CN103290072A - 一种酶法不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法 - Google Patents

一种酶法不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法 Download PDF

Info

Publication number
CN103290072A
CN103290072A CN2013100629288A CN201310062928A CN103290072A CN 103290072 A CN103290072 A CN 103290072A CN 2013100629288 A CN2013100629288 A CN 2013100629288A CN 201310062928 A CN201310062928 A CN 201310062928A CN 103290072 A CN103290072 A CN 103290072A
Authority
CN
China
Prior art keywords
chloro
asymmetric reduction
seq
substrate
chbe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100629288A
Other languages
English (en)
Other versions
CN103290072B (zh
Inventor
严明
郝宁
沙风
魏淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201310062928.8A priority Critical patent/CN103290072B/zh
Publication of CN103290072A publication Critical patent/CN103290072A/zh
Application granted granted Critical
Publication of CN103290072B publication Critical patent/CN103290072B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

本发明公开了一种酶法不对称还原制备(S)-4-氯-3羟基丁酸乙酯的方法。即以氨基酸序列如SEQIDNO:2所示的羰酰还原酶为催化剂,以4-氯乙酰乙酸乙酯为底物,以NADPH为辅因子,不对称还原制备(S)-4-氯-3羟基丁酸乙酯。本发明首次将氨基酸序列如SEQ ID NO:2所示的羰酰还原酶应用于4-氯乙酰乙酸乙酯不对称还原制备(S)-4-氯-3羟基丁酸乙酯中,取得很好的效果,其酶活高达7.3U/mg,其对底物的得率高达95%、产物的对映体过量值为100%,且产量高,大大降低了生产成本。

Description

一种酶法不对称还原制备(S)-4-氯-3羟基丁酸乙酯的方法
技术领域
本发明属于生物技术领域,涉及一种羰酰还原酶在不对称还原羰基化合物中的应用,尤其涉及一种羰酰还原酶(Carbonyl Reductase CR)在以4-氯乙酰乙酸乙酯(COBE)为前手性底物不对称合成(S)-4-氯-3羟基丁酸乙酯中的应用。 
  
背景技术
手性醇(Chiral Alcohols)在手性药物、农用化学品以及多种类型的手性材料制备中有广泛应用。手性醇可由前手性烯烃的不对称硼氢化–氧化、前手性羰基化合物的不对称催化氢化、不对称还原前手性羰基化合物等多种途径制备。 
以(S)-4-氯-3羟基丁酸乙酯[(S)-CHBE]为例, (S)-CHBE可用于很多活性药物的合成,它是对映体选择性合成Slagenins B和C以及他汀类药物——羟甲基戊二酰CoA(HMG-CoA) 还原酶抑制剂的关键手性中间体,而且(S)-CHBE还可以转化生成1,4-二氢吡啶类β-阻滞剂[1]。 
迄今为止,(S)-CHBE已经通过手性钌或铑等金属催化的不对称还原和生物催化法合成。利用化学转化的方式适合工业大规模生产,但是其缺点是催化剂价格昂贵,反应条件苛刻,催化过程需要很高的氢气压力,对设备要求高,产物的光学纯度不理想,达不到手性药物中间体的制备要求。 
与化学法相比,生物催化法往往具有高效率、高立体选择性、反应条件温和以及经济和社会效益好等优点。尤其是采用羰酰还原酶生物催化法不对称还原COBE制备(S)-CHBE 受到普遍关注[2]。 
目前已报道了细菌、酵母和霉菌等多种微生物能够催化底物COBE为手性的CHBE,但野生的菌株往往显示出较低的对映体过量值(enantiomeric excess, e.e.)值。解决上述问题的方法之一是筛选到优良的菌种,京都大学[3]和江南大学分别筛选到了木兰假丝酵母(Candida magnoliae)和出芽短埂霉(Aureobasidium pullulans)CGMCC1244,所制备(S)-CHBE的e.e.值均在97%以上。另一种切实可行的方法是将一个还原酶克隆到一个不能催化底物COBE的宿主中。Kizaki等从木兰假丝酵母中克隆了羰酰还原酶S1,在大肠杆菌中进行表达后,对底物COBE有极高的活性及立体选择性,在添加适量的NADP+后,产物(S)-CHBE在有机相中的浓度可达2.58 M,光学活性为100%,辅酶循环的转化数为21600[4]。由于催化COBE为(S)-CHBE的酶都属于氧化还原酶,使用氧化还原酶进行生物催化时,合成产物的同时会消耗一定量的辅酶。而这些辅酶往往价格昂贵、稳定性低、从技术经济角度考虑,投加大量辅酶是不可行的。因此,Shimizu等通过克隆脱氢酶的方式,将葡萄糖脱氢酶在重组大肠杆菌中进行表达,避免了添加商业化购买的葡萄糖脱氢酶,并实现辅酶的原位再生[5]。华东理工大学的许建和等从蓝色链霉菌(Streptomyces coelicolor)中获得一条依赖于NADH 的羰酰还原酶 ScCR,在大肠杆菌中表达后,并添加适量的辅酶NAD+,辅底物异丙醇后,利用水-甲苯的两相反应体系及底物耦合的辅酶循环系统产生了3.6 M 的(S)-CHBE,光学纯度大于99%[6]。上述提及的两种辅酶循环系统在目前应用的过程中仍需要额外添加一定量的辅酶NAD(P)+/NAD(P)H,这在很大程度上提高了生产成本。南京工业大学安明东等从白色念珠菌(Candida albicans)中获得一条依赖于NADPH 的山梨糖还原酶SOU1,发掘了SOU1用于底物耦合的潜在辅底物山梨醇、甘露醇以及木糖醇,扩大了SOU1在底物耦合辅酶循环系统中的应用,并在未额外添加辅酶情况下,实现了 (S)-CHBE的不对称合成[7]。 
    综上所述,现有生物催化COBE为(S)-CHBE的技术得到进一步的发展,但是为扩大工业化生产,现有技术仍存在羰酰还原酶对底物耐受性差、酶的重复利用率低、产物得率低、生产成本高等问题。 
本专利中涉及到的还原酶是羰酰还原酶的一种,其包含276个氨基酸,其在Genbank中的收录号为EDK41368(http://www. ncbi.nlm.nih.gov /protein/EDK4136 8.1),其氨基酸序列如SEQ ID NO:2所示。编码该蛋白的基因含有831 bp碱基 ,其在Genbank中的收录号为NW_001809794(http://www.ncbi.nlm. nih.gov/nuccore / NW_0 01809794.1),其基因序列如SEQ ID NO:1所示。至今未发现该羰酰还原酶用于COBE不对称还原制备(S)-CHBE的报道。 
  
参考文献
[1] Lee SH, Park OJ. Uses and production of chiral 3-hydroxy-γ-butyrolactones and structurally related chemicals [J]. Appl Microbiol Biotechnol, 2009, 84: 817~828.
[2] Yasohara Y, Kizaki N, Hasegawa J, Takahashi S, Wada M, Kataoka M, Shimizu S. Synthesis of optically activie ethyl 4-chloro-3-hydroxybutanoate by microbial reduction [J]. Appl Microbiolo Biotechnol, 1999, 51: 847~851.
[3] Nakamura, K., Yamanaka, R., Matsuda, T., Harada, T. Recent developments in asymmetric reduction of ketones with biocatalysts [J]. Tetrahedron-Asymmetry, 2003,
2659-2681.
[4] Hummel, W. Large-scale applications of NAD(P)-dependent oxidoreductases: rec-
ent developments[J]. Trends in Biotechnology, 1999, 17(12), 487-92.
[5] Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli trans- formant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes [J]. Appl Microbiol Biotechnol, 2001, 55: 590~595.
[6] Wang, L.J., Li, C.X., Ni, Y., Zhang, J., Liu, X., Xu, J.H. Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor [J].Bioresour Technol, 2011, 102(14), 7023-8.
[7] 安明东. 一种山梨糖还原酶在生物法制备(S)-4-氯-3羟基丁酸乙酯中的应用:中国,201110225388.1 [P]. 2011-12-21.
发明内容
本发明所要解决的技术问题是提供一种催化活性高、对映选择性强、底物耐受性好的羰酰还原酶,在不添加辅酶的情况下,应用于COBE不对称还原制备(S)-CHBE。 
为解决上述技术问题,本发明所采用的技术方案如下: 
一种氨基酸序列如SEQ ID NO:2所示的羰酰还原酶以4-氯乙酰乙酸乙酯(COBE)为前手性底物不对称还原制备(S)-4-氯-3-羟基丁酸乙酯[(S)-CHBE]中的应用。
即以氨基酸序列如SEQ ID NO:2所示的羰酰还原酶为催化剂,以4-氯乙酰乙酸乙酯为底物,以还原型烟酰胺腺嘌呤二核苷酸磷酸(还原型辅酶Ⅱ,NADPH)为辅因子,不对称还原制备(S)-4-氯-3-羟基丁酸乙酯。 
具体反应是将氨基酸序列序列如SEQ ID NO:2所示的羰基还原酶诱导表达后,与200 mmol/L~2 mol/L葡萄糖、1.5~300 g/L的4-氯乙酰乙酸乙酯、50 U~5 KU的葡萄糖脱氢酶(glucose dehydrogenase,GDH)和0.05~0.5 mmol/L 的氧化型烟酰胺腺嘌呤二核苷酸磷酸(氧化型辅酶Ⅱ,NADP+),在pH 6.0~7.5、20~30℃、180~280 rpm条件下反应16~32 h,得到(S)-4-氯-3羟基丁酸乙酯。其中,加入NADP+与GDH即生成NADPH,且使反应循环进行,降低了加入量以减少了生产成本。 
本发明的有益效果:
发明人基于现代生物信息学思想,结合分子生物学技术,采用基因工程的手段从季也蒙假丝酵母(Meyerozyma guilliermondii ATCC 6260)中克隆羰酰还原酶的基因,在大肠杆菌中耦合表达后发现其在水相中能够高效的催化COBE为(S)-CHBE,e.e.值为100%。同时,通过在水/有机相中反应、分批添加底物COBE等方式,解除了底物和产物对细胞和酶的抑制作用,显著的提高了转化效果。通过对羰酰还原酶的基因进行重组表达,获得了具有新型催化功能的酶蛋白,开发了该条基因的新功能——催化非天然底物COBE为高立体选择性的(S)-CHBE。
本发明首次将氨基酸序列如SEQ ID NO:2所示的羰酰还原酶应用于COBE不对称还原制备(S)-CHBE中,取得很好的效果,在不添加辅酶的情况下,可以催化合成200 g/L (S)-CHBE。氨基酸序列如SEQ ID NO:2所示的羰酰还原酶对底物COBE的得率高(大于95%)、产物CHBE的光学活性高(e.e.%为100%),且产量高,大大降低了生产成本。 
  
附图说明:
图1为羰酰还原酶基因(MgCR)表达载体的构建图。
具体实施方式:
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料配比、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
  
实施例1
步骤1、羰酰还原酶基因的获取
季也蒙假丝酵母(Meyerozyma guilliermondiiATCC 6260)(购于中国普通微生物菌种保藏管理中心, 菌种编号:2.1875),培养基YPD(g·L-1):酵母提取物10 g,蛋白胨20 g,葡萄糖20 g,补蒸馏水至1 L。
将季也蒙假丝酵母(M.guilliermondiiATCC 6260)接种于5 mL YPD液体培养基中30 ℃培养至对数生长期,使用基因组DNA提取试剂盒(北京天为生物工程有限公司酵母基因组提取试剂盒,GD2415 Yeast gDNA Kit)提取基因组。 
构建表达载体所用的引物加设酶切位点构建表达载体所用的引物加设酶切位点,引物序列如下: 
上游引物(MgCR-sense含XbaⅠ)为:
5'- GCTCTAGAATGAAGTCTATGATCAATGAAAACA -3'
下游引物(MgCR-anti含NcoⅠ)为:
5'- CATGCCATGGTTATGGCGCACAGTAGCCGCCATCC -3'
所有引物均由上海美吉生物医药科技有限公司合成。
基因的PCR条件: 
94 ℃变性7 min,按如下参数循环30次:94 ℃变性1 min,60 ℃退火60 s,72 ℃延伸1.5 min。最后72 ℃延伸10 min。
  
步骤2、表达载体的构建
XbaⅠ 及NcoⅠ分别酶切pET-22b(+) (购于Novagen默克中国)及所扩增含有两个酶切位点的目的基因,分别胶回收已双酶切的目的片段和表达载体,将已双酶切的表达载体pET-22b(+)与目的基因用T4-DNA连接酶进行连接过夜,得到重组载体pET-22b-MgCR;将10 μL的连接产物pET-22b-MgCR加入100 μL的E.coli Rosetta(DE3)(实验室保藏)感受态细胞中,冰上放置30 min,42 ℃热激90 s。冰上放置2 min。加入预热的0.45 mL SOC培养基。220 rpm 37 ℃ 1 h。将200 μL菌液加入分别含有100 μg/mL的氨苄青霉素的和34 μg/mL氯霉素的LB平板上,37 ℃过夜培养12~16 h,得到重组菌E.coli Rosseta(含pET-22b-MgCR)。构建图谱见图1。
  
步骤3、酶活的测定
挑取重组菌E.coli Rosseta(含pET-22b-MgCR)及出发大肠杆菌Rosseta(DE3)至含100 μg/mL的氨苄青霉素和34 μg/mL氯霉素的LB液体培养基中,37 ℃振荡培养过夜。然后按2%接种量分别接种到新鲜含100 μg/mL的氨苄青霉素和34 μg/mL氯霉素的LB液体培养基中,37 ℃培养至OD600约为0.6时,加入IPTG至终浓度0.8 mmol·L-1,25 ℃,220 rpm,诱导表达10 h后,离心(4 ℃,5000 rpm,15 min),菌泥用100 mM磷酸钾缓冲(pH 6.2)重悬,超声破碎细胞(功率300 W,超声3 s,间歇5 s,共5 min),离心(4 ℃,12000 rpm,15 min),测定上清中的酶活。
酶反应体系包括100 mM 磷酸钾缓冲液(pH 6.5),5 mM NADPH,20 mM COBE,30 ℃,340 nm处测定吸光值的下降。酶活定义为每分钟内氧化1 μmol NADPH所需要的酶量为一个酶活单位U。蛋白采用Brandford法进行测定。 
结果显示,出发大肠杆菌Rosseta(DE3)的比酶活为0.12 U/mg,而重组菌E.coli Rosseta(pET-22b-MgCR)的比酶活为7.3 U/mg。 
  
步骤4、重组大肠杆菌E.coli Rosseta(pET22b-MgCR)的发酵
挑取重组菌E.coli Rosseta(pET-22b-MgCR)至含100 μg/mL的氨苄青霉素和34 μg/mL氯霉素的LB培养液,37 ℃振荡培养过夜。然后按2%接种量分别接种到新鲜含100 μg/mL的氨苄青霉素和34 μg/mL氯霉素的LB中,37 ℃培养至OD600约为0.6时,加入IPTG至终浓度0.8 mmol·L-1,25 ℃,220 rpm,诱导表达10 h后,8000 rpm,4 ℃离心10 min,弃上清,沉淀备用。
  
步骤5、取步骤4的沉淀用磷酸钾缓冲(100 mmol·L-1, pH 6.5)洗涤两次,称取0.5 g(湿重)的大肠杆菌菌泥,悬浮于15 mL的pH 6.5磷酸钾缓冲中。超声处理细胞(功率300 W,超声3 s,间歇5 s,共5 min),加入葡萄糖200 mmol/L,COBE 1.5 g/L,GDH 50 U,NADP+ 0.05 mmol/L,20 ℃,180 rpm,16 h。产物(S)-CHBE的产量为1.45 g/L,产物的得率为:96.7%,光学纯度e.e.%为100%。(产物得率和光学纯度见下面的产物的检测方法)
实施例2
重复实施例1的步骤1至步骤4,取步骤4的沉淀用磷酸钾缓冲(100 mmol·L-1, pH 6.5)洗涤两次,称取10 g(湿重)的大肠杆菌菌泥,悬浮于200 mL的pH 6.5磷酸钾缓冲中。超声处理细胞(功率300 W,超声3 s,间歇5 s,共5 min),加入200 mL乙酸正丁酯(可促进COBE的溶解并解除底物和产物对酶和细胞的抑制作用),加入葡萄糖2 mol/L,COBE 300 g/L(反应0 h、2 h、4 h、6 h、10 h各加入60 g/L ),GDH 5 KU,NADP+ 0.5 mmol/L,25 ℃,280 rpm,32 h。产物(S)-CHBE的产量为288.7 g/L,产物的得率为:96.2%,光学纯度e.e.%为100%。
  
产物的检测方法:
对于水相反应:反应结束后,加入等体积乙酸乙酯,剧烈振荡10 min然后放置两小时,8000 rpm离心10 min分离有机层和水层。小心吸取上层乙酸乙酯过有机膜,加入内标,保存测样。
对于水/有机两相反应:反应结束后8000 rpm离心10 min分离有机层和水层。小心吸取上层乙酸乙酯过有机膜,加入内标,保存测样。 
测定COBE和CHBE浓度使用气相7820A(Agilent),色谱柱为PEG-20M 毛细管柱(HP-FFAP;30 m×0.32 mm×0.25 mm;Agilent),内标物为萘。程序为:检测器FID,温度210 ℃,汽化室温度210 ℃,柱温150 ℃,柱头压0.03 MPa,氢气0.05 MPa,空气 0.1 MPa,尾吹0.08 MPa。用HPLC对(S)- 4-氯-3-羟基丁酸乙酯的旋光性进行分析(手性柱 Chiralcel OB,4.6×250 mm; Daicel Chemical Industries,日本),检测条件:流动相为正己烷:正己烷(体积比为9:1),波长214 nm,流量为0.8 mL/min,R型和S型CHBE的出峰时间分别为:10.5 min和11.6 min。产物CHBE的对映体过量值(e.e.%)由下式计算: 
对映体过量值(e.e.%)= 
Figure 271143DEST_PATH_IMAGE002
式中S为(S)-CHBE的浓度,R为(R)-CHBE的浓度。
<110>  南京工业大学
<120>  一种酶法不对称还原制备(S)-4-氯-3羟基丁酸乙酯的方法
<130>  6
<160>  2    
<170>  PatentIn version 3.5
 
<210>  1
<211>  831
<212>  DNA
<213>  Meyerozyma guilliermondii ATCC 6260
<400>  1
atgaagtcta tgatcaatga aaacatcggc actttgccag cacaaccacc aaagatctca        60
aacaatgtca tgacattatt ctcactcaag ggcaaagtag cttcggtgac tggttcttcc       120
ggaggaattg gctatgctgt tgccgaggcc tacgcccaag ctggcgccga tgtggccatc       180
tggtacaact ccaagccttc cgacgagaag gccgagcact tggctaaaac ctacggcatc       240
aagtgtaagg catacaagtg taacgtgtcg gatcccgctg atgtcgaaaa gactgttttg       300
caaatcgaga aggactttgg gagaatagac atcttcgtgg ccaatgccgg taagccctgg       360
accagtggac ctgctattga tgctgaggga ctcgattctt ggcacgaggt ggtggacttg       420
gacttcagtg gagtgttcta ctgcgccaag gctgcgggaa agatctttga aaaacaagga       480
aagggctctc ttatcatcac cgcgtctatg tctggtcaca tagtgaacgt gccgcaaatg       540
caggctccat acaacgctgc caaggctgcc tgtttgcact tgtccaaatc gttggctgtc       600
gaatgggctc atttcgcccg tgttaacacg gtgtcgcccg gctacatcaa aacggaaatc       660
tccgactttg ttccaccaga aatgaaggaa aaatggtggc aattgacccc aatgggcaga       720
gaaggtgaga cgcaggaatt ggtgggtgca tacttgtacc tcgcatccga tgcttctact       780
tacaccacag gcacagatat cattgtggat ggcggctact gtgcgccata a                831
 
 
<210>  2
<211>  276
<212>  PRT
<213>  Meyerozyma guilliermondii ATCC 6260
<400>  2
MKSMINENIG TLPAQPPKIS NNVMTLFSLK GKVASVTGSS GGIGYAVAEA YAQAGADVAI        60
WYNSKPSDEK AEHLAKTYGI KCKAYKCNVS DPADVEKTVL QIEKDFGRID IFVANAGKPW       120
TSGPAIDAEG LDSWHEVVDL DFSGVFYCAK AAGKIFEKQG KGSLIITASM SGHIVNVPQM       180
QAPYNAAKAA CLHLSKSLAV EWAHFARVNT VSPGYIKTEI SDFVPPEMKE KWWQLTPMGR       240
EGETQELVGA YLYLASDAST YTTGTDIIVD GGYCAP                                 276
 

Claims (4)

1.一种酶法不对称还原制备(S)-4-氯-3羟基丁酸乙酯的方法,其特征在于以氨基酸序列如SEQ ID NO:2所示的羰酰还原酶为催化剂,以4-氯乙酰乙酸乙酯为底物,以NADPH为辅因子,不对称还原制备(S)-4-氯-3羟基丁酸乙酯。
2.根据权利要求1所述的方法,其特征在于葡萄糖200 mmol/L~2 mol/L, 4-氯乙酰乙酸乙酯 1.5~300 g/L,葡萄糖脱氢酶50 U~5 KU,NADP0.05~0.5 mmol/L,反应条件为pH 6.0~7.5、反应温度20~30 ℃,反应时间16~32 h,羰酰还原酶活性为7.3 U/mg protein,用量为50 U~5 KU。
3.根据权利要求1或2所述的方法,其特征在于所述的羰酰还原酶是通过表达基因序列如SEQ ID NO:1所示的重组菌表达得到的。
4.氨基酸序列如SEQ ID NO:2所示的羰酰还原酶在4-氯乙酰乙酸乙酯不对称还原制备(S)-4-氯-3羟基丁酸乙酯中的应用。
CN201310062928.8A 2013-02-28 2013-02-28 一种酶法不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法 Expired - Fee Related CN103290072B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310062928.8A CN103290072B (zh) 2013-02-28 2013-02-28 一种酶法不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310062928.8A CN103290072B (zh) 2013-02-28 2013-02-28 一种酶法不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法

Publications (2)

Publication Number Publication Date
CN103290072A true CN103290072A (zh) 2013-09-11
CN103290072B CN103290072B (zh) 2014-10-22

Family

ID=49091601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310062928.8A Expired - Fee Related CN103290072B (zh) 2013-02-28 2013-02-28 一种酶法不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法

Country Status (1)

Country Link
CN (1) CN103290072B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726507A (zh) * 2015-04-01 2015-06-24 南京工业大学 一种醛酮还原酶在催化生成(r)-4-氯-3羟基丁酸乙酯中的应用
CN105063113A (zh) * 2015-09-16 2015-11-18 连云港宏业化工有限公司 一种4-氯-3-羟基丁酸乙酯的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012035A1 (en) * 1994-10-12 1996-04-25 E.I. Du Pont De Nemours And Company Enzymatic process for the preparation of chiral-alpha-tertiary carboxylic acid esters
CN101372699A (zh) * 2008-09-02 2009-02-25 南京工业大学 一种羰酰还原酶在生产(s)-4-氯-3羟基丁酸乙酯中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012035A1 (en) * 1994-10-12 1996-04-25 E.I. Du Pont De Nemours And Company Enzymatic process for the preparation of chiral-alpha-tertiary carboxylic acid esters
CN101372699A (zh) * 2008-09-02 2009-02-25 南京工业大学 一种羰酰还原酶在生产(s)-4-氯-3羟基丁酸乙酯中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GERALDINE BUTLER ET AL.: "Evolution of pathogenicity and sexual reproduction in eight Candida genomes", 《NATURE》 *
LI-JUAN WANG ET AL.: "Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor", 《BIORESOURCE TECHNOLOGY》 *
LI-JUAN WANG ET AL.: "Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor", 《BIORESOURCE TECHNOLOGY》, vol. 102, no. 14, 28 April 2011 (2011-04-28), pages 7023 - 7028 *
WERNER HUMMEL: "Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments", 《TRENDS IN BIOTECHNOLOGY》 *
Y.YASOHARA ET AL.: "Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction", 《APPL MICROBIOL BIOTECHNOL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726507A (zh) * 2015-04-01 2015-06-24 南京工业大学 一种醛酮还原酶在催化生成(r)-4-氯-3羟基丁酸乙酯中的应用
CN105063113A (zh) * 2015-09-16 2015-11-18 连云港宏业化工有限公司 一种4-氯-3-羟基丁酸乙酯的制备方法

Also Published As

Publication number Publication date
CN103290072B (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
Patel et al. Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir
Wang et al. Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor
Ni et al. Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity
CN101372699B (zh) 一种羰酰还原酶在生产(s)-4-氯-3羟基丁酸乙酯中的应用
Ye et al. A review—biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives
Han et al. New approaches to NAD (P) H regeneration in the biosynthesis systems
CN101613672A (zh) 一种不对称转化制备(s)-4-氯-3-羟基丁酸乙酯的重组大肠杆菌及其构建方法
Haque et al. Haloferax volcanii as immobilised whole cell biocatalyst: new applications for halophilic systems
Khaw et al. Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch
CN103173503A (zh) 重组大肠杆菌表达酮还原酶生物制备 (s)-4-氯-3-羟基丁酸乙酯的方法
Kratzer et al. Whole-cell bioreduction of aromatic α-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli
Kulkarni et al. Selection of methanotrophic platform for methanol production using methane and biogas
CN104726507A (zh) 一种醛酮还原酶在催化生成(r)-4-氯-3羟基丁酸乙酯中的应用
CN104152505A (zh) 一种利用重组菌株转化制备4-羟基-l-异亮氨酸的方法
CN103642765A (zh) 醇脱氢酶突变体及其应用
CN108048416A (zh) 改进的酮还原酶突变体及其制备方法和应用
CN110777125A (zh) 一种杂环类药物中间体的高效制备方法
CN103160547A (zh) 一种醇脱氢酶在催化生成(r)-4-氯-3羟基丁酸乙酯中的应用
Cui et al. In vitro biosynthesis of optically pure d‐(−)‐acetoin from meso‐2, 3‐butanediol using 2, 3‐butanediol dehydrogenase and NADH oxidase
CN102808002B (zh) 一种生物法合成甲基乙偶姻及其衍生物的重组细胞和方法
CN115975832A (zh) 甲酸脱氢酶在提高微生物发酵菌株对纤维素水解液中甲酸和乙酸抗性中的应用
Chen et al. Directed reconstruction of a novel ancestral alcohol dehydrogenase featuring shifted pH-profile, enhanced thermostability and expanded substrate spectrum
Zhang et al. Efficient production of ethyl (R)-4-chloro-3-hydroxybutanoate by a novel alcohol dehydrogenase from Lactobacillus curieae S1L19
Rundbäck et al. Coupling of permeabilized cells of Gluconobacter oxydans and Ralstonia eutropha for asymmetric ketone reduction using H2 as reductant
CN103290072B (zh) 一种酶法不对称还原制备(s)-4-氯-3羟基丁酸乙酯的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141022

Termination date: 20150228

EXPY Termination of patent right or utility model