CN103288051A - 一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法 - Google Patents

一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法 Download PDF

Info

Publication number
CN103288051A
CN103288051A CN2013102398023A CN201310239802A CN103288051A CN 103288051 A CN103288051 A CN 103288051A CN 2013102398023 A CN2013102398023 A CN 2013102398023A CN 201310239802 A CN201310239802 A CN 201310239802A CN 103288051 A CN103288051 A CN 103288051A
Authority
CN
China
Prior art keywords
niobium
preparation
hydrogen
hydrogen storage
storage system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013102398023A
Other languages
English (en)
Inventor
余学斌
李梦
袁峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2013102398023A priority Critical patent/CN103288051A/zh
Publication of CN103288051A publication Critical patent/CN103288051A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明公开了一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法。该储氢体系可由卤化铌的氨络合物与硼氢化物以一定摩尔比混合物在惰性气体中研磨或球磨制得。该体系具备优良的放氢性能,加热至65oC即开始释放氢气,250oC之前可释放11.2wt.%的氢气。

Description

一种新型高效的储氢体系含铌硼氢化物氨化物 的制备方法
技术领域
本发明属于氢气存储技术及新材料合成领域,具体涉及一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法。
背景技术
是当今世界依靠的主要化石能源:煤,石油及天然气,因其数量有限,人们的需求有增无减,导致其日益枯竭,同时其应用也给环境带来一系列问题,如空气污染、酸雨、温室效应等。因此,急需寻找一种高燃烧值、可再生、易利用且无污染的新型能源。氢能因其储量丰富、来源广泛、能量密度高及清洁等优点是理想的能源载体[1]。但氢气的储存是实现氢能应用的最关键环节是[2]。发展高能量密度、高效率和安全的储氢技术是研究的热点和必须解决的关键问题。相比于传统的高压气态储存及低温液态储氢方式,固态材料储氢因其能量密度高且安全便利,被认为是最有发展前景的一种氢气储存方式[3]
就目前固态储氢材料中,轻质金属硼氢化合物,如硼氢化锂LiBH4(18.4 wt. %),Mg(BH4)2(14.8 wt. %)等,因其具有高储氢量而备受关注。但是较高的放氢温度及缓慢的放氢动力学制约了其作为储氢材料的应用[4]。科研工作者尝试加入添加剂或纳米负载等手段改善其放氢性能,如LiBH4中添加MgH2 [5],将LiBH4负载到SBA-15纳米孔道中[6]。最近,金属硼氢化物氨化物M(BH4)x·nNH3 (M = Li, Mg, Ca, Al, Ti, Y, Sc, V)的开发为固态储氢材料与技术的突破带来了希望[7-13]。这类储氢材料有着较高的理论含氢量及较低的起始放氢温度,其放氢机理是基于电正性的N-H与电负性的B-H的双氢键结合。因此,为了能够更为方便地制备出氨合金属硼氢化物,本专利通过球磨一定比例的氨络合金属卤化物和常见金属硼氢化物来直接制备得到氨合金属硼氢化物,该物质在250 oC释放11.2 wt. %的高纯氢气。
参考文献:
[1] Dresselhaus M, Thomas I. Alternative energy technologies. Nature 2001;414:332-37.
[2] Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. Nature 2001;414:353-58.
[3] Crabtree GW, Dresselhaus MS, Buchanan MV. The hydrogen economy. Physics Today 2004;57:39.
[4] Züttel A, Wenger P, Rentsch S, Sudan P, Mauron P, Emmenegger C. LiBH4 a new hydrogen storage material. J Power Sour 2003;118:1-7.
[5] Vajo JJ, Skeith SL, Mertens F. Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B 2005;109:3719-22.
[6] Ngene P, Adelhelm P, Beale AM, de Jong KP, de Jongh PE. LiBH4/SBA-15 nanocomposites prepared by melt infiltration under hydrogen pressure: synthesis and hydrogen sorption properties. J Phys Chem C 2010;114:6163-68.
[7] Johnson SR, David WIF, Royse DM, Sommariva M, Tang CY, Fabbiani FPA, Jones MO, Edwards PP. The Monoammoniate of Lithium Borohydride, Li(NH3)BH4: An Effective Ammonia Storage Compound. Chem Asian J 2009;4:849-54.
[8] Soloveichik G, Her J-H, Stephens PW, Gao Y, Rijssenbeek J, Andrus M, Zhao J-C. Ammine magnesium borohydride complex as a new material for hydrogen storage: structure and properties of Mg(BH4)2·2NH3. Inorg Chem 2008;47:4290-98.
[9] Chu HL, Wu GT, Xiong ZT, Guo JP, He T, Chen P. Structure and hydrogen storage properties of calcium borohydride diammoniate. Chem Mater 2010;22:6021-28.
[10] Guo YH, Yu XB, Sun WW, Sun DL, Yang WN. The Hydrogen‐Enriched Al–B–N System as an Advanced Solid Hydrogen‐Storage Candidate. Angew Chem 2011;123:1119-23.
[11] Yuan F, Gu QF, Chen XW, Tan YB, Guo YH, Yu XB. Complex Ammine Titanium (III) Borohydrides as Advanced Solid Hydrogen-Storage Materials with Favorable Dehydrogenation Properties. Chem Mater 2012;24:3370-79.
[12] Yuan F, Gu QF, Guo YH, Sun WW, Chen XW, Yu XB. Structure and hydrogen storage properties of the first rare-earth metal borohydride ammoniate: Y(BH4)3·4NH3. J Mater Chem 2012;22:1061-68.
[13] Tang ZW, Yuan F, Gu QF, Tan YB, Chen XW, Jensen CM, Yu XB. Scandium and vanadium borohydride ammoniates: Enhanced dehydrogenation behavior upon coordinative expansion and establishment of H δ+/− δ H interactions. Acta mater 2013。
发明内容
本发明的目的是提供一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法,该物质在受热后可释放氢气。
本发明提出的新型高效的储氢体系含铌硼氢化物氨化物的制备方法,所述储氢体系含铌硼氢化物氨化物化学式为NbCl5·5NH3/5XBH4,其中:X为Na或K,具体步骤为:将铌盐氨化物与硼氢化物混合,所得的混合物在惰性气体中研磨或球磨,即得到氨合硼氢化铌。
本发明中,使用球磨法时,控制球料比在0.5:1-30:1之间,球磨的速度为50-500转/分钟,球磨时间为0.5-5小时。
本发明中,所述硼氢化物为硼氢化锂、硼氢化钠、硼氢化钾、硼氢化镁、硼氢化钙或双离子硼氢化物中任一种。
本发明中,所述铌盐氨化物的制备方法为:将铌盐在氨气中放置0.1-5小时,控制铌盐与氨气的摩尔比为1:1-1:6,或将高氨数铌盐氨化物热处理,获得不同氨数的铌盐氨化物。
本发明中,所述铌盐为五价态铌的卤化物。
利用本发明方法制备得到的储氢体系氨合硼氢化铌为NbCl5·5NH3/5NaBH4,加热放氢温度在65 oC-250 oC之间。
本发明中,所述惰性气体为氩气,所用气体均需经除水、除氧处理。
本发明的有益效果在于:
1)、原料易于制备,合成工艺简单,易于实现。
2)、氨合硼氢化铌可以在较低的温度下分解获得大量氢气,为需氢单元供氢。
附图说明
图1是NbCl5·5NH3,LiBH4,NbCl5·5NH3+5LiBH4球磨后得到NbCl5·5NH3/5LiBH4,NaBH4及NbCl5·5NH3+5NaBH4球磨后得到NbCl5·5NH3/5NaBH4的高分辨XRD图。
图2是NbCl5·5NH3/5LiBH4的热分解质谱图。三条线分别代表H2,NH3和B2H6
图3是NbCl5·5NH3/5NaBH4的热分解质谱图。三条线分别代表H2,NH3和B2H6
图4是NbCl5·5NH3/5NaBH4的变温热分解性能图。
图5是NbCl5·5NH3/5NaBH4在不同温度下的恒温热分解性能图。
具体实施方式
下面通过具体实例来进一步说明本发明。
实施例1(NbCl5·5NH3/5LiBH4):
将实施例1方法合成的NbCl5·5NH3放入Schlenk试管,以1-10 oC /min的速度升温到250-300 oC,并在此温度区间下恒温0.1-1小时,即得到NbCl5·5NH3的浅黄色粉末样品。于手套箱内取0.1g NbCl5·5NH3与0.031g LiBH4混合,装入球磨罐后密封取出球磨。球磨的条件为:转数为50-500转每分钟,配不锈钢球磨钢珠,直径在0.5-2 cm,球磨时间为0.5-5小时,运行模式为交替停顿重启,交替时间为1-12分钟,停顿时间为1-12分钟。球磨完毕即得到NbCl5·5NH3/5LiBH4的化合物,此化合物为浅黄色粉末。对球磨后的样品进行高分辨XRD测试,NbCl5·5NH3和 NbCl5·5NH3/5LiBH4的XRD结果如图1所示。NbCl5·5NH3/5LiBH4的热分解性能测试结果分别列于图2中。TG的结果显示,在不考虑LiCl的重量条件下,整个反应过程分成两步进行,总失重为8.1 wt. %。MS结果显示,整个过程释放纯氢,没有氨气和硼烷的释放。
实施例2(NbCl5·5NH3/5NaBH4):
室温25oC下,将1g NbCl5在氩气中放入到Schlenk试管中,将试管抽真空后,缓慢通入氨气,反应0.1-5小时后抽至真空1-3分钟即得到NbCl5·5NH3的浅黄色粉末。于手套箱内取0.1g NbCl5·5NH3与0.053g NaBH4混合,装入惰性气体保护的球磨罐后进行球磨。球磨的条件为:转数为200-400转每分钟,配不锈钢球磨钢珠,直径在0.5-2 cm,球磨时间为6小时,运行模式为交替停顿重启,交替时间为6分钟,停顿时间为6分钟。球磨完毕即得到NbCl5·5NH3/5NaBH4化合物,此混合物为浅黄色粉末。对球磨后的样品进行高分辨XRD测试,NbCl5·5NH3和 NbCl5·5NH3+5NaBH4混合物的XRD结果如图1所示。NbCl5·5NH3+5NaBH4的热分解性能测试结果列于图3中。TG的结果显示,在不考虑NaCl的重量条件下,NbCl5·5NH3/5NaBH4从65 oC开始分解,250 oC左右反应完全,整个反应分两步进行,总失重为约11.2 wt. %。MS结果显示,整个过程释放纯氢,没有氨气和硼烷的释放。

Claims (7)

1.一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法,其特征在于所述储氢材料所述储氢体系含铌硼氢化物氨化物化学式为NbCl5·5NH3/5XBH4,其中:X为Na或K,具体步骤为:将铌盐氨化物与硼氢化物混合,所得的混合物在惰性气体中研磨或球磨,即得到氨合硼氢化铌,产物在90 oC-300 oC间加热可获得氢气。
2.根据权利要求1所述的制备方法,其特征在于使用球磨法时,控制球料比在0.5:1-30:1之间,球磨的速度为50-500转/分钟,球磨时间为0.5-5小时。
3.根据权利要求1所述的制备方法,其特征在于所述硼氢化物为硼氢化锂、硼氢化钠、硼氢化钾、硼氢化镁、硼氢化钙或双离子硼氢化物中任一种。
4.根据权利要求1所述的制备方法,其特征在于所述铌盐氨化物的制备方法为:将铌盐在氨气中放置0.1-5小时,控制铌盐与氨气的摩尔比为1:1-1:6,或将高氨数铌盐氨化物热处理,获得不同氨数的铌盐氨化物。
5.根据权利要求1所述的制备方法,其特征在于所述铌盐为五价态铌的卤化物。
6.根据权利要求1所述的制备方法,其特征在于所得储氢体系NbCl5·5NH3/5NaBH4,加热放氢温度在65 oC-250 oC之间。
7.根据权利要求1所述的制备方法,其特征在于所述惰性气体为氩气,所用气体均需经除水、除氧处理。
CN2013102398023A 2013-06-18 2013-06-18 一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法 Pending CN103288051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013102398023A CN103288051A (zh) 2013-06-18 2013-06-18 一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013102398023A CN103288051A (zh) 2013-06-18 2013-06-18 一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法

Publications (1)

Publication Number Publication Date
CN103288051A true CN103288051A (zh) 2013-09-11

Family

ID=49089667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013102398023A Pending CN103288051A (zh) 2013-06-18 2013-06-18 一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法

Country Status (1)

Country Link
CN (1) CN103288051A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155940A (zh) * 2019-04-16 2019-08-23 浙江大学 一种室温吸氢的镁基储氢材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101519185A (zh) * 2009-04-02 2009-09-02 复旦大学 硼氢化物与氯化镁氨络合物的复合储氢材料的制备方法
CN101746727A (zh) * 2008-12-08 2010-06-23 复旦大学 一种制备LiBH4·xNH3化合物的方法
CN102219181A (zh) * 2011-05-10 2011-10-19 浙江大学 铌基配位硼氢化物复合储氢材料及制备方法与用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746727A (zh) * 2008-12-08 2010-06-23 复旦大学 一种制备LiBH4·xNH3化合物的方法
CN101519185A (zh) * 2009-04-02 2009-09-02 复旦大学 硼氢化物与氯化镁氨络合物的复合储氢材料的制备方法
CN102219181A (zh) * 2011-05-10 2011-10-19 浙江大学 铌基配位硼氢化物复合储氢材料及制备方法与用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155940A (zh) * 2019-04-16 2019-08-23 浙江大学 一种室温吸氢的镁基储氢材料及其制备方法
CN110155940B (zh) * 2019-04-16 2020-11-03 浙江大学 一种室温吸氢的镁基储氢材料及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Review on ammonia absorption materials: metal hydrides, halides, and borohydrides
Liu et al. Tailoring thermodynamics and kinetics for hydrogen storage in complex hydrides towards applications
Ding et al. LiBH4 for hydrogen storage-new perspectives
Song New perspectives on potential hydrogen storage materials using high pressure
Zeng et al. Superior hydrogen exchange effect in the MgH2− LiBH4 system
Wang et al. Synthesis and hydrolysis of NaZn (BH 4) 3 and its ammoniates
CN101920936A (zh) 金属锂基复合储氢材料及其制备方法与用途
CN103539066A (zh) NiF2掺杂LiBH4-LiNH2-CaH2复合储氢材料及其制备方法
Song et al. Thermodynamics study of hydrogen storage materials
CN102225741B (zh) 含氨的复合离子储氢材料的制备方法
CN101811669B (zh) 一种高容量储氢材料Zn(BH4)2·2NH3及其制备方法
CN102198933B (zh) 一种高容量复合储氢材料硼氢化钙/一氨合硼氢化锂的制备方法
Chen et al. Improved dehydrogenation properties of the combined Mg (BH4) 2· 6NH3–nNH3BH3 system
CN102173385B (zh) 一种用氨基络合物合成高容量固态储氢材料氨硼烷的方法
CN105776132A (zh) 一种廉价大规模制备氮基金属化合物储氢材料的方法
CN102807191A (zh) 一种Li-Mg-B-H储氢材料的合成方法
CN103496669B (zh) 一种b-n-h体系储氢材料及其制备方法
CN103879957A (zh) 一种催化剂掺杂的镁基储氢材料及制备
CN102849677B (zh) 产生(nh2(r2))和/或氢的方法
CN103288051A (zh) 一种新型高效的储氢体系含铌硼氢化物氨化物的制备方法
Zhu et al. Synthesis of NaBH 4 as a hydrogen carrier from hydrated borax using a Mg–Al alloy
Wu et al. Synthesis and hydrogen storage property tuning of Zr (BH4) 4· 8NH3 via physical vapour deposition and composite formation
POTTMAIER VICENTE et al. Materials for hydrogen storage and the Na-Mg-BH system
CN102225746B (zh) 一种高效的金属b-n-h体系储氢材料的制备方法
Zhang et al. Improved dehydrogenation/rehydrogenation performance of LiBH 4 by doping mesoporous Fe 2 O 3 or/and TiF 3

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130911