管装置。
根据本公开内容的一个示例方面,一种螺线管装置包括:第一电磁线圈,用于当电流通过所述第一电磁线圈时产生磁通;第一柱塞和第二柱塞,均根据所述第一电磁线圈的通电而向后和向前移动;第一固定磁芯,在所述第一柱塞的向后-向前移动方向上面对所述第一柱塞;第二固定磁芯,在所述第二柱塞的向后-向前移动方向上面对所述第二柱塞;以及磁轭。所述磁轭、所述第一柱塞、所述第一固定磁芯、所述第二柱塞和所述第二固定磁芯提供磁回路,所述磁通在所述磁回路中流动。当所述第一电磁线圈在非通电状态下未通电时,第一间隙形成在所述第一柱塞与所述第一固定磁芯之间,第二间隙形成在所述第二柱塞与所述第二固定磁芯之间。当所述第一电磁线圈在通电状态下通电时,所述磁通在第一磁回路和第二磁回路中流动,所述第一磁回路由所述第一柱塞、所述第一固定磁芯和所述磁轭提供,所述第二磁回路由所述第一柱塞、所述第一固定磁芯、所述第二柱塞、所述第二固定磁芯和所述磁轭提供。当所述第一电磁线圈在所述通电状态下通电时,通过在所述第一磁回路中的所述磁通的流动所产生的磁力朝向所述第一固定磁芯吸引所述第一柱塞,并且通过在所述第二磁回路中的所述磁通的流动所产生的磁力朝向所述第二固定磁芯吸引所述第二柱塞。当从所述非通电状态切换到所述通电状态时,在所述第一磁回路中流动的所述磁通穿过所述第一间隙,并且在所述第二磁回路中流动的所述磁通穿过所述第一间隙和所述第二间隙。
在所述螺线管装置中,在第一电磁线圈从非通电状态切换到通电状态时,在第一磁回路中流动的磁通穿过一个间隙(第一间隙),并且在第二磁回路中流动的磁通穿过两个间隙(第一和第二间隙)。由于与磁轭相比间隙是大磁阻,所以仅具有一个间隙的第一磁回路的磁阻较低,而具有两个间隙的第二磁回路的磁阻较高。因此,大量的磁通在第一磁回路中流动,并产生用于吸引第一柱塞的强磁力。另一方面,在第二磁回路中流动的磁通量较小,没有产生足以吸引第二柱塞的磁力。因此,第一柱塞在第二柱塞之前被吸引。
当第一柱塞被吸引并与第一固定磁芯接触时,第一间隙消失。因此,第二磁回路的磁阻减小,在第二磁回路中流动的磁通量增大。因此,第二柱塞被第二固定磁芯吸引。
如上所述,首先吸引第一柱塞,然后,可以吸引第二柱塞。
此外,在所述螺线管装置中,不必要提供专用于吸引第二柱塞的电磁线圈。因此,可以减小螺线管装置的制造成本,并且可以使螺线管装置小型化。
如上所述,根据本发明,可以以低制造成本提供可以按照预定顺序吸引多个柱塞的螺线管装置。
附图说明
根据参照附图做出的以下详细描述,本公开内容的上述和其它目的、特征和优点将变得更加明显。在附图中:
图1是示出第一实施例中使用螺线管装置的电磁继电器的截面图;
图2是示出图1的螺线管装置的透视图;
图3是解释第一实施例中在第一电磁线圈通电的情况下的磁通路径以及吸引柱塞的顺序的示图;
图4是接着图3的示图;
图5是接着图4的示图;
图6是示出使用第一实施例中的电磁继电器的电路的示例的示图;
图7是示出第二实施例中使用螺线管装置的电磁继电器的截面图;
图8是解释第二实施例中电磁继电器的动作顺序和磁通路径的示图;
图9是接着图8的示图;
图10是接着图9的示图;
图11是接着图10的示图;
图12是接着图11的示图;
图13是示出使用第二实施例中的电磁继电器的电路的示例的示图;
图14是示出第二实施例中在使第二电磁线圈在第一电磁线圈通电之前通电的情况下电磁继电器的截面图;
图15是示出第三实施例中的电磁继电器的截面图;
图16是示出第四实施例中的电磁继电器的截面图;
图17是示出第四实施例中在仅使第一电磁线圈中的第一部分通电的情况下电磁继电器的截面图;
图18是示出第四实施例中在第一电磁线圈中的第一和第二部分这两者都通电的情况下电磁继电器的截面图;
图19是示出第五实施例中的电磁继电器的截面图;
图20是示出第六实施例中的电磁继电器的截面图;
图21是示出第七实施例中的电磁继电器的截面图;
图22是示出第八实施例中第二柱塞的主要部分的放大图的示图;
图23是示出第八实施例中在第二柱塞被吸引的状态下主要部分的放大图的示图;
图24是示出第九实施例中处于关断状态的电磁继电器的截面图;
图25是示出第九实施例中处于接通状态的电磁继电器的截面图;
图26是示出第十实施例中处于关断状态的电磁继电器的截面图;
图27是示出第十实施例中在仅使第一线圈部通电的状态下电磁继电器的截面图;
图28是示出第十实施例中在第一线圈部通电并在此之后第二线圈部也通电的状态下电磁继电器的截面图;
图29是示出第十实施例中在仅使第二线圈部通电的状态下电磁继电器的截面图;
图30是示出第十实施例中在第二线圈部通电并在此之后第一线圈部也通电的状态下电磁继电器的截面图;
图31是示出第十实施例中使第二柱塞的取向相反的电磁继电器的截面图;
图32是示出第十一实施例中的电磁继电器的截面图;
图33是示出第十二实施例中处于关断状态的电磁继电器的截面图;
图34是解释第十二实施例中的电磁继电器的动作顺序和磁通路径的示图;
图35是接着图34的示图;
图36是接着图35的示图;
图37是接着图36的示图;
图38是接着图37的示图;
图39是示出第十三实施例中处于关断状态的电磁继电器的截面图;
图40是解释第十三实施例中电磁继电器的动作顺序和磁通路径的示图;
图41是接着图40的示图;
图42是接着图41的示图;
图43是示出了沿图39的线XLII-XLII截取的截面图;
图44是示出第十四实施例中的磁轭和固定磁芯的透视图;
图45是示出第十四实施例中的电磁继电器的主要部分的放大截面图;
图46是解释第十四实施例中的电磁继电器的动作顺序和磁通路径的示图;
图47是接着图46的示图;
图48是接着图47的示图;
图49是示出第十五实施例中的电磁继电器的截面图;
图50是示出第十六实施例中的电磁继电器的截面图;以及
图51是示出第十七实施例中的电磁继电器的截面图。
具体实施方式
例如,螺线管装置可以用于电磁继电器。例如,电磁继电器设置有两个开关,一个开关由第一柱塞接通/关断,另一开关可以由第二柱塞接通/关断。
磁饱和部形成在存在于第一磁回路的磁轭中,在磁饱和部中局部出现磁饱和,并且由磁饱和部调节第一磁回路中流动的磁通量。
在这种情况下,在穿过磁通时,可以可靠地吸引两个柱塞。具体而言,如果在第一磁回路中流动的磁通量在第一柱塞被吸引时变得过大,则在第二磁回路中流动的磁通量变小,出现了第二柱塞不易被吸引的问题。然而,通过形成磁饱和部,可以调节在第一磁回路中流动的磁通量。因此,在第一柱塞被吸引之后,磁通也可以充分地穿过第二磁回路。因此,可以可靠地吸引第一和第二柱塞这两者。
如果未形成磁饱和部,则在第一柱塞和第一固定磁芯中可能出现磁饱和,并且在第二磁回路中流动的磁通量容易减小。然而,通过形成磁饱和部,使磁饱和在第一柱塞和第一固定磁芯之前出现在磁饱和部中,从而可以防止这样的不便。
表达“出现磁饱和”表示磁通密度进入BH曲线的磁饱和区。可以将磁饱和区定义为磁通密度等于或高于饱和磁通密度的50%的区域。饱和磁通密度是在将磁场从外部施加到磁构件并且即使当进一步从外部施加磁场时磁化强度也不增大的状态下的磁通密度。
第一电磁线圈具有可以单独通电的第一和第二线圈部。第一线圈部设置在第一柱塞的向后-向前移动方向上比第二线圈部更靠近第一固定磁芯的位置处。磁轭包括:设置在第一和第二线圈部之间的中间磁轭;以及设置在第一柱塞的向后-向前移动方向上比中间磁轭更远离第一固定磁芯的位置处的滑触磁轭,并且第一和第二柱塞与该滑触磁轭滑动接触。当仅使作为第一和第二线圈部中的一个的第一线圈部通电时,通过在中间磁轭、第一柱塞和第一固定磁芯中流动的磁通所产生的磁力,由第一固定磁芯吸引第一柱塞。当仅使作为第一和第二线圈部中的一个的第二线圈部通电时,通过在中间磁轭、第一柱塞和滑触磁轭中流动的磁通所产生的磁力,由滑触磁轭吸引第一柱塞,并使第一柱塞移动远离第一固定磁芯。
在这种情况下,通过仅使第一电磁线圈中的第一线圈部通电,可以由第一固定磁芯吸引第一柱塞。通过仅使第二线圈部通电,可以由滑触磁轭吸引第一柱塞。即,第一柱塞可以移动靠近第一固定磁芯或者与第一固定磁芯分离。因此,当第一柱塞不应该被第一固定磁芯吸引时,可以强制使第一柱塞移动远离第一固定磁芯。因此,可以防止第一固定磁芯错误地吸引第一柱塞。
在第一柱塞中,形成了直径在径向方向上被放大的凸缘。在非通电状态下,在第一柱塞的向前/向后移动方向上从凸缘到滑触磁轭的长度短于从中间磁轭到凸缘的长度。
在这种情况下,在非通电状态下,第一柱塞的凸缘处于比中间磁轭更靠近滑触磁轭的位置处。因此,当仅使第二线圈部通电时,在凸缘与滑触磁轭之间产生强磁力。因此,可以由滑触磁轭可靠地吸引第一柱塞,并且可以防止中间磁轭吸引第一柱塞。
两个柱塞(第一和第二柱塞)均形成为板状,该柱塞在板厚方向上向前/向后移动,与柱塞的向前/向后移动动作相关联,该柱塞接触/远离磁轭的表面。
在这种情况下,即使当柱塞执行向前/向后移动动作时,该柱塞也不与磁轭滑动接触。因此,可以抑制柱塞的磨损。在柱塞不与磁轭滑动接触的情况下,为了防止柱塞的磨损,在许多情况下,将由固体润滑剂制成的薄膜形成在表面上。但是,通过如上所述防止柱塞与磁轭滑动接触,不必形成固体润滑剂的薄膜。因此,可以减小柱塞的制造成本。
柱状磁芯插置在第一电磁线圈的中心,第一和第二固定磁芯整合在该柱状磁芯中,第一柱塞设置在柱状磁芯的轴向方向上相对于第一电磁线圈的一侧,并且第二柱塞设置在柱状磁芯的轴向方向上相对于第一电磁线圈的另一侧。
在这种情况下,由于与单独形成第一和第二固定磁芯的情况相比,第一和第二固定磁芯是整合的,所以可以使磁芯小型化。此外,可以减少部件的数量,从而可以减小螺线管装置的制造成本。
在非通电状态下,第三间隙形成在第一柱塞与磁轭之间,第四间隙形成在第二柱塞与磁轭之间。当从非通电状态切换到通电状态时,在第一磁回路中流动的磁通穿过第一间隙和第三间隙,在第二磁回路中流动的磁通穿过第一间隙、第三间隙、第四间隙和第二间隙。
在这种情况下,在从非通电状态切换到通电状态时,在第二磁回路中流动的磁通必须穿过第一至第四间隙这四个间隙,从而吸引第二柱塞的力变弱。由于这个原因,直到第一柱塞被吸引,第二柱塞也不被吸引。因此,首先吸引第一柱塞,然后,可以可靠地吸引第二柱塞。
该螺线管装置还包括:第二电磁线圈,当该线圈通电时产生磁通;第三柱塞,根据第二电磁线圈的通电而向后和向前移动;以及第三固定磁芯,设置成在第三柱塞的向前/向后移动方向上与第三柱塞相对。通过使第一电磁线圈通电来吸引第一和第二柱塞,在此之后,通过使第二电磁线圈通电来由第三固定磁芯吸引第三柱塞。
在这种情况下,可以通过使两个电磁线圈通电/不通电来获得两个吸引状态:通过使第一电磁线圈通电来吸引第一和第二柱塞的状态(第一吸引状态),以及通过在第一电磁线圈通电之后还使第二电磁线圈通电来吸引第一至第三柱塞的状态(第二吸引状态)。
通过使第一电磁线圈通电,并在此之后使第二电磁线圈通电,由第二电磁线圈通电所产生的磁通也在第二柱塞中流动。通过使第二电磁线圈通电,并在此之后停止第一电磁线圈的通电,在第二和第三柱塞被第二电磁线圈的磁通吸引的状态下仅撤销对第一柱塞的吸引。
在这种情况下,可以通过使两个电磁线圈通电/不通电而获得三个吸引状态:仅第二和第三柱塞被吸引的状态(第三吸引状态)以及第一和第二吸引状态。
例如,在使用用于电磁继电器的螺线管装置的情况下,在由第二和第三柱塞接通/关断的开关被接通的状态下,可以关断由第一柱塞接通/关断的开关。因此,在出现突然浪涌(suddensurge)的情况下,可以抑制由第一柱塞接通/关断的开关的粘附。
在使第二电磁线圈第一电磁线圈通电之前通电的情况下,在第一、第二和第三柱塞之中仅第三柱塞被吸引。
在这种情况下,由于可以仅吸引第三柱塞,所以例如在使用用于电磁继电器的螺线管装置的情况下,可以仅接通由第三柱塞接通/关断的开关。在这种状态下,例如,不能判断另一开关是否被粘附。
第二柱塞具有:由第二固定磁芯吸引的本体部,在向前/向后移动方向上从本体部向第二固定磁芯的相对侧突出的缩径部,以及形成在缩径部中且具有大于缩径部的直径的扩径部。本体部、缩径部和扩径部由软磁材料制成。磁轭具有与第二柱塞的本体部滑动接触的第一部分以及与第一部分分离且与第三柱塞滑动接触的第二部分。在第二柱塞被第二固定磁芯吸引的吸引状态下,扩径部靠近第二部分,并且第二柱塞与第二部分之间的间隙变得相对较小。在第二柱塞未被第二固定磁芯吸引的非吸引状态下,扩径部与第二部分分离,并且缩径部移动靠近第二部分,以使得第二柱塞与第二部分之间的间隙变得比吸引状态下的间隙更宽。
在这种情况下,第二柱塞与第二部分之间的间隙比吸引状态下的间隙更宽,从而可以增大第二柱塞与第二部分之间的磁阻。因此,抑制了第一电磁线圈到第二部分的磁通的流动。因此,第一电磁线圈的磁通更容易在第二柱塞中流动,以及第二柱塞可以被更强的磁力吸引。
在吸引状态下,第二柱塞与第二部分之间的间隙比非吸引状态下的间隙更窄。因此,第二电磁线圈的通电所产生的磁通更容易在第二柱塞中流动。因此,在停止第一电磁线圈的通电时,可以由第二电磁线圈的磁通可靠地吸引第二柱塞。
如上所述,利用上述结构,通过使第一电磁线圈通电可以可靠地吸引第一和第二柱塞。在此之后,通过使第二电磁线圈通电并停止第一电磁线圈的通电,可以仅可靠地吸引第二和第三柱塞。
利用该结构,在使第二电磁线圈第一电磁线圈通电之前通电的情况下,由于第二柱塞处于非吸引状态,所以可以增大第二部分与第二柱塞之间的磁阻。抑制了第二电磁线圈到第二柱塞的磁通流动。因此,在不吸引第二柱塞的情况下,可以仅吸引第三柱塞。
第二柱塞具有由第二固定磁芯吸引的本体部以及直径大于本体部的直径的扩径部。本体部和扩径部由软磁材料制成。磁轭具有与第二柱塞的本体部和第一柱塞滑动接触的第一部分、与第一部分分离且与第三柱塞滑动接触的第二部分、连接到第三固定磁芯的第三部分、连接到第二固定磁芯和第一固定磁芯的第四部分、连接第一和第三部分的第五部分、以及连接第二和第三部分的第六部分。用于抑制在第三和第四部分之间的磁通流动的切口形成在第三和第四部分之间。在第二柱塞被第二固定磁芯吸引的吸引状态下,扩径部靠近第二部分,并且第二柱塞与第二部分之间的最短距离变得相对较短,并且在第二柱塞未被第二固定磁芯吸引的非吸引状态下,扩径部与第二部分分离,并且第二柱塞与第二部分之间的最短距离变得比吸引状态下的最短距离更长。
在这种情况下,由于切口形成在磁轭中的第三和第四部分之间,所以磁通不易在第三和第四部分之间流动。因此,如果在第二柱塞处于非吸引状态的状态下使第一电磁线圈通电,则可以抑制所产生的磁通从第二柱塞流动到第二部分并进一步经由第六部分和第三部分而流动到第四部分。因此,第一电磁线圈的磁通更容易在第二柱塞中流动,第二柱塞可以被强磁力吸引。通过形成切口,当第二电磁线圈通电时,干扰了由第三部分与第四部分之间的通电所产生的磁通流动。因此,第二电磁线圈的磁通不容易在第一柱塞、第一固定磁芯、第四部分和第三部分中流动。因此,当停止第一电磁线圈的通电时,可以平滑地撤消对第一柱塞的吸引。
该螺线管装置被构造成使得在吸引状态下从第二柱塞到第二部分的最短距离比非吸引状态下的最短距离更短。因此,在吸引状态下,可以使第二柱塞与第二部分之间的磁阻降低,使得由第二电磁线圈的通电所产生的磁通更容易在第二柱塞中流动。因此,当停止第一电磁线圈的通电时,可以由第二电磁线圈的磁通可靠地吸引第二柱塞。
利用该结构,通过使第一电磁线圈通电,可以可靠地吸引第一和第二柱塞。在此之后,通过使第二电磁线圈通电并停止第一电磁线圈的通电,可以仅可靠地吸引第二和第三柱塞。
虽然第三和第四部分在“切口”中彼此完全分离,但是第三和第四部分可以略微磁连接。
三个柱塞(第一、第二和第三柱塞)中的一个的中心轴线的方向与其它两个柱塞的中心轴线的方向不同。
在这种情况下,螺线管装置也可以用于容易发生振动的位置,诸如车辆内部。具体而言,当在容易发生振动的位置处三个柱塞取向为同一方向时,存在由于振动三个柱塞同时在同一方向上移动的情况,在使用用于例如电磁继电器的螺线管装置的情况下,存在三个开关同时被接通的情况。然而,通过将三个柱塞中的一个设定在与其它两个柱塞的方向不同的方向上,可以防止三个柱塞由于振动而在同一方向上同时移动。因此,同样在使用用于电磁继电器的螺线管装置的情况下,可以防止三个开关同时被接通的不便。
在第一、第二和第三柱塞中的至少一个中,形成在该柱塞的径向方向上突出的凸缘,并且磁通穿过该凸缘。
在这种情况下,磁通穿过凸缘,从而可以增大在柱塞中流动的磁通量。因此,当第一电磁线圈通电时,可以进一步增强在每个柱塞中产生的磁力,并且柱塞可以被更强的磁力吸引。由于柱塞与固定磁芯之间的接触面积增大,所以可以防止固定磁芯和柱塞在形成在磁轭中的磁饱和部之前磁饱和。
(第一实施例)
将会参照图1至6描述螺线管装置的实施例。如图1中所示,第一实施例的螺线管装置1具有第一电磁线圈2a、第一柱塞3a、第二柱塞3b、第一固定磁芯5a、第二固定芯5b和磁轭4。当第一电磁线圈2a通电时,产生磁通Ф(参照图3)。随着第一电磁线圈2a通电,第一和第二柱塞3a和3b向前/向后移动。第一固定磁芯5a设置成在第一柱塞3a的向前/向后移动方向上与第一柱塞3a相对。第二固定芯5b设置成在第二柱塞3b的向前/向后移动方向上与第二柱塞3b相对。磁通Ф流过的磁回路由磁轭4连同第一柱塞3a、第一固定磁芯5a、第二柱塞3b和第二固定芯5b一起构成(参照图3)。
第一柱塞3a构造成沿第一电磁线圈2a内侧的线匝的中心轴线向前/向后移动。第二柱塞3b设置在第一电磁线圈2a的外侧。
如图1中所示,在第一电磁线圈2a未通电的非通电状态下,第一间隙G1形成在第一柱塞3a与第一固定磁芯5a之间。第二间隙G2形成在第二柱塞3b与第二固定磁芯5b之间。
如图3至5中所示,在第一电磁线圈2a通电的通电状态下,磁通Ф在第一和第二磁回路C1和C2中流动。第一磁回路C1是磁通Ф穿过第一柱塞3a、第一固定磁芯5a和磁轭4的磁回路。第二磁回路C2是磁通Ф穿过第一柱塞3a、第一固定磁芯5a、第二柱塞3b、第二固定芯5b和磁轭4的磁回路。
如图5中所示,通过由第一磁回路C1中的磁通Ф的流动所产生的磁力,第一柱塞3a被第一固定磁芯5a吸引。通过由第二磁回路C2中的磁通Ф的流动产生的磁力,第二柱塞3b被第二固定磁芯5b吸引。
如图3中所示,当从非通电状态切换到通电状态时,在第一磁回路C1中流动的磁通Ф穿过第一间隙G1,在第二磁回路C2中流动的磁通Ф穿过第一和第二间隙G1和G2两者。
本实施例的螺线管装置1用于电磁继电器10。在电磁继电器10中,形成两个开关19a和19b。每个开关19具有固定触点13、移动触点14、由金属制成且支承固定触点13的固定触点支承部15、以及由金属制成且支承移动触点14的移动触点支承部16。触点侧弹簧构件12附接到移动触点承部16。触点侧弹簧构件12朝向固定触点支承部15侧按压移动触点支承部16。
在柱塞3与固定磁芯5之间,设置有磁芯侧弹簧构件11。磁芯侧弹簧部件11朝向移动触点支承部16侧按压柱塞3。磁芯侧弹簧构件11的弹簧常数大于触点侧弹簧构件12的弹簧常数。
如图1中所示,在柱塞3中,形成了在柱塞3的径向方向上突出的凸缘38。在固定磁芯5中,形成了与柱塞3接触的凹状圆锥面50和与凸缘38平行的端面51。由第一电磁线圈2a通电所产生的磁通Ф的一部分穿过凸缘38并通向固定磁芯5的端面51。在这种结构的情况下,增大了在柱塞3中流动的磁通Ф的量。
如图1中所示,磁轭4包括滑触磁轭41、底部磁轭42和侧壁磁轭43。在滑触磁轭41中,形成了柱塞3从中穿过的贯通孔39。底部磁轭42设置在柱塞3的轴向方向(Z方向)上与第一电磁线圈2a的滑触磁轭41的相对侧。侧壁磁轭43设置在两个柱塞3a和3b的配置方向(X方向)上连接滑触磁轭41和底部磁轭42的第一柱塞3a侧的端部490和491的位置上。
如图2中所示,贯通孔400形成在侧壁磁轭43中。通过形成贯通孔400,减小了侧壁磁轭43的截面积,以形成磁饱和部49。
如图3中所示,在将第一柱塞3a从非通电状态切换到通电状态时(参照图4),在第一磁回路C1中流动的磁通Ф穿过第一间隙G1。在第二磁回路C2中流动的磁通Ф穿过第一间隙G1穿过第一和第二间隙G1和G2。由于第一和第二间隙G1和G2用作磁阻,所以仅具有一个间隙的第一磁回路C1的磁阻较小,具有两个间隙的第二磁回路C2的磁阻较大。因此,大量磁通Ф在第一磁回路C1中流动,并产生吸引第一柱塞3a的强磁力。另一方面,在第二磁回路C2中流动的磁通Ф的量较小,不会产生足以吸引第二柱塞3b的磁力。因此,如图4中所示,第一柱塞3a在第二柱塞3b之前被吸引。
如图4中所示,当第一柱塞3a被第一固定磁芯5a吸引时,通过触点侧弹簧构件12的按压力,移动触点支承部16被压向固定触点支承部15侧。结果,第一开关19a被接通。
如图4中所示,当第一柱塞3a与第一固定磁芯5a接触时,第一间隙G1消失。因此,第二磁回路C2的磁阻减小,并且在第二磁回路C2中流动的磁通Ф的量增大。因此,如图5中所示,第二柱塞3b被第二固定磁芯5b吸引。
如上所述,在本实施例中,磁饱和部49形成在磁轭4(侧壁磁轭43)中作为第一磁回路C1的部件。当第一柱塞3a被吸引时,磁饱和部49中的磁通Ф饱和。因此,也可以有充足的磁通Ф通过第二磁回路C2。
当第二柱塞3b被第二固定磁芯5b吸引时,通过触点侧弹簧构件12的按压力,移动触点支承部16被压向固定触点支承部15侧。结果,第二开关19b被接通。
在此之后,如图1中所示,当第一电磁线圈2a设定为非通电状态时,磁通Ф消失,并且,通过磁芯侧弹簧构件11的按压力,柱塞3被压向移动触点支承部16侧。附接到柱塞3的绝缘部30与移动触点支承部16接触,与触点侧弹簧构件12的按压力相反,使移动触点支承部16与固定触点支承部15分离。结果,开关19a和19b被关断。
接着,将会描述使用本实施例的电磁继电器10的电路。在本实施例中,如图6中所示,给连接直流电源6和电子装置63的电源输入部66提供电磁继电器10。电源输入部66具有连接直流电源6和电子装置63的正极的正侧配线64和连接直流电源6和电子装置63的负极的负侧配线65。在正侧配线64与负侧配线65之间,连接用于使施加到电子装置63的直流电压平滑的平滑电容器61。
正侧配线64设置有第二开关19b。串联构件67与第二开关19b并联连接,在串联构件67中,预充电电阻器62和第一开关19a串联连接。
在启动电子装置63时,如果首先接通第二开关19b,则浪涌电流有可能在平滑电容器61中流动并且第二开关19b粘附。因此,首先接通第一开关19a,电流经由预充电电阻器62逐渐传到平滑电容器61。在电荷在平滑电容器61中充分累积之后,接通第二开关19b。
如上所述,本实施例的电磁继电器10可以适用于该电路,原因在于当第一电磁线圈2a设定为通电状态时,首先接通第一开关19a,并在此之后接通第二开关19b。
虽然在本实施例中给正侧配线64提供第一开关19a、预充电电阻器62和第二开关19b,但是也可以将其提供给负侧配线65。
将会描述本实施例的操作和效果。在本实施例中,如图3中所示,当将第一电磁线圈2a从非通电状态切换到通电状态时,在第一磁回路C1中流动的磁通Ф穿过一个间隙(第一间隙G1),在第二磁回路C2中流动的磁通Ф穿过两个间隙(第一和第二间隙G1和G2)。由于这些间隙成为大于磁轭4的磁阻,所以仅具有一个间隙的第一磁回路C1的磁阻较小,具有两个间隙的第二磁回路C2的磁阻较大。因此,大量磁通Ф在第一磁回路C1中流动并产生吸引第一柱塞3a的强磁力。另一方面,在第二磁回路C2中流动的磁通Ф的量较小,不会产生足以吸引第二柱塞3b的磁力。因此,如图4中所示,第一柱塞3a在第二柱塞3b之前被吸引。
当第一柱塞3a被吸引时,第一柱塞3a与第一固定磁芯5a接触,第一间隙G1消失。因此,第二磁回路C2的磁阻减小,在第二磁回路C2中流动的磁通Ф的量增大。因此,如图5中所示,第二柱塞3b被吸引。
按照这种方式,首先可以吸引第一柱塞3a,在此之后,可以吸引第二柱塞3b。
本实施例的螺线管装置1不必设置专用于吸引第二柱塞3b的电磁线圈。因此,可以减小螺线管装置1的制造成本,可以使螺线管装置1小型化。
在本实施例中,可以使第二间隙G2大于第一间隙G1。按照这种方式,可以使从吸引第一柱塞3a到吸引第二柱塞3b的时间更长。可以使用于第二柱塞3b的柱塞侧弹簧构件11b的弹簧常数大于用于第一柱塞3a的柱塞侧弹簧构件11a的弹簧常数。同样在这种情况下,可以使从吸引第一柱塞3a到吸引第二柱塞3b的时间更长。可以使第二柱塞3b比第一柱塞3a更重。
如图2中所示,在第一磁回路C1上的磁轭4(侧壁磁轭43)中,形成了局部出现磁饱和的磁饱和部49。通过磁饱和部49来调节在第一磁回路C1中流动的磁通Ф的量。
按照这种方式,当磁通Ф通过时,可以可靠地吸引两个柱塞3a和3b。具体而言,出现以下问题:如果当第一柱塞3a被吸引时在第一磁回路C1中流动的磁通Ф变得过大,则在第二磁回路C2中流动的磁通Ф变小,从而难以吸引第二柱塞3b。然而,通过形成如上所述的磁饱和部49,可以调节在第一磁回路C1中流动的磁通Ф的量。因此,在第一柱塞3a被吸引之后,可以有充足的磁通Ф穿过第二磁回路C2。因此,能够可靠地吸引第一和第二柱塞3a和3b这两者。
如图3中所示,每个柱塞3具有在柱塞3的径向方向上突出的凸缘38。由第一电磁线圈2a通电所产生的磁通穿过凸缘38。
利用这种结构,磁通Ф穿过凸缘38,从而可以使在柱塞3中流动的磁通Ф的量增大。因此,当第一电磁线圈2a通电时,可以进一步增强在柱塞3中产生的磁力,可以由更强的磁力吸引柱塞3。由于柱塞3与固定磁芯5之间的接触面积增大,所以可以防止固定磁芯5和柱塞3在磁饱和部49之前磁饱和。
如上所述,根据本实施例,能够以较低的制造成本提供可以按预定顺序吸引多个柱塞的螺线管装置。
虽然在本实施例中通过在磁轭4中形成贯通孔400来部分地减小截面积从而形成磁饱和部49,但是也可以通过给磁轭4的一部分使用容易磁饱和的材料来形成磁饱和部49。
(第二实施例)
在第二实施例中,如图7至12中所示,改变了柱塞3的数目和电磁线圈2的数目。如图7中所示,本实施例中的螺线管装置1具有三个柱塞3,其为第一柱塞3a、第二柱塞3b和第三柱塞3c。螺线管装置1具有两个电磁线圈2,其为第一电磁线圈2a和第二电磁线圈2b。按照与第一实施例类似的方式,第一柱塞3a设置在第一电磁线圈2a的内侧,第二柱塞3b设置在第一电磁线圈2a的外侧。在本实施例中,第三柱塞3c设置在第二电磁线圈2b的内侧。在第三柱塞3c的向前/向后移动方向(Z方向)上与第三柱塞3c相对的位置上,设置由软磁材料制成的第三固定磁芯5c。
在本实施例中,如图7中所示,第二柱塞3b具有由第二固定磁芯5b吸引的本体部300、缩径(diameter-reduced)部31和扩径(diameter-enlarged)部32。缩径部31在Z方向上从本体部300向与第二固定磁芯5b的相对侧突出。扩径部32形成在缩径部31中,扩径部32的直径大于缩径部31的直径。本体部300、缩径部31和扩径部32由软磁材料制成。
磁轭4具有第一部分41a和第二部分41b,第二柱塞3b的本体部300沿第一部分41a滑动,第二部分41b与第一部分41a分开且第三柱塞3c沿第二部分41b滑动。如图11中所示,在第二柱塞3b被第二固定磁芯5b吸引的吸引状态下,扩径部32变得靠近第二部分41b,且第二柱塞3b与第二部分41b之间的间隙“g”变得相对较小。如图7中所示,在第二柱塞3b未被第二固定磁芯5b吸引的非吸引状态下,扩径部32与第二部分41b分离,缩径部31移动靠近第二部分41b。因此,第二柱塞3b与第二部分41b之间的间隙“g”变得比在吸引状态下(参照图11)更宽。
第一和第二部分41a和41b中的每一个形成为板状。在Z方向上以预定间隔设置第一和第二部分41a和41b,以使其部分重叠。在重叠部分中,贯通孔47和48分别形成在第一和第二部分41a和41b中。第二柱塞3b插入到贯通孔47和48中。与向前/向后移动动作相关联,第二柱塞3b的本体部300沿贯通孔47的内表面滑动。
如图7中所示,在非吸引状态下,缩径部31定位在第二部分41b中的贯通孔48中。如图11中所示,在吸引状态下,扩径部32在第二部分41b中的贯通孔48中移动。
如图8中所示,当第一电磁线圈2a通电时,磁通Ф单独地在第一和第二磁回路C1和C2中流动。按照与第一实施例类似的方式,第一间隙G1形成在第一磁回路C1中,两个间隙(即,第一和第二间隙G1和G2)形成在第二磁回路C2中。因此,在第一磁回路C1中流动的磁通Ф的量较大,在第二磁回路C2中流动的磁通Ф的量较小。因此,如图9中所示,首先吸引第一柱塞3a,接通第一开关19a。
如图9中所示,当第一柱塞3a被吸引时,第一间隙G1消失,使得第二磁回路C2的磁阻减小。因此,在第二磁回路C2中流动的磁通Ф的量增大。如上所述,在第二柱塞3b未被吸引的状态下(非吸引状态),第二部分41b与第二柱塞3b之间的间隙“g”较宽,使得它们之间的磁阻较大。结果,在第二部分41b中流动的磁通Ф不那么多,但容易在第二柱塞3b中流动。
如图10中所示,当在第二磁回路C2中流动的磁通Ф增大时,第二柱塞3b由磁力而被第二固定磁芯5b吸引。结果,接通第二开关19b。
在此之后,如图11中所示,第二电磁线圈2b通电,磁通Ф穿过第三柱塞3c和第三固定磁芯5c。通过该动作所产生的磁力,第三柱塞3c被第三固定磁芯5c吸引,且接通第三开关19c。
如上所述,在第二柱塞3b被吸引的状态下(吸引状态),第二柱塞3b与第二部分41b之间的间隙“g”较窄,它们之间的磁阻较小。因此,第二电磁线圈2b的磁通Ф从第二部分41b经由间隙“g”流到扩径部48(第二柱塞3b)。
在本实施例中,如图11中所示,确定流过第一和第二电磁线圈2a和2b的电流的方向,使得由第一电磁线圈2a产生且流到第二柱塞3b的磁通Ф的方向以及由第二电磁线圈2b产生且流到第二柱塞3b的磁通Ф的方向变为相同,从而得以增强。
在本实施例中,设置了两个侧壁磁轭43,即第一侧壁磁轭43a和第二侧壁磁轭43b。磁饱和部49a和49b分别形成在侧壁磁轭43a和43b中。由第二电磁线圈2b通电所产生的磁通Ф的一部分在出现磁饱和的磁饱和部49b中流动。因此,磁通Ф可以有效地流到第二柱塞3b。
在第二电磁线圈2b通电之后,如图12中所示,停止第一电磁线圈2a的通电。在第一磁回路C1中流动的磁通Ф减小,第一柱塞3c的吸引力被撤销,第一开关19a被关断。由于第二电磁线圈2b通电所产生的磁通Ф在第二和第三柱塞3b和3c中流动,所以即使第一电磁线圈2a的通电停止,也继续吸引第二和第三柱塞3b和3C。
另一方面,如图14中所示,在第二电磁线圈2b在第一电磁线圈2a通电之前通电的情况下,只有第三柱塞3c被吸引。在第一电磁线圈2a未通电的状态下,如图7中所示,第二柱塞3b未被吸引,第二柱塞3b与第二部41b之间的磁阻较大。因此,在该状态下当第二电磁线圈2b通电时,如图14中所示,第二电磁线圈2b的磁通Ф不容易流到第二柱塞3b,第二柱塞3b未被吸引。因此,通过第二电磁线圈2b的磁通Ф,仅吸引第三柱塞3c。在本实施例中,如稍后所述,在这种状态下,判断第二开关19b是否被粘附。
接着,将会描述使用本实施例的电磁继电器10的电路。在本实施例中,如图13中所示,给连接直流电源6和电子装置63的电源输入部66提供电磁继电器10。电源输入部66具有连接直流电源6和电子装置63的正极的正侧配线64以及连接直流电源6和电子装置63的负极的负侧配线65。在正侧配线64与负侧配线65之间,连接有用于平滑施加到电子装置63的直流电压的平滑电容器61。
正侧配线64设置有第三开关19c,负侧配线65设置有第二开关19b。串联构件67与第三开关19c并联连接,在串联构件67中,预充电电阻器62与第一开关19a串联连接。
在本实施例中,在启动电子装置63之前,判断第二开关19b是否被粘附。在执行该判断时,首先,在第一电磁线圈2a未通电的状态下使第二电磁线圈2b通电,仅接通第三开关19c(参照图14)。如果第二开关19b在此时被粘附,则电流在电容器61中流动,使电荷累积,电容器61的电压上升。因此,通过将电压传感器附接到电容器61并测量电容器61的电压,可以判断第二开关19b是否被粘附。仅在判断第二开关19b未被粘附的情况下,启动该电子装置。
在启动电磁装置63时,通过使第一电磁线圈2a通电,使第一和第二开关19a和19b接通。电流经由预充电电阻器62逐渐通过平滑电容器61。在电荷在平滑电容器61中充分累积之后,电流通过第二开关19b,并且接通第三开关19c。
在此之后,停止第一电磁线圈2a的通电,使第一开关19a关断。在仅第二和第三开关19b和19c接通的状态下,将电力供给到电子装置63。
将会描述本实施例的动作和效果。在本实施例中,如图11中所示,使第一电磁线圈2a通电,以吸引第一和第二柱塞3a和3b。在此之后,使第二电磁线圈2b通电,以吸引第三柱塞3c。
按照这种方式,可以通过使两个电磁线圈通电/未通电来获得两个吸引状态,即第一和第二柱塞3a和3b被吸引的状态(第一吸引状态,参照图10)以及第一至第三柱塞3a至3c被吸引的状态(第二吸引状态,参照图11)。
在本实施例中,如图11中所示,通过使第一电磁线圈2a通电,并在此之后使第二电磁线圈2b通电,由第二电磁线圈2b通电所产生的磁通Ф也在第二柱塞3b中流动。如图12中所示,通过使第二电磁线圈2b通电,并在此之后停止第一电磁线圈2a的通电,在第二和第三柱塞3b和3c被第二电磁线圈2b的磁通Ф吸引的状态下,仅撤销对第一柱塞3a的吸引。
按照这种方式,可以通过使两个电磁线圈2a和2b通电/未通电来获得三个吸引状态,即仅吸引第二和第三柱塞3b和3c的状态(第三吸引状态,参照图12)以及第一和第二吸引状态。
因此,在第二和第三开关19b和19c被接通的状态下,可以关断第一开关19a。在将电力供给到电子装置63时出现突发浪涌(suddensurge)的情况下,可以抑制第一开关19a的粘附。
在本实施例中,在使第二电磁线圈2b在第一电磁线圈2a通电之前通电的情况下,在第一至第三柱塞3a至3c中仅第三柱塞3c被吸引(参照图14)。
利用这种结构,可以仅吸引第三柱塞3c,从而可以仅接通第三开关19c。因此,可以判断另一开关(第二开关19b)是否为粘附的。
在本实施例中,非吸引状态下(参照图7)第二柱塞3b与第二部分41b之间的间隙“g”比吸引状态下(参照图11)更宽。
利用这种结构,在非吸引状态下,可以使第二柱塞3b与第二部分41b之间的磁阻在非吸引状态下较大。因此,在非吸引状态下,第一电磁线圈2a的磁通Ф不容易在第二部分41b中流动。因此,第一电磁线圈2a的磁通Ф更容易在第二柱塞3b中流动,可以以更强的磁力吸引第二柱塞3b。
在本实施例中,在吸引状态下(参照图11),第二柱塞3b与第二部分41b之间的间隙“g”比非吸引状态下(参照图7)更窄。
利用这种结构,可以减小第二柱塞3b与第二部分41b之间的磁阻。因此,由第二电磁线圈2b通电所产生的磁通Ф更容易在第二柱塞3b中流动。因此,如图12中所示,当停止第一电磁线圈2a的通电时,第二电磁线圈2b的磁通Ф可靠地吸引第二柱塞3b。
如上所述,在本实施例中,通过使第一电磁线圈2a通电,可以可靠地吸引第一和第二柱塞3a和3b。在此之后,通过使第二电磁线圈2b通电并停止第一电磁线圈2a的通电(参照图12),可以仅可靠地吸引第二和第三柱塞3b和3c。
利用这种结构,在使第二电磁线圈2b在第一电磁线圈2a通电之前通电的情况下,由于第二柱塞3b处于非吸引状态(参照图7),所以可以增大第二部分41b与第二柱塞3b之间的磁阻。抑制了第二电磁线圈2b到第二柱塞3b的磁通Ф的流动。因此,在未吸引第二柱塞3b的情况下,可以仅吸引第三柱塞3c。
第二实施例的其它动作和效果与第一实施例类似。
在本实施例中,在第二电磁线圈2b通电之后,停止第一电磁线圈2a的通电(参照图12),仅撤销对第一柱塞3a的吸引,且仅关断第一开关19a。或者,在不撤销对第一柱塞3a的吸引的情况下,第一开关19a可以继续处于接通状态。在此情况下,在三个开关19a至19c接通的状态下(参见图13),将电力供给到电磁装置63。然而,由于预充电电阻器62的电阻值较大,所以大部分电流在第二和第三开关19b和19c中流动,电流难以在预充电电阻器62中流动。因此,即使当第一开关19a继续接通时,在实践中也没有什么大问题。
(第三实施例)
在第三实施例中,改变了柱塞3的取向。在本实施例中,如图15中所示,第三柱塞3c的中心轴线设定在与第一和第二柱塞3a和3b的中心轴线的方向不同的方向上。第三柱塞3c的中心轴线平行于X方向,第一和第二柱塞3a和3b的中心轴线平行于Z方向。
其它结构类似于第二实施例。
将会描述本实施例的动作和效果。利用这种结构,电磁继电器10也可以用于诸如车辆内部等易于发生振动的位置。具体而言,当柱塞3在易于发生振动的位置以相同方向取向时,存在由于振动三个柱塞在同一时间在相同方向上移动并且三个开关19在同一时间接通的情况。然而,通过将三个柱塞3a至3c中的一个(第三柱塞3c)的方向设定为与其它两个柱塞(第一和第二柱塞3a和3b)的方向不同,可以防止三个柱塞3由于振动而在相同方向上同时移动。因此,可以防止三个开关19被同时接通的不便。
(第四实施例)
在第四实施例中,如图16中所示,第一电磁线圈1被划分成两个部分,第一线圈部21和第二线圈部22。可以单独地使第一和第二线圈部21和22中的每一个通电。即,可以仅使第一和第二线圈部21和22中的一个通电,或者可以使这两者同时通电。
如图17中所示,当第一线圈部21通电而第二线圈部22未通电时,仅第一柱塞3a由所产生的磁通Ф而被第一固定磁芯5a吸引。在本实施例中,例如,第二柱塞3b的柱塞侧弹簧构件11b的弹簧常数被设定为大于第一柱塞3a的柱塞侧弹簧构件11a的弹簧常数。利用这种结构,即使当仅使上述第一线圈部21通电并产生磁通Ф时,仅吸引第一柱塞3a,而未吸引第二柱塞3b。因此,仅接通第一开关19a。
如图18中所示,当第一和第二线圈部21和22两者都通电时,产生大量磁通Ф。通过该磁通Ф,吸引第一和第二柱塞3a和3b两者。因此,接通两个开关19a和19b这两者。
其它结构与第一实施例类似。
将会描述第四实施例的动作和效果。在本实施例中,按照与第一实施例类似的方式,不设置专用于吸引第二柱塞3b的电磁线圈。因此,与通过使用电磁线圈来吸引每个柱塞的情况相比,可以减小构成电磁线圈的铜配线的量。因此,可以减小电磁继电器10的制造成本。
在本实施例中,可以控制吸引第二柱塞3b的时间。即,仅使第一线圈部21通电以仅吸引第一柱塞3a。经过预定时间之后,第二线圈部22也通电,也吸引第二柱塞3b。因此,通过控制第二线圈部22的通电时间,可以控制吸引第二柱塞3b的时间。
由于在吸引柱塞3a和3b之后不存在间隙“G”,所以磁回路中的磁阻变小。因此,同样通过在吸引柱塞3a和3b之后停止第二线圈部22的通电而导致的磁通Ф的量的减小,柱塞3a和3b可以继续被吸引。按照这种方式,可以减小第一电磁线圈2a的功耗。
其它结构与第一实施例类似。
在本实施例中,在仅使第一线圈部21通电之后,第二线圈部22也通电。通电的顺序可以相反。即,可以仅使第二线圈部22通电,并在此之后第一线圈部21也通电。
(第五实施例)
在本实施例中,如图19中所示,改变了第一电磁线圈2a的位置。如图所示,在本实施例中,柱状磁轭44设置在第一电磁线圈2a的中心,并与第一固定磁芯5a和侧壁磁轭43接触。通过柱状磁轭44、第一固定磁芯5a、第一柱塞3a、滑触磁轭41和侧壁磁轭43,构成了磁磁通Ф在其中流动的第一磁回路C1。
用于磁芯的磁轭45与第二固定磁芯5b接触。用于磁芯的磁轭45也与底部磁轭42接触。通过第一柱塞3a、滑触磁轭41、第二柱塞3b、第二固定磁芯5b、用于磁芯的磁轭45、底部磁轭42、侧壁磁轭43、柱状磁轭44和第一固定磁芯5a,构成了磁通Ф在其中流动的第二磁回路C2。
第五实施例的其它结构、动作和效果与第一实施例类似。
(第六实施例)
在第六实施例中,如图20中所示,改变了第二电磁线圈2b的位置。如图所示,在本实施例中,柱状磁轭44设置在第二电磁线圈2b的中心,并与磁轭4的第二部分41b和底部磁轭42接触。通过第二电磁线圈2b的通电所产生的磁通Ф,第三柱塞3c被吸引。
第六实施例的其它结构、动作和效果与第一实施例类似。
(第七实施例)
在第七实施例中,如图21中所示,未形成缩径部31和扩径部32,而仅在第二柱塞3b中形成本体部300。
第七实施例的其它结构、动作和效果与第一实施例类似。
(第八实施例)
在第八实施例中,如图22和23中所示,使形成在磁轭4的第二部分41b中的贯通孔48小于扩径部32。其被构造成当第二柱塞3b被吸引时扩径部32与第二部分41b的表面接触。
利用这种结构,当第二柱塞3b被吸引时,第二部分41b和第二柱塞3b彼此接触,从而可以进一步减小第二部分41b与第二柱塞3b之间的磁阻。因此,当第二电磁线圈2b通电时,第二电磁线圈2b的磁通Ф更容易从第二部分41b流到扩径部32(第二柱塞3b)。因此,当停止第一电磁线圈2a的通电时(参照图12),可以通过第二电磁线圈2b的磁通Ф来可靠地吸引第二柱塞3b。
其它结构、动作和效果与第一实施例类似。
(第九实施例)
在第九实施例中,如图24和25中所示,改变了开关19a和19b的取向以及弹簧构件11和12的设置位置。在本实施例中,固定触点13和固定触点支承部15设置在Z方向上远离柱塞3的位置,移动触点14和移动触点支承部16设置在Z方向上靠近柱塞3的位置。移动触点支承部16附接到柱塞3。随着柱塞3的向前/向后移动动作,移动触点14与固定触点13接触/移动离开固定触点13。触点侧弹簧构件12向固定触点支承部15侧按压移动触点支承部16。柱塞侧弹簧构件11向底部磁轭42侧按压柱塞3a。
如图24中所示,在第一电磁线圈2a未通电的情况下,通过柱塞侧弹簧构件11的按压力,向底部磁轭42侧按压柱塞3a,并关断开关19a和19b。
如图25中所示,当第一电磁线圈2a通电时,向固定触点支承部15侧按压柱塞3a和3b。因此,移动触点14与固定触点13接触,并接通开关19a和19b。
第九实施例的其它结构、动作和效果与第一实施例类似。
(第十实施例)
在第十实施例中,改变了第一电磁线圈2a和磁轭4的形状。如图26中所示,第一电磁线圈2a具有可以单独通电的第一线圈部21和第二线圈部22。与第二线圈部22相比,第一线圈部21设置在第一柱塞3a的向前/向后移动方向上更靠近第一固定磁芯5a的位置。磁轭4具有中间磁轭46和滑触磁轭41。中间磁轭46设置在第一和第二线圈部21和22之间。与中间磁轭46相比,滑触磁轭41设置第一柱塞3a的向前/向后移动方向(Z方向)上远离第一固定磁芯5a的位置。利用滑触磁轭41,第一和第二柱塞3a和3b滑动接触。
如图27中所示,当仅使作为第一和第二线圈部21和22中的一个的第一线圈部21通电时,通过在中间磁轭46、第一柱塞3a和第一固定磁芯5a中流动的磁通Ф所产生的磁力,第一柱塞3a被第一固定磁芯5a吸引。如图29中所示,当仅使作为第一和第二线圈部21和22中的一个的第二线圈部22通电时,通过在中间磁轭46、第一柱塞3a和滑触磁轭41中流动的磁通Ф所产生的磁力,第一柱塞3a被滑触磁轭41吸引,第一柱塞3a移动远离第一固定磁芯5a。
按照与第一实施例类似的方式,第十实施例的磁轭4具有侧壁磁轭43和底部磁轭42。侧壁磁轭43设置有磁饱和部49。在滑触磁轭41中,形成了柱塞3从中插入的贯通孔39。在贯通孔39的外周,形成向固定磁芯5侧突出的开口壁391和392。当柱塞3执行向前/向后移动动作时,柱塞3与开口壁391和392的内周面滑动接触。开口壁391向第一电磁线圈2a的第二线圈部22的内侧突出。
按照与第一实施例类似的方式,凸缘38形成在柱塞3中。在非通电状态下,在Z方向上从凸缘38到滑触磁轭41(开口壁391)的长度L1比从中间磁轭46到凸缘38的长度L2更短。
中间磁轭46形成为板状。在中间磁轭46中,形成在Z方向上穿通的贯通孔460。第一柱塞3a插置在贯通孔460中。
本实施例的螺线管装置1的通电模式是第一通电模式和第二通电模式,在该第一通电模式下,如图27和28中所示,首先使第一线圈部21通电,同时保持该通电,然后使第二线圈部22通电;在该第二通电模式下,如图29和30中所示,首先使第二线圈部22通电,同时保持该通电,然后使第一线圈部21通电。
如图27中所示,在第一通电模式下,当第一线圈部21通电时,产生磁通Ф。磁通Ф在第一磁回路C1、第二磁回路C2和第三磁回路C3中流动。第一磁回路C1由中间磁轭46、侧壁磁轭43、底部磁轭42、第一固定磁芯5a和第一柱塞3a构成。第二磁回路C2由第一柱塞3a、滑触磁轭41、第二柱塞3b、第二固定磁芯5b、底部磁轭42和第一固定磁芯5a构成。第三磁回路C3由第一柱塞3a、滑触磁轭41、侧壁磁轭43、底部磁轭42和第一固定磁芯5a构成。
在将第一线圈部21从非通电状态(参照图26)切换到通电状态(参照图27)时,在第一磁回路C1中流动的磁通Ф穿过第一间隙G1。在第二磁回路C2中流动磁通Ф穿过第一和第二间隙G1和G2这两者。在第一磁回路C1中流动的磁通Ф、在第二磁回路C2中流动的磁通Ф和在第三磁回路C3中流动磁通Ф流过第一间隙G1。具体而言,强磁通Ф在第一和第三磁回路C1和C3中流动。通过磁通Ф所产生的磁力,第一柱塞3a被第一固定磁芯5a吸引。当第一柱塞3a被吸引时,凸缘38与中间磁轭46的表面接触。
如图27中所示,在本实施例中,当仅使第一线圈部21通电时,磁通Ф不在第二磁回路C2中充足流动,第二柱塞3b未被吸引。如图28中所示,当第一线圈部21通电,并在此之后,第二线圈部22也通电时,叠加了第一线圈部21的磁通Ф和第二线圈部22的磁通Ф,大量磁通Ф在第二磁回路C2中流动。因此,第二柱塞3b被第二固定磁芯5b吸引。
如图29中所示,在第二通电模式下,当仅使作为第一和第二线圈部21和22中的一个的第二线圈部22通电时,磁通Ф的一部分在第一柱塞3a、滑触磁轭41、侧壁磁轭43和中间磁轭46中流动。在此时,磁通Ф还在凸缘38与开口壁391之间流动。通过所产生的磁力,凸缘38被开口壁391吸引。
磁通Ф的另一部分在第一柱塞3a、滑触磁轭41、第二柱塞3b、第二固定磁芯5b、底部磁轭42和第一固定磁芯5a中流动。在该实施例中,即使仅当第二线圈部22通电时,磁通Ф也未在第二柱塞3b中充足流动,第二柱塞3b未被吸引。如图30中所示,当第二线圈部22通电,并在此之后,第一线圈部21也通电时,叠加了第一线圈部21的磁通Ф和第二线圈部22的磁通Ф,大量磁通Ф在第二柱塞3b中流动。因此,在第二柱塞3b中产生强磁力,第二柱塞3b被第二固定磁芯5b吸引。
如上所述,在本实施例中,在第一通电模式下(参照图27和28),第一柱塞3a被第一固定磁芯5a吸引,第二柱塞3b被第二固定磁芯5b吸引。在第二通电模式下(参照图29和图30),第一柱塞3a被滑触磁轭41吸引,第二柱塞3b被第二固定磁芯5b吸引。
在本实施例中,按照与第一实施例类似的方式,螺线管装置1用作电磁继电器10。按照与第一实施例类似的方式,可以给电源输入单元66(参照图6)提供电磁继电器10。例如,第二开关19b(参照图6)由第一柱塞3a接通/关断,第一开关19a由第二柱塞3b接通/关断。在平滑电容器61预充电时,有必要仅接通第一开关19a并关断第二开关19b。因此,在此时,由第二通电模式(参照图29和30)使第一电磁线圈2a通电。通过该动作,第一柱塞3a移动远离第一固定磁芯5a,同时防止第二开关19b被接通,第二柱塞3b被吸引以接通第一开关19a。
在平滑电容器61预充电完成之后,暂时停止第一和第二线圈部21和22的通电,仅使第一线圈部21通电(参照图27)。仅接通第二开关19b(参照图6)上,将电源供给到电子装置63。或者,第二线圈部22也通电(参照图28),以接通第一和第二开关19a和19b这两者。
将会描述本实施例的动作和效果。在本实施例中,如图27中所示,通过仅使第一线圈部21通电,第一柱塞3a被第一固定磁芯5a吸引。或者,通过仅使第二线圈部22通电,第一柱塞3a可以被滑触磁轭41吸引。即,可以使第一柱塞3a移动靠近第一固定磁芯5a或远离第一固定磁芯5a。因此,在第一柱塞3a未被第一固定磁芯5a吸引的情况下,可以强制使第一柱塞3a移动远离第一固定磁芯5a。因此,可以防止第一柱塞3a被第一固定磁芯5a错误地吸引。
如图26中所示,在非通电状态下,在Z方向上从第一柱塞3a的凸缘38到滑触磁轭41(开口壁391)的长度L1比从中间磁轭46到凸缘38的长度L2更短。
因此,当仅使第二线圈部22通电时,在凸缘38与滑触磁轭41(开口壁391)之间产生强磁力。因此,第一柱塞3a可以被滑触磁轭41可靠地吸引,并可以防止第一柱塞3a被中间磁轭46吸引。
在本实施例中,当两个柱塞3a和3b移动到同一侧(底部磁轭42侧)时,两个开关19a和19b被接通。如图31中所示,当两个柱塞3a和3b移动到彼此相对的侧时,开关19a和19b可以被接通。按照这种方式,当发生振动且两个柱塞3a和3b在同一方向上移动时,可以防止两个开关19a和19b被同时接通。因此,进一步抑制了无意时供给到电子装置63(参照图6)的电源。
其余的与第一实施例类似。除非另有说明,在与实施例相关的附图所使用的附图标记中,与第一实施例中所使用附图标记的相同的附图标记指示与第一实施例的部件类似的部件。
(第十一实施例)
在第十一实施例中,改变了第一柱塞3a的形状和滑触磁轭的形状。如图32中所示,本实施例的螺线管装置1具有两个滑触磁轭;第一滑触磁轭411和第二滑触磁轭412。第一滑触磁轭411具有板状,且形成两个贯通孔39。第二滑触磁轭412设置在第二线圈部22的中心并且固定于第一滑触磁轭411。在第二滑触磁轭412中,形成了在Z方向穿通的贯通孔419和圆锥面418。第一滑触磁轭411中的贯通孔39a与第二滑触磁轭412中的贯通孔419彼此连通。
在第一柱塞3a中,形成了均具有圆锥形状的锥形面318和319。锥形面318与第一固定磁芯5a的圆锥面50接触,另一锥形面319与第二滑触磁轭412的圆锥面418接触。
在本实施例中,当仅使作为第一和第二线圈部21和22中的一个的第一线圈部21通电时,第一柱塞3a被第一固定磁芯5a吸引。接着,当第二线圈部22也通电时,两个线圈部21和22的磁通Ф在第二柱塞3b中流动,产生强磁力,第二柱塞3b被第二固定核心5b吸引。当仅使第二线圈部22通电时,第一柱塞3a被第二滑触磁轭412吸引。接着,当第一线圈部21也通电时,两个线圈部21和22的磁通Ф在第二柱塞3b中流动,产生强磁力,第二柱塞3b被第二固定磁芯5b吸引。
其余的与第十实施例类似。在与实施例相关的附图所使用的附图标记中,与第十实施例中所使用附图标记的相同的附图标记指示与第十实施例的部件类似的部件。
(第十二实施例)
在第十二实施例中,改变柱塞3的数目和磁轭4的形状。如图33中所示,按照与第二实施例类似的方式,本实施例的螺线管装置具有三个柱塞3a至3c。第二柱塞3b具有被第二固定磁芯5b吸引本体部300和直径大于本体部300的扩径部32。本体部300和扩径部32由软磁材料制成。
磁轭4具有第一部分41a和第二部分41b。在第一部分41a中,形成有两个贯通孔39a和47。柱塞3a和3b被插置在贯通孔39a和47中。当柱塞3a和3b向前/向后移动时,柱塞3a和3b与贯通孔39a和47的内周面滑动接触。第一部分41a形成为阶梯状。部分414定位在Z方向上比部分413更靠近第四部分41d的侧,第一部分41a中的用于第二柱塞3b的贯通孔47形成在部分414中,用于第一柱塞3a的贯通孔39a形成在部分413中。
磁轭4的第二部分41b与第一部分41a分离。在第二部分41b中,形成两个贯通孔48和39b。柱塞3b和3c插置在贯通孔48和39b中。当第三柱塞3c向前/向后移动时,第三柱塞3c与贯通孔39b的内周面滑动接触。用于第二柱塞3b的贯通孔48的内径大于本体部300的外径,且小于扩径部32的外径。
磁轭4具有第三部分41c和第四部分41d。第三部分41c磁连接到第三固定磁芯5c。第四部分41d磁连接到第二固定磁芯5b和第一固定磁芯5a。用于抑制第三和第四部分41c和41d之间的磁通Ф的流动的切口450形成在第三和第四部分41c和41d之间。
磁轭4还具有第五部分41e、第六部分41f和第七部分41g。第五部分41e连接第一部分41a和第三部分41c。第六部分41f连接第二和第三部分41b和41c。第七部分41g在X方向上在第一柱塞3a侧的端部499处耦合第一和第四部分41a和41d。
如图34中所示,当第一电磁线圈2a通电时,磁通Ф的一部分在由第一柱塞3a、磁轭4的一部分(第一、第七和第四部分41a、41g和41d)和第一固定磁芯5a构成的第一磁回路C1中流动。磁通Ф的另一部分在由第一柱塞3a、第一部分41a、第二柱塞3b、第二固定磁芯5b、第四部分41d和第一固定磁芯5a构成的第二磁回路C2中流动。如图34至36中所示,第一柱塞3a被第一固定磁芯5a吸引,第二柱塞3b被第二固定磁芯5b吸引。
为了在此时使稳定的磁通Ф穿过第二磁回路C2,重要的是使图35的状态下的第一柱塞3a磁饱和。因此,优选设计成使得第一磁回路C1中的磁轭4的任意部分(第一部分41a、第七部分41g和第四部分41d)在第一柱塞3a之前磁饱和。
如图36中所示,在第二柱塞3b被吸引的状态下(吸引状态),扩径部32靠近第二部分41b。即,扩径部32与贯通孔48的外周部接触。如图34中所示,在第二柱塞3b未被第二固定磁芯5b吸引的状态下(非吸引状态),扩径部32与第二部分41b分离,并且从第二柱塞3b到第二部分41b的最短距离变得比吸引状态(参照图36)更长。
在吸引第一和第二柱塞3a和3b(参照图36)之后,当第二电磁线圈2b通电时,如图37中所示产生磁通Ф。第二电磁线圈2b的磁通Ф的一部分在第三柱塞3c、第二部分41b、第六部分41f、第三部分41c和第三固定磁芯5c中流动。通过所产生的磁力,第三柱塞3c被第三固定磁芯5c吸引。第二电磁线圈2b的磁通Ф的另一部分在第三柱塞3c、第二部分41b、扩径部32、第二柱塞3b、第一部分41a、第五部分41e、第三部分41c和第三固定磁芯5c中流动。通过所产生的磁力,扩径部32被第二部分41b吸引。
第二电磁线圈2b中的通电方向可以是相反的。
在此之后,如图38中所示,当停止第一电磁线圈2a的通电时,第一电磁线圈2a的磁通Ф消失,对第一柱塞3a的吸引被撤消。然而,由于第二电磁线圈2b的磁通Ф继续在第二部分41b与扩径部32之间流动,所以扩径部32继续被第二部分41b吸引。
将会描述本实施例的动作和效果。在本实施例中,由于切口450形成在第三和第四部分41c和41d之间,所以磁通Ф不容易在第三和第四部分41c和41d之间流动。因此,如果在第二柱塞3b未被吸引的状态下(参照图34和34)第一电磁线圈2a通电,则可以抑制所产生的磁通Ф从第二柱塞3b流到第二部分41b并进一步经由第六部分41f和第三部分41c流到第四部分41d。因此,第一电磁线圈2a的磁通Ф更容易在第二柱塞3b中流动,并且第二柱塞3b可以被强磁力吸引(参照图35和36)。
如图36中所示,由于第一部分41a与第二部分41b之间不存在磁动势,所以第一电磁线圈2a的磁通Ф几乎不在由第一部分41a、第二柱塞3b、第二部分41b、第六部分41f、第三部分41c和第五部分41e构成的磁回路中流动。
如图37和38中所示,由于在本实施例中形成有切口450,所以当第二电磁线圈2b通电时,干扰了在第三部分41c和第四部分41d之间的第二电磁线圈2b的磁通Ф的流动。因此,第二电磁线圈2b的磁通Ф不容易在由第一部分41a、第一柱塞3a、第一固定磁芯5a、第四部分41d和第三部分41c构成的磁回路中流动。因此,当停止第一电磁线圈2a的通电时,第一柱塞3a未持续被第二电磁线圈2b的磁通Ф吸引,并且可以平滑地撤销对第一柱塞3a的吸引。
如图36和37中所示,本实施例的螺线管装置1被构造成使得在第二柱塞3b被吸引的状态(吸引状态)下从第二柱塞3b到第二部分41b的最短距离是比非吸引状态下(参照图35)更短。因此,在吸引状态下,可以降低第二柱塞3b与第二部分41b之间的磁阻,使得第二电磁线圈2b通电所产生的磁通Ф更容易在第二柱塞3b中流动。因此,如图38中所示,当停止第一电磁线圈2a的通电时,第二柱塞3b可以被第二电磁线圈2b的磁通Ф可靠地吸引。
虽然在本实施例中在如图36中所示的吸引状态下第二柱塞3的扩径部32与第二部分41b接触,但是它们也可以略微彼此分离。
本实施例的电磁继电器10用于图13中所示的电路。当第一电磁线圈2a通电时,第一和第二开关19a和19b被接通(参照图34至36)。电流可以经由预充电电阻器62(参照图13)而逐渐流过,以对平滑电容器61进行充电。在充电完成之后,当第二电磁线圈2b通电时(参照图37),第三开关19c被接通。在此之后,当停止第一电磁线圈2a的通电时(参照图38),在通过第二电磁线圈2b的磁通Ф所产生的磁力来将第二和第三开关19b和19c设定为接通状态的同时,可以关断第一开关19a。在该状态下,可以将电源供给到电子装置63。虽然将电源供给到电子装置63的状态持续相对较长,但是由于仅使作为两个电磁线圈2a和2b中的一个的电磁线圈2(第二电磁线圈2b)通电,所以电磁线圈2中的功耗可以降低到两个电磁线圈2a和2b都通电的情况下的功耗的一半。
如上所述,在本实施例中,通过使第一电磁线圈2a通电,可以可靠地吸引第一和第二柱塞3a和3b(参照图36)。在此之后,通过使第二电磁线圈2b通电以停止第一电磁线圈2a的通电,可以可靠地仅吸引第二和第三柱塞3b和3c(参照图38)。
在本实施例中,在使第二电磁线圈2b在第一电磁线圈2a之前通电的情况下,由于第二柱塞3b处于非吸引状态,所以第二部分41b与第二柱塞3b之间的磁阻较高。由于这个原因,抑制了第二电磁线圈2b所产生的磁通Ф向第二柱塞3b的流动。因此,未吸引第二柱塞3b,可以仅吸引第三柱塞3c。
虽然第三和第四部分41c和41d在本实施例中的切口450中彼此完全分离,但是第三和第四部分41c和41d也可以彼此略微磁连接。
其余的与第二实施例类似。除非另有说明,除非另有说明,在与实施例相关的附图所使用的附图标记中,与第二实施例中所使用附图标记的相同的附图标记指示与第二实施例的部件类似的部件。
(第十三实施例)
在第十三实施例中,改变了柱塞3的形状和固定磁芯5的形状。如图39所示,本实施例的第一和第二柱塞3a和3b均形成为板状。柱塞3在板厚度方向(Z方向)上向前/向后移动。在本实施例中,固定磁芯5(5a和5b)均形成为柱状。第一固定磁芯5a设置在第一电磁线圈2a的中心,且其一个端部515与第一柱塞3a的中心350相对。第一固定磁芯5a的一个端部515的直径大于设置在第一电磁线圈2a的中心的部分599。
磁轭4由接触/分离磁轭415、底部磁轭42和连接底部磁轭42和接触/分离磁轭415的侧壁磁轭43形成,柱塞3与接触/分离磁轭415接触/分离。贯通孔470形成在接触/分离磁轭415中。固定磁芯5的另一端516与底部磁轭42接触。底部磁轭42设置有磁饱和部49。
如图43中所示,柱塞3具有圆盘形状。如图41和42中所示,当柱塞3向前/向后移动时,柱塞3的外周面365与接触/分离磁轭415的表面接触/分离,柱塞3的中心350与固定磁芯5的一个端部515的表面接触/分离。
如图40中所示,当第一电磁线圈2a设定为通电状态时,产生磁通Ф。磁通Ф的一部分在由第一固定磁芯5a、第一柱塞3a和磁轭4构成的第一磁回路C1中流动。磁通Ф的另一部分在由第一固定磁芯5a、第一柱塞3a、接触/分离磁轭415、第二柱塞3b、第二固定磁芯5b和底部磁轭42构成的第二磁回路C2中流动。
如图40中所示,在将第一电磁线圈2a从非通电状态切换到通电状态时,在第一磁回路C1中流动的磁通Ф在第一固定磁芯5a与第一柱塞3a之间的第一间隙G1以及第一柱塞3a与接触/分离磁轭415之间的第三间隙G3中流动。在第二磁回路C2中流动的磁通Ф在上述两个间隙G1和G3以及接触/分离磁轭415与第二柱塞3b之间的第四间隙G4和第二柱塞3b与第二固定磁芯5b之间的第二间隙G2中流动。由于第一磁回路C1中的间隙数小于第二磁回路C2中的间隙数,所以强磁通Ф在第一磁回路C1中流动。因此,如图41中所示,首先吸引第一柱塞3a。当第一柱塞3a被吸引时,间隙G1和G3消失,第二磁回路C2的磁阻减小,大量磁通Ф在第二磁回路C2中流动。结果,如图42中所示,第二柱塞3b被吸引。
将会描述本实施例的动作和效果。在本实施例中,柱塞3在其向前/向后移动动作中不与磁轭4滑动接触。因此,可以抑制柱塞3的磨损。在柱塞3与磁轭4滑动接触的情况下,为了防止柱塞3的磨损,通常在柱塞3的表面上形成由固体润滑剂等制成的薄膜。然而,在本实施例中通过防止柱塞3与磁轭4等滑动接触,变得不必形成由固体润滑剂制成的薄膜。可以降低柱塞3的制造成本。
其余的与第一实施例类似。在与实施例相关的附图所使用的附图标记中,与第一实施例中所使用附图标记的相同的附图标记指示与第一实施例的部件类似的部件。
(第十四实施例)
在第十四实施例中,改变了磁轭4的形状和柱塞3的形状。如图44和45中所示,本实施例的磁轭4具有两个彼此平行的接触/分离磁轭415和416以及两个侧壁磁轭43。第一电磁线圈2a设置在磁轭4中。在接触/分离磁轭415和416中的每一个中,按照与第十三实施例类似的方式,形成了在Z方向上穿通的贯通孔470。
在第一电磁线圈2a的中心设置有柱状磁芯59,第一和第二固定磁芯5a和5b整合成柱状磁芯59。柱状磁芯59的一个端部作为第一固定磁芯5a,柱状磁芯59的另一端部作为第二固定磁芯5b。
第二固定磁芯5b和侧壁磁轭43经由磁饱和部49而彼此连接。磁饱和部49的最小截面积小于侧壁磁轭43或柱状磁芯59的截面积。当第一电磁线圈2a通电时,第一柱塞3a被吸引,磁饱和部49磁饱和。
如图45中所示,两个柱塞3(3a和3b)均具有板状。对于第一电磁线圈2a,第一柱塞3a设置在柱状磁芯59的轴向方向上(Z方向)的一侧。对于第一电磁线圈2a,第二柱塞3b设置在Z方向上的另一侧。
如图47和48中所示,柱塞3的中心350被固定磁芯5吸引。当柱塞3执行向前/向后移动动作时,柱塞3的外周面365与接触/分离磁轭415和416的表面接触/分离。
如图46中所示,当第一电磁线圈2a设定为通电状态时,产生磁通Ф。磁通Ф的一部分在由柱状磁芯59、第一柱塞3a、接触/分离磁轭415、侧壁磁轭43和磁饱和部49构成的第一磁回路C1中流动。磁通Ф的另一部分在由柱状磁芯59、第一柱塞3a、接触/分离磁轭415、侧壁磁轭43、另一接触/分离磁轭416和第二柱塞3b构成的第二磁回路C2中流动。
在第一磁回路C1中流动的磁通Ф穿过第一固定磁芯5a与第一柱塞3a之间的第一间隙G1和第一柱塞3a与接触/分离磁轭415之间的第三间隙G3。在第二磁回路C2中流动的磁通Ф穿过上述两个间隙G1和G3以及另一接触/分离磁轭416与第二柱塞3b之间的第四间隙G4和第二柱塞3b与第二固定磁芯5b之间的第二间隙G2。第一磁回路C1中的间隙数小于第二磁回路C2中的间隙数。因此,在第一磁回路C1中流动的磁通Ф的量较大,在第二磁回路C2中流动的磁通Ф的量较小。因此,在第一柱塞3a中产生强磁力,并且如图47中所示,首先吸引第一柱塞3a。
当第一柱塞3a被吸引时,间隙G1和G3消失,且磁阻减小。由于这个原因,在第一磁回路C1中流动的磁通Ф的量增大。由于第一磁回路C1的磁通Ф穿过磁饱和部49,所以在磁通Ф增大之后,磁饱和部49中会出现磁饱和。因此,通过磁饱和部49,调节在第一磁回路C1中流动的磁通Ф的量,而不是使在第二磁回路C2中的磁通Ф的量增大。结果,第二柱塞3b中所产生的磁力增大,如图48中所示,第二柱塞3b被第二固定磁芯5b吸引。
将会描述本实施例的动作和效果。由于与分别形成第一和第二固定磁芯5a和5b的情况相比,第一和第二固定磁芯5a和5b成为一体,所以可以使磁芯5小型化。此外,可以减少部件数,从而可以降低螺线管装置1的制造成本。
在本实施例中,由于磁饱和部49设置在第一磁回路C1中,即使当第一柱塞3a被吸引且第一磁回路C1的磁通Ф增大时,也可以通过磁饱和部49调节磁通Ф的量。因此,可以增大在第二磁回路C2中流动的磁通Ф的量,并且可以可靠地吸引第二柱塞3b。
其余的与第十三实施例类似。在与实施例相关的附图所使用的附图标记中,与第十三实施例中所使用附图标记的相同的附图标记指示与第十三实施例的部件类似的部件。
(第十五实施例)
在第十五实施例中,改变了柱塞3的数目。如图49中所示,本实施例的螺线管装置1具有三个柱塞3(3a至3c)。三个柱塞3a至3c均形成为板状。在本实施例中,作为两个侧壁磁轭43(43a和43b)中的一个的侧壁磁轭43a用作第三固定磁芯439。第三柱塞3c被第三固定磁芯349吸引。第三固定磁芯439被划分成两个部分;第一磁芯部439a和第二磁芯部439b。当第三柱塞3c向前/向后移动时,第三柱塞3c的一个端部381的与第一磁芯部439a接触/分离,另一端部382与第二磁芯部439b接触/分离。
在本实施例的螺线管装置1中,按照与第十四实施例类似的方式,第一电磁线圈2a的磁通Ф在第一和第二磁回路C1和C2中流动。在本实施例中,磁通Ф在磁回路C1和C2以及第三磁回路C3中流动。第三磁回路C3由柱状磁芯59、接触/分离磁轭415、第一磁芯部439a、第三柱塞3c、第二磁芯部439b和磁饱和部49构成。在第三柱塞3c未被吸引的状态下,第五间隙G5形成在第一磁芯部439a与第三柱塞3c之间,第六间隙G6形成在第二磁芯部439b与第三柱塞3c之间。
由第一电磁线圈2a的通电所产生的磁通Ф流动以分割成三个磁回路C1、C2和C3。当第一电磁线圈2a从非通电状态切换到通电状态时,第一磁回路C1的磁通Ф穿过第一和第三间隙G1和G3。第二磁回路C2的的磁通Ф穿过四个间隙G1、G3、G2和G4。第三磁回路C3的磁通Ф穿过四个间隙G1、G3、G5和G6。如上所述,第一磁回路C1的间隙G数小于第二磁回路C2或第三磁回路C3的间隙数。因此,大量的磁通Ф在第一磁回路C1中流动,在第二和第三磁回路C2和C3中流动的磁通Ф的量较小。因此,首先吸引第一柱塞3a。
当第一柱塞3a被吸引时,间隙G1和G3消失,磁阻减小,在第一磁回路C1中流动的磁通Ф的量增大。由于第一磁回路C1的磁通Ф穿过磁饱和部49,所以在磁通Ф增大之后,磁饱和部49中会出现磁饱和。因此,通过磁饱和部49,调节第一磁回路C1中磁通Ф的量,而不是使第二和第三磁回路C2和C3中磁通Ф的量增大。结果,作用于第二和第三柱塞3b、3c的磁力增大,第二柱塞3b被第二固定磁芯5b吸引,第三柱塞3c被侧壁磁轭43a吸引。
将会描述本实施例的动作和效果。通过采用这种结构,可以向前/向后移动较大数量的柱塞3。第一柱塞3a的吸引方向与第二柱塞3b的吸引方向彼此相反,且第三柱塞3c的吸引方向与第一和第二柱塞3a和3b的吸引方向正交。因此,即使当第一电磁线圈2a未通电时柱塞3a至3c由于外部振动而摆动,柱塞3a至3c也不同时靠近磁轭4。因此,例如,在电磁继电器10由螺线管装置1构成的情况下,可以防止由柱塞3接通/关断的开关(未示出)被同时接通。
其余的与第十四实施例类似。除非另有说明,在与实施例相关的附图所使用的附图标记中,与第十四实施例中所使用附图标记的相同的附图标记指示与第十四实施例的部件类似的部件。
(第十六实施例)
在第十六实施例中,改变了柱塞3的数目和位置。如图50中所示,本实施例的螺线管装置1具有两个均形成为板状的柱塞3(3a和3b)。按照与第十四实施例类似的方式,柱状磁芯59设置在第一电磁线圈2a的中心。在柱状磁芯59的一个端部构建第一固定磁芯5a。柱状磁芯59的另一端部连接到磁饱和部49。
在本实施例中,作为两个侧壁磁轭43(43a和43b)中的一个的侧壁磁轭43a用作第二固定磁芯5b。第二固定磁芯5b由连接到接触/分离磁轭415的第一磁芯部501和连接到磁饱和部49的第二磁芯部502构成。在第二柱塞3b未被吸引的状态下,第二间隙G2形成在第一磁芯部501与第二柱塞3b之间,第四间隙G4形成在第二磁芯部502与第二柱塞3b之间。
由第一电磁线圈2a的通电所产生的磁通Ф流动以分割成第一和第二磁回路C1和C2。本实施例的第二磁回路C2由柱状磁芯59、接触/分离磁轭415、第一磁芯部501、第二磁轭3b、第二磁芯部502和磁饱和部49构成。当第一电磁线圈2a从非通电状态切换到通电状态时,第一磁回路C1的磁通Ф穿过第一和第三间隙G1和G3。第二磁回路C2的磁通Ф穿过第二和第四间隙G2和G4以及第一和第三间隙G1和G3。如上所述,第一磁回路C1中的间隙G数小于第二磁回路C2中的间隙数。因此,大量磁通Ф在第一磁回路C1中流动,在第二磁回路C2中流动的磁通Ф的量较小。因此,首先吸引第一柱塞3a。
当第一柱塞3a被吸引时,第一和第三间隙G1和G3消失,磁阻减小,在第一磁回路C1中流动的磁通Ф的量增大。由于第一磁回路C1的磁通Ф穿过磁饱和部49,所以在磁通Ф增大之后,磁饱和部49中会出现磁饱和。因此,通过磁饱和部49,调节第一磁回路C1中磁通Ф的量,并且第二和第三磁回路C2和C3中磁通Ф的量增大。结果,作用于第二柱塞3b的磁力增大,第二柱塞3b被第二固定磁芯5b吸引。
将会描述本实施例的动作和效果。在本实施例中,第一柱塞3a的吸引方向与第二柱塞3b的吸引方向彼此正交。因此,即使当第一电磁线圈2a未通电时柱塞3a和3b由于外部振动而摆动,两个柱塞3a和3b也不同时靠近固定磁芯5(5a和5b)。因此,在电磁继电器10由螺线管装置1构成的情况下,可以防止由柱塞3a和3b接通/关断的开关(未示出)被同时接通。
其余的与第十四实施例类似。除非另有说明,在与实施例相关的附图所使用的附图标记中,与第十四实施例中所使用附图标记的相同的附图标记指示与第十四实施例的部件类似的部件。
(第十七实施例)
在第十七实施例中,改变了柱塞3的数目和位置。如图51中所示,本实施例的螺线管装置1具有两个均形成为板状的柱塞3(3a和3b)。在第十七实施例中,按照与第十六实施例类似的方式,作为两个侧壁磁轭43(43a和43b)中的一个的侧壁磁轭43a用作第二固定磁芯5b。第二固定磁芯5b由连接到接触/分离磁轭415的第一磁芯部501、连接到磁饱和部49的第二磁芯部502以及设置在第一和第二磁芯部501和502之间的第三磁芯部503构成。
在第三磁芯部503与柱状磁芯59之间设置有辅助磁轭485。磁饱和部49设置有由树脂制成的板状构件119。第二柱塞3b的柱塞侧弹簧构件11d的一部分附接到板状构件119。
在第二柱塞3b未被吸引的状态下,第二间隙G2形成在第二柱塞3b与第一磁芯部501之间,第四间隙G4形成在第二柱塞3b与第二磁芯部502之间。第五间隙G5形成在第二柱塞3b与第三磁芯部503之间。
由第一电磁线圈2a的通电所产生的磁通Ф流动以分割成第一和第二磁回路C1和C2。本实施例的第二磁回路C2由柱状磁芯59、第一柱塞3a、接触/分离磁轭415、第一磁芯部501、第二磁轭3b、第二磁芯部502和磁饱和部49构成。当第一电磁线圈2a从非通电状态切换到通电状态时,第一磁回路C1的磁通Ф穿过第一和第三间隙G1和G3。第二磁回路C2的磁通Ф穿过第二和第四间隙G2和G4以及第一和第三间隙G1和G3。如上所述,第一磁回路C1中的间隙G数小于第二磁回路C2中的间隙数。因此,大量的磁通Ф在第一磁回路C1中流动,在第二磁回路C2中流动的磁通Ф的量较小。因此,首先吸引第一柱塞3a。
在第二磁回路C2中流动的磁通Ф的一部分在某个中点被分割,穿过第三磁芯部503和辅助磁轭485,并且在柱状磁芯59中流动。
当第一柱塞3a被吸引时,第一和第三间隙G1和G3消失,磁阻减小,在第一磁回路C1中流动的磁通Ф的量增大。由于第一磁回路C1的磁通Ф穿过磁饱和部49,所以在磁通Ф增大之后,磁饱和部49中会出现磁饱和。因此,通过磁饱和部49,调节第一磁回路C1中磁通Ф的量,并且第二磁回路C2中磁通Ф的量增大。结果,作用于第二柱塞3b的磁力增大,第二柱塞3b被第二固定磁芯5b吸引。
将会描述本实施例的动作和效果。在本实施例中,第二柱塞3b的柱塞侧弹簧构件11d的一部分可以附接到板状构件119。因此,与第十六实施例中的将所有柱塞侧弹簧构件11d附接到第一电磁线圈2a的表面(弯曲表面)的情况(参照图50)相比,可以在制造时更容易地附接柱塞侧弹簧构件11d。因此,更容易制造螺线管装置1。
其余的与第十六实施例类似。除非另有说明,在与实施例相关的附图所使用的附图标记中,与第十六实施例中所使用附图标记的相同的附图标记指示与第十六实施例的部件类似的部件。
虽然已经参照本公开内容的实施例描述了本公开内容,但是应当理解本公开内容并不限于所述实施例和构造。本公开内容意在涵盖各种修改和等同配置。此外,虽然各种组合和配置,但是包括更多、更少或仅单个要素的其它组合和配置也在本公开内容的精神和范围之内。

Claims (13)

1.一种螺线管装置(1),包括:
第一电磁线圈(2a),用于当电流通过所述第一电磁线圈(2a)时产生磁通;
第一柱塞(3a)和第二柱塞(3b),均根据所述第一电磁线圈(2a)的通电而向后和向前移动;
第一固定磁芯(5a),在所述第一柱塞(3a)的向后-向前移动方向上面对所述第一柱塞(3a);
第二固定磁芯(5b),在所述第二柱塞(3b)的向后-向前移动方向上面对所述第二柱塞(3b);以及
磁轭(4),
其中所述磁轭(4)、所述第一柱塞(3a)、所述第一固定磁芯(5a)、所述第二柱塞(3b)和所述第二固定磁芯(5b)提供磁回路,所述磁通在所述磁回路中流动,
其中,当所述第一电磁线圈(2a)在非通电状态下未通电时,第一间隙(G1)形成在所述第一柱塞(3a)与所述第一固定磁芯(5a)之间,第二间隙(G2)形成在所述第二柱塞(3b)与所述第二固定磁芯(5b)之间,
其中,当所述第一电磁线圈(2a)在通电状态下通电时,所述磁通在第一磁回路(C1)和第二磁回路(C2)中流动,所述第一磁回路(C1)由所述第一柱塞(3a)、所述第一固定磁芯(5a)和所述磁轭(4)提供,所述第二磁回路(C2)由所述第一柱塞(3a)、所述第一固定磁芯(5a)、所述第二柱塞(3b)、所述第二固定磁芯(5b)和所述磁轭(4)提供,
其中,当所述第一电磁线圈(2a)在所述通电状态下通电时,通过在所述第一磁回路(C1)中的所述磁通的流动所产生的磁力而朝向所述第一固定磁芯(5a)吸引所述第一柱塞(3a),并且通过在所述第二磁回路(C2)中的所述磁通的流动所产生的磁力而朝向所述第二固定磁芯(5b)吸引所述第二柱塞(3b),
其中,当从所述非通电状态切换到所述通电状态时,在所述第一磁回路(C1)中流动的所述磁通穿过所述第一间隙(G1),并且在所述第二磁回路(C2)中流动的所述磁通穿过所述第一间隙(G1)和所述第二间隙(G2),
其中,所述第一电磁线圈(2a)具有均独立通电的第一线圈部(21)和第二线圈部(22),
其中,所述第一线圈部(21)设置在所述第一柱塞(3a)的所述向后-向前移动方向上比所述第二线圈部(22)更靠近所述第一固定磁芯(5a)的位置处,
其中,所述磁轭(4)包括:设置在所述第一线圈部(21)与所述第二线圈部(22)之间的中间磁轭(46);以及设置在所述第一柱塞(3a)的所述向后-向前移动方向上比所述中间磁轭(46)更远离所述第一固定磁芯(5a)的位置处的滑触磁轭(41),
其中,所述第一柱塞(3a)和所述第二柱塞(3b)与所述滑触磁轭(41)滑动接触,
其中,当仅使所述第一线圈部(21)通电时,通过在所述中间磁轭(46)、所述第一柱塞(3a)和所述第一固定磁芯(5a)中流动的磁通所产生的磁力,而朝向所述第一固定磁芯(5a)吸引所述第一柱塞(3a),并且
其中,当仅使所述第二线圈部(22)通电时,通过在所述中间磁轭(46)、所述第一柱塞(3a)和所述滑触磁轭(41)中流动的磁通所产生的磁力,而朝向所述滑触磁轭(41)吸引所述第一柱塞(3a),使得所述第一柱塞(3a)移动远离所述第一固定磁芯(5a)。
2.根据权利要求1所述的螺线管装置(1),
其中,所述磁轭(4)包括设置在所述第一磁回路(C1)上的磁饱和部(49),在所述磁饱和部(49)中局部出现磁饱和,并且
其中,所述磁饱和部(49)调节在所述第一磁回路(C1)中流动的所述磁通的量。
3.根据权利要求1所述的螺线管装置(1),
其中,所述第一柱塞(3a)包括凸缘(38),所述凸缘(38)在所述第一柱塞(3a)的径向方向上的直径大于所述第一柱塞(3a)的本体部的直径,并且
其中,当所述第一电磁线圈(2a)在非通电状态下未通电时,在所述第一柱塞(3a)的所述向后-向前移动方向上所述凸缘(38)与所述滑触磁轭(41)之间的长度(L1)比所述中间磁轭(46)与所述凸缘(38)之间的长度(L2)更短。
4.一种螺线管装置(1),包括:
第一电磁线圈(2a),用于当电流通过所述第一电磁线圈(2a)时产生磁通;
第一柱塞(3a)和第二柱塞(3b),均根据所述第一电磁线圈(2a)的通电而向后和向前移动;
第一固定磁芯(5a),在所述第一柱塞(3a)的向后-向前移动方向上面对所述第一柱塞(3a);
第二固定磁芯(5b),在所述第二柱塞(3b)的向后-向前移动方向上面对所述第二柱塞(3b);以及
磁轭(4),
其中所述磁轭(4)、所述第一柱塞(3a)、所述第一固定磁芯(5a)、所述第二柱塞(3b)和所述第二固定磁芯(5b)提供磁回路,所述磁通在所述磁回路中流动,
其中,当所述第一电磁线圈(2a)在非通电状态下未通电时,第一间隙(G1)形成在所述第一柱塞(3a)与所述第一固定磁芯(5a)之间,第二间隙(G2)形成在所述第二柱塞(3b)与所述第二固定磁芯(5b)之间,
其中,当所述第一电磁线圈(2a)在通电状态下通电时,所述磁通在第一磁回路(C1)和第二磁回路(C2)中流动,所述第一磁回路(C1)由所述第一柱塞(3a)、所述第一固定磁芯(5a)和所述磁轭(4)提供,所述第二磁回路(C2)由所述第一柱塞(3a)、所述第一固定磁芯(5a)、所述第二柱塞(3b)、所述第二固定磁芯(5b)和所述磁轭(4)提供,
其中,当所述第一电磁线圈(2a)在所述通电状态下通电时,通过在所述第一磁回路(C1)中的所述磁通的流动所产生的磁力而朝向所述第一固定磁芯(5a)吸引所述第一柱塞(3a),并且通过在所述第二磁回路(C2)中的所述磁通的流动所产生的磁力而朝向所述第二固定磁芯(5b)吸引所述第二柱塞(3b),
其中,当从所述非通电状态切换到所述通电状态时,在所述第一磁回路(C1)中流动的所述磁通穿过所述第一间隙(G1),并且在所述第二磁回路(C2)中流动的所述磁通穿过所述第一间隙(G1)和所述第二间隙(G2),
其中,所述第一柱塞(3a)和所述第二柱塞(3b)均具有板状,
其中,所述第一柱塞(3a)和所述第二柱塞(3b)均在所述板状的板厚方向上向后和向前移动,并且
其中,当所述第一柱塞(3a)和所述第二柱塞(3b)均向后和向前移动时,所述第一柱塞(3a)和所述第二柱塞(3b)均接触所述磁轭(4)的表面和移动远离所述磁轭(4)的表面。
5.根据权利要求4所述的螺线管装置(1),还包括:
柱状磁芯(59),插置在所述第一电磁线圈(2a)的中心,
其中,所述第一固定磁芯(5a)和所述第二固定磁芯(5b)整合成所述柱状磁芯(59),
其中,所述第一柱塞(3a)设置在所述柱状磁芯(59)的轴向方向上所述第一电磁线圈(2a)的一侧,并且
其中,所述第二柱塞(3b)设置在所述柱状磁芯(59)的所述轴向方向上所述第一电磁线圈(2a)的另一侧。
6.根据权利要求4所述的螺线管装置(1),
其中,当所述第一电磁线圈(2a)在所述非通电状态下未通电时,第三间隙(G3)形成在所述第一柱塞(3a)与所述磁轭(4)之间,第四间隙(G4)形成在所述第二柱塞(3b)与所述磁轭(4)之间,并且
其中,当从所述非通电状态切换到所述通电状态时,在所述第一磁回路(C1)中流动的所述磁通穿过所述第一间隙(G1)和所述第三间隙(G3),并且在所述第二磁回路(C2)中流动的所述磁通穿过所述第一间隙(G1)、所述第三间隙(G3)、所述第四间隙(G4)和所述第二间隙(G2)。
7.一种螺线管装置(1),包括:
第一电磁线圈(2a),用于当电流通过所述第一电磁线圈(2a)时产生磁通;
第一柱塞(3a)和第二柱塞(3b),均根据所述第一电磁线圈(2a)的通电而向后和向前移动;
第一固定磁芯(5a),在所述第一柱塞(3a)的向后-向前移动方向上面对所述第一柱塞(3a);
第二固定磁芯(5b),在所述第二柱塞(3b)的向后-向前移动方向上面对所述第二柱塞(3b);
磁轭(4);
第二电磁线圈(2b),用于当电流通过所述第二电磁线圈(2b)时产生磁通;
第三柱塞(3c),根据所述第二电磁线圈(2b)的通电而向后和向前移动;以及
第三固定磁芯(5c),在所述第三柱塞(3c)的向后-向前移动方向上面对所述第三柱塞(3c),
其中,所述磁轭(4)、所述第一柱塞(3a)、所述第一固定磁芯(5a)、所述第二柱塞(3b)和所述第二固定磁芯(5b)提供磁回路,所述磁通在所述磁回路中流动,
其中,当所述第一电磁线圈(2a)在非通电状态下未通电时,第一间隙(G1)形成在所述第一柱塞(3a)与所述第一固定磁芯(5a)之间,第二间隙(G2)形成在所述第二柱塞(3b)与所述第二固定磁芯(5b)之间,
其中,当所述第一电磁线圈(2a)在通电状态下通电时,所述磁通在第一磁回路(C1)和第二磁回路(C2)中流动,所述第一磁回路(C1)由所述第一柱塞(3a)、所述第一固定磁芯(5a)和所述磁轭(4)提供,所述第二磁回路(C2)由所述第一柱塞(3a)、所述第一固定磁芯(5a)、所述第二柱塞(3b)、所述第二固定磁芯(5b)和所述磁轭(4)提供,
其中,当所述第一电磁线圈(2a)在所述通电状态下通电时,通过在所述第一磁回路(C1)中的所述磁通的流动所产生的磁力而朝向所述第一固定磁芯(5a)吸引所述第一柱塞(3a),并且通过在所述第二磁回路(C2)中的所述磁通的流动所产生的磁力而朝向所述第二固定磁芯(5b)吸引所述第二柱塞(3b),
其中,当从所述非通电状态切换到所述通电状态时,在所述第一磁回路(C1)中流动的所述磁通穿过所述第一间隙(G1),并且在所述第二磁回路(C2)中流动的所述磁通穿过所述第一间隙(G1)和所述第二间隙(G2),并且
其中,在所述第一电磁线圈(2a)在所述通电状态下通电以使得所述第一柱塞(3a)被朝向所述第一固定磁芯(5a)吸引并且所述第二柱塞(3b)被朝向所述第二固定磁芯(5b)吸引之后,使所述第二电磁线圈(2b)通电,以使得所述第三柱塞(3c)被朝向所述第三固定磁芯(5c)吸引。
8.根据权利要求7所述的螺线管装置(1),
其中,在所述第一电磁线圈(2a)在所述通电状态下通电之后,使所述第二电磁线圈(2b)通电,以使得由所述第二电磁线圈(2b)的通电所产生的磁通在所述第二柱塞(3b)中流动,并且
其中,在所述第二电磁线圈(2b)通电之后,终止所述第一电磁线圈(2a)的通电,以使得在由所述第二电磁线圈(2b)的磁通吸引所述第二柱塞(3b)和所述第三柱塞(3c)的条件下,仅撤消对所述第一柱塞(3a)的吸引。
9.根据权利要求7所述的螺线管装置(1),
其中,当所述第二电磁线圈(2b)在所述第一电磁线圈(2a)通电之前通电时,仅所述第三柱塞(3c)被朝向所述第三固定磁芯(5c)吸引。
10.根据权利要求7所述的螺线管装置(1),
其中,所述第二柱塞(3b)包括:本体部(300),被朝向所述第二固定磁芯(5b)吸引;缩径部(31),在所述第二柱塞(3b)的所述向后-向前移动方向上从所述本体部(300)向所述第二固定磁芯(5b)的相对侧突出;以及扩径部(32),设置在所述缩径部(31)上且具有大于所述缩径部(31)的直径,
其中,所述本体部(300)、所述缩径部(31)和所述扩径部(32)由软磁材料制成,
其中,所述磁轭(4)包括第一磁轭部(41a)和与所述第一磁轭部(41a)分离的第二磁轭部(41b),
其中,所述本体部(300)与所述第一磁轭部(41a)滑动接触,
其中,所述第三柱塞(3c)与所述第二磁轭部(41b)滑动接触,
其中,当所述第二柱塞(3b)被朝向所述第二固定磁芯(5b)吸引时,所述扩径部(32)靠近所述第二磁轭部(41b),并且所述第二柱塞(3b)与所述第二磁轭部(41b)之间的间隙减小,并且
其中,当所述第二柱塞(3b)未被朝向所述第二固定磁芯(5b)吸引时,所述扩径部(32)设置成与所述第二磁轭部(41b)分离,并且所述缩径部(31)移动靠近所述第二磁轭部(41b),以使得所述第二柱塞(3b)与所述第二磁轭部(41b)之间的间隙变得比所述第二柱塞(3b)被朝向所述第二固定磁芯(5b)吸引的情况下更宽。
11.根据权利要求7所述的螺线管装置(1),
其中,所述第二柱塞(3b)包括:本体部(300),被朝向所述第二固定磁芯(5b)吸引;以及扩径部(32),其直径大于所述本体部(300)的直径,
其中,所述本体部(300)和所述扩径部(32)由软磁材料制成,
其中,所述磁轭(4)包括第一磁轭部(41a)、第二磁轭部(41b)、第三磁轭部(41c)、第四磁轭部(41d)、第五磁轭部(41e)和第六磁轭部(41f),
其中,所述第二柱塞(3b)的所述本体部(300)和所述第一柱塞(3a)与所述第一磁轭部(41a)滑动接触,
其中,所述第二磁轭部(41b)与所述第一磁轭部(41a)分离,
其中,所述第三柱塞(3c)与所述第二磁轭部(41b)滑动接触,
其中,所述第三磁轭部(41c)连接到所述第三固定磁芯(5c),
其中,所述第四磁轭部(41d)连接到所述第二固定磁芯(5b)和所述第一固定磁芯(5a),
其中,所述第五磁轭部(41e)连接在所述第一磁轭部(41a)与所述第三磁轭部(41c)之间,
其中,所述第六磁轭部(41f)连接在所述第二磁轭部(41b)与所述第三磁轭部(41c)之间,
所述螺线管装置还包括:
切口(450),用于抑制在所述第三磁轭部(41c)与所述第四磁轭部(41d)之间的磁通的流动,
其中,所述切口(450)设置在所述第三磁轭部(41c)与所述第四磁轭部(41d)之间,
其中,当所述第二柱塞(3b)被朝向所述第二固定磁芯(5b)吸引时,所述扩径部(32)靠近所述第二磁轭部(41b),以使得所述第二柱塞(3b)与所述第二磁轭部(41b)之间的最短距离减小,并且
其中,当所述第二柱塞(3b)未被朝向所述第二固定磁芯(5b)吸引时,所述扩径部(32)设置成与所述第二磁轭部(41b)分离,并且所述第二柱塞(3b)与所述第二磁轭部(41b)之间的所述最短距离变得比所述第二柱塞(3b)被朝向所述第二固定磁芯(5b)吸引的情况更长。
12.根据权利要求7所述的螺线管装置(1),
其中,使所述第一柱塞(3a)、所述第二柱塞(3b)和所述第三柱塞(3c)中的一个的中心轴线转向不同于所述第一柱塞(3a)、所述第二柱塞(3b)和所述第三柱塞(3c)中的另外两个的中心轴线的方向。
13.根据权利要求7所述的螺线管装置(1),
其中,所述第一柱塞(3a)、所述第二柱塞(3b)和所述第三柱塞(3c)中的至少一个包括凸缘(38),所述凸缘(38)在所述第一柱塞(3a)、所述第二柱塞(3b)和所述第三柱塞(3c)中的所述至少一个的径向方向上从所述第一柱塞(3a)、所述第二柱塞(3b)和所述第三柱塞(3c)中的所述至少一个的本体部突出,并且
其中,所述磁通穿过所述凸缘(38)。
CN201310063155.5A 2012-02-29 2013-02-28 螺线管装置 Active CN103295845B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-044055 2012-02-29
JP2012044055 2012-02-29
JP2012-253654 2012-11-19
JP2012253654A JP6027860B2 (ja) 2012-02-29 2012-11-19 ソレノイド装置、及びその動作方法

Publications (2)

Publication Number Publication Date
CN103295845A CN103295845A (zh) 2013-09-11
CN103295845B true CN103295845B (zh) 2016-06-22

Family

ID=49002204

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310063155.5A Active CN103295845B (zh) 2012-02-29 2013-02-28 螺线管装置

Country Status (3)

Country Link
US (1) US9136053B2 (zh)
JP (1) JP6027860B2 (zh)
CN (1) CN103295845B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078434B2 (ja) 2013-08-08 2017-02-08 株式会社デンソー ソレノイド装置
JP6329781B2 (ja) * 2014-02-27 2018-05-23 株式会社Soken ソレノイド装置
JP6286284B2 (ja) * 2014-05-30 2018-02-28 株式会社Soken リレーシステム
FR3026222B1 (fr) * 2014-09-24 2017-06-23 Schneider Electric Ind Sas Actionneur electromagnetique et contacteur electrique comprenant un tel actionneur
JP2016192326A (ja) 2015-03-31 2016-11-10 株式会社日本自動車部品総合研究所 リレー装置およびリレーシステム
DE112016006658B4 (de) * 2016-05-16 2022-03-03 Mitsubishi Electric Corporation Elektromagnetischer Aktor und Verfahren zur Herstellung desselben
EP4046174A4 (en) * 2019-10-18 2024-02-21 Rotex Automation Ltd DOUBLE ACTUATING DEVICE BASED ON A SINGLE MAGNET

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374912A (en) * 1991-07-26 1994-12-20 Eaton Corporation Contactor floating magnet
CN1211336A (zh) * 1996-03-06 1999-03-17 西门子公司 电磁开关设备
CN1969355A (zh) * 2005-03-28 2007-05-23 松下电工株式会社 接触装置
JP2010212035A (ja) * 2009-03-10 2010-09-24 Denso Corp 電磁継電器
JP2010287455A (ja) * 2009-06-12 2010-12-24 Denso Corp 電磁継電器
CN103247481A (zh) * 2012-02-09 2013-08-14 安电株式会社 螺线管装置和电磁继电器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US269453A (en) * 1882-12-19 paeker
US634912A (en) * 1898-09-24 1899-10-17 John Sibley Richardson Mechanism for electrically-illuminated devices.
US731741A (en) * 1902-11-21 1903-06-23 William Baxter Jr Electromagnet.
US946215A (en) * 1909-04-12 1910-01-11 Geissinger Regulator Company Electromagnetic device.
US2138275A (en) * 1937-06-07 1938-11-29 Allen Bradley Co Apparatus for effecting simultaneous functioning of a plurality of alternating current electromagnets
US2528777A (en) * 1946-08-21 1950-11-07 Mcquay Norris Mfg Co Electromagnetic switching means
JPS60143283A (ja) * 1983-12-28 1985-07-29 Nippon Denso Co Ltd 電磁切換弁
JPS63130977A (ja) * 1986-11-20 1988-06-03 Taimu Giken Kk 電磁弁
US4729396A (en) * 1986-12-05 1988-03-08 Robertshaw Controls Company Fuel control valve construction, parts therefor and methods of making the same
US5447287A (en) * 1994-06-24 1995-09-05 Robertshaw Controls Company Fuel control device and methods of making the same
AUPN391295A0 (en) * 1995-06-30 1995-07-27 Orbital Engine Company (Australia) Proprietary Limited Fuel injection apparatus
US6793199B2 (en) * 2001-08-13 2004-09-21 Robertshaw Controls Company Encased gas valve control housing having a plastic body and an over-molded seal
JP2005222871A (ja) 2004-02-06 2005-08-18 Sumitomo Electric Ind Ltd 直流リレー
JP2010257923A (ja) * 2009-02-19 2010-11-11 Anden 電磁継電器
US8235064B2 (en) * 2009-05-08 2012-08-07 Honeywell International Inc. Single coil redundant valve
JP5738209B2 (ja) 2012-02-09 2015-06-17 株式会社日本自動車部品総合研究所 電磁継電器
JP5826070B2 (ja) 2012-02-29 2015-12-02 株式会社日本自動車部品総合研究所 電源システム
JP5826069B2 (ja) 2012-02-29 2015-12-02 株式会社日本自動車部品総合研究所 電源システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374912A (en) * 1991-07-26 1994-12-20 Eaton Corporation Contactor floating magnet
CN1211336A (zh) * 1996-03-06 1999-03-17 西门子公司 电磁开关设备
CN1969355A (zh) * 2005-03-28 2007-05-23 松下电工株式会社 接触装置
JP2010212035A (ja) * 2009-03-10 2010-09-24 Denso Corp 電磁継電器
JP2010287455A (ja) * 2009-06-12 2010-12-24 Denso Corp 電磁継電器
CN103247481A (zh) * 2012-02-09 2013-08-14 安电株式会社 螺线管装置和电磁继电器

Also Published As

Publication number Publication date
JP2013211514A (ja) 2013-10-10
US9136053B2 (en) 2015-09-15
CN103295845A (zh) 2013-09-11
JP6027860B2 (ja) 2016-11-16
US20130222089A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
CN103295845B (zh) 螺线管装置
CN107615436B (zh) 电磁继电器
JP6236326B2 (ja) ソレノイド装置、およびソレノイド制御システム
JPH0626588A (ja) ソレノイド弁
CN105609230B (zh) 电磁装置以及驾驶员辅助装置
CN102549682B (zh) 用于电磁阀的电磁组件及相应电磁阀
KR20000010521A (ko) 마이크로패브리케이션 제조가 가능한 자기 릴레이 시스템 및 방법b
US9583290B2 (en) Solenoid device
CN103247481A (zh) 螺线管装置和电磁继电器
US8763984B2 (en) Electromechanical vlave
JPS63235778A (ja) 電磁弁装置
US11335490B2 (en) Solenoid device
CN109072833B (zh) 燃料喷射阀
JP6329781B2 (ja) ソレノイド装置
US20190186651A1 (en) Anti-latching and damping shim for an electromagnetic actuator
JP5826070B2 (ja) 電源システム
US10242787B2 (en) Solenoid device and solenoid system
CN205559940U (zh) 电磁阀
CN105299295B (zh) 自保持型电磁阀
CN204784966U (zh) 电磁阀装置
JP6704241B2 (ja) 電源システム
JPH09280391A (ja) 三方弁のバルブシート構造
CN101523525A (zh) 电磁铁装置
JPH01145482A (ja) スチールボール電磁弁
JP2009228801A (ja) 電磁弁

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant