CN103254440B - 一种制备液态无氧型聚铁碳硅烷的方法 - Google Patents

一种制备液态无氧型聚铁碳硅烷的方法 Download PDF

Info

Publication number
CN103254440B
CN103254440B CN201310236851.1A CN201310236851A CN103254440B CN 103254440 B CN103254440 B CN 103254440B CN 201310236851 A CN201310236851 A CN 201310236851A CN 103254440 B CN103254440 B CN 103254440B
Authority
CN
China
Prior art keywords
polyferrocarbosilane
liquid
polycarbosilane
anaerobic type
hyperbranched polycarbosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310236851.1A
Other languages
English (en)
Other versions
CN103254440A (zh
Inventor
余兆菊
杨乐
周聪
詹俊英
闵浩
郑强
夏海平
陈立富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201310236851.1A priority Critical patent/CN103254440B/zh
Publication of CN103254440A publication Critical patent/CN103254440A/zh
Application granted granted Critical
Publication of CN103254440B publication Critical patent/CN103254440B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种制备液态无氧型聚铁碳硅烷的方法,涉及一种化合物的制备方法。提供一种以无氧的乙烯基二茂铁为铁源,与液态超支化聚碳硅烷反应直接制备液态无氧型聚铁碳硅烷的方法。1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为1%~50%;2)在惰性气氛保护下,将步骤1)所得的混合物搅拌,即得液态无氧型聚铁碳硅烷。所制备的液态无氧型聚铁碳硅烷可用作高聚物浸渍裂解法制备含铁的碳化硅陶瓷基复合材料的先驱体,能改善现有的聚铁碳硅烷不溶不熔、含氧、铁元素分散不均匀等问题。

Description

一种制备液态无氧型聚铁碳硅烷的方法
技术领域
本发明涉及一种化合物的制备方法,尤其是涉及一种制备液态无氧型聚铁碳硅烷的方法。
背景技术
聚碳硅烷通过先驱体转化法制备得到的碳化硅(SiC)陶瓷,是一类具有广泛用途的高性能陶瓷材料(J.Am.Ceram.Soc.,2010,93:1805-1837;高分子材料科学与工程,2000,16:7-12)。但是碳化硅陶瓷的电阻率为106Ω·cm左右,无磁性,是一种典型的微波透射材料(无机材料学报,2006,21:103-108)。要使碳化硅陶瓷具有良好的吸波特性,必须降低电阻率,提高其介电损耗或者磁损耗。在聚碳硅烷先驱体中引入铁、钴、镍等异质元素,能使得到的碳化硅陶瓷既有电损耗又有磁损耗,可以有效降低陶瓷的电阻率,改善其磁性能,使其在较宽的微波频率下具有良好的吸波性(Inorg.Chem.,2009,48:10078-10083)。
聚碳硅烷主要有液态超支化聚碳硅烷和Yajima聚碳硅烷两类,在液态超支化聚碳硅烷中引入铁元素尚未见报道,而在Yajima聚碳硅烷中引入铁元素已经有大量报道。如王军等采用超声分散法将铁、钴、镍等纳米金属均匀分散在Yajima聚碳硅烷中,经熔融纺丝、预氧化、烧成制得吸波性较好的SiC纤维,随着纳米金属微粉用量的增加,吸波性能提高,但力学性能下降,且(功能材料,1997,28(6):619-621)。陈志彦等人采用聚二甲基硅烷(PDMS)与二茂铁在高纯氮气保护下,400℃反应10h制得聚铁碳硅烷,将其在1350℃裂解得到连续的Si-Fe-C-O吸波纤维(Trans.Nonferrous Met.Soc.China,2007:17:987-991),但是该种方法铁元素的引入量被控制在1%以下,过多的二茂铁的引入使聚二甲基硅烷交联过度,纺丝性能下降。同时该课题组还使用聚二甲基硅烷在400~500℃惰性气体保护下裂解得到的低分子量聚硅烷(LPS)与二茂铁反应,将产物经二甲苯溶解、过滤、减压蒸馏得到聚铁碳硅烷,将其在800~1400℃裂解下得到磁性碳化硅陶瓷(高分子学报,2005,4:535-539)。陈小君等人以羰基铁(Fe(CO)5)为铁源,与Yajima聚碳硅烷在二甲苯作为溶剂的条件下反应制得铁溶胶,纺丝得到了含铁的碳化硅纤维,含铁为3.64%的碳化硅纤维在1000℃裂解后拉伸强度为2.37GPa,电阻率为0.46Ω·m,饱和磁强度为1.48emu/g,具有良好的强度和电磁性能(J.Am.Ceram.Soc.,2010,93:89-95)。Maclachlan等人采用二甲基硅桥联二茂铁加热开环聚合的聚合物在不同温度下(600℃~1000℃)使用不同裂解时间裂解得到一系列磁性可调的碳化硅陶瓷(J.Am.Chem.Soc.,2000,122:3878-3891;Science,2000,287:1460-1463)。
上述的研究工作虽然都通过不同路径制备得到了磁性的碳化硅陶瓷纤维,但王军的工作中采用物理共混引入铁、钴等元素,不能完全均匀地分散,而陈志彦等人的工作中,铁元素的引入量受到限制,同时使用的先驱体聚二甲基硅烷含有氧,使得高温时陶瓷纤维的强度下降,陈小君等人的工作使用的铁源为含氧的羰基铁(Fe(CO)5),高温时一氧化碳、一氧化硅气体的逸出,在纤维表面形成孔洞,降低了纤维的力学性能,Maclachlan等人虽然制得了无氧的含铁聚碳硅烷先驱体,但先驱体不溶不熔,加工相对困难。
发明内容
本发明的目的旨在提供一种以无氧的乙烯基二茂铁为铁源,与液态超支化聚碳硅烷反应直接制备液态无氧型聚铁碳硅烷的方法。
所制备的液态无氧型聚铁碳硅烷可用作高聚物浸渍裂解法制备含铁的碳化硅陶瓷基复合材料的先驱体,能改善现有的聚铁碳硅烷不溶不熔、含氧、铁元素分散不均匀等问题。
本发明包括以下步骤:
1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为1%~50%;
2)在惰性气氛保护下,将步骤1)所得的混合物搅拌,即得液态无氧型聚铁碳硅烷。
在步骤1)中,所述聚碳硅烷的平均结构式为—[SiHR—CH2]n—,其中R为氢原子、烷基、烯基、炔基等有机基团,n≧3。
在步骤2)中,所述搅拌的条件可在0~80℃下搅拌2~48h。
本发明的优点如下:1)聚铁碳硅烷为液态,同时具有超支化的分子结构,有优良的流动性和浸润性,易浸入材料内部孔隙,可用于高聚物浸渍裂解法制备陶瓷基复合材料。2)聚铁碳硅烷不含氧元素,而且铁元素在液态无氧型聚铁碳硅烷分子中达到原子级别的分散。3)由于含有大量易交联的―SiH3、―SiH2、―SiH等硅-氢键,液态无氧型聚铁碳硅烷可在适当温度下实现无氧自交联。4)通过调节乙烯基二茂铁与液态超支化聚碳硅烷的比例,可以调控铁元素的含量,经烧结后易于制备一系列电阻率和磁饱和强度可调的碳化硅陶瓷,陶瓷产率高达75%以上。5)合成过程无需加入溶剂,工艺简单,产率高,易于工程化。
附图说明
图1为原料液态超支化聚碳硅烷和液态无氧型聚铁碳硅烷先驱体的GPC谱图,其中曲线a为原料液态超支化聚碳硅烷的GPC曲线,曲线b为制得的液态无氧型聚铁碳硅烷的GPC曲线,图中横坐标为分子量摩尔质量Molar Mass(D),纵坐标不同分子量的物质的量分布W(logM)。
图2为原料液态超支化聚碳硅烷和液态无氧型聚铁碳硅烷先驱体的TGA谱图,图中横坐标为温度(℃),纵坐标为陶瓷产率(%),曲线a是原料液态超支化聚碳硅烷的TGA曲线,曲线b是制得的液态无氧型聚铁碳硅烷的TGA曲线。
图3为液态无氧型聚铁碳硅烷裂解产物的磁滞回线图,横坐标为磁场强度H(Oe),纵坐标为磁化强度M(emu/g)。
具体实施方式
下面结合实施例对本发明做进一步说明。
实施例1
(1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为1%;
(2)在惰性气氛保护下,将步骤(1)所述的混合物在70℃油浴中搅拌48h,制得液态无氧型聚铁碳硅烷。
所使用的原料液态超支化聚碳硅烷的平均结构式为—[SiH1.6(CH3)0.3—(CH2CH=CH2)0.1—CH2]n—,由凝胶渗透色谱法(GPC)测定液态超支化聚碳硅烷的分子量及其分子量分布,洗脱剂为四氢呋喃,数均分子量为500,分散系数为1.7;反应后所得的液态无氧型聚铁碳硅烷的数均分子量为900,分散系数为8.7(参见图1);合成产率为91.6wt%。由热重分析法(TGA)测定液态无氧型聚铁碳硅烷1200℃裂解产物的陶瓷产率为79.5wt%,而原料液态超支化聚碳硅烷1200℃裂解产物的陶瓷产率为69.3wt%(参见图2)。经1300℃高温处理后,液态无氧型聚铁碳硅烷的裂解产物组成为SiC1.21Fe0.0031,电阻率为9.4Ω·m,饱和磁化强度为0.48emu/g(参见图3)。
实施例2
(1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为10%;
(2)在惰性气氛保护下,将步骤(1)所述的混合物在30℃油浴中搅拌48h,制得液态无氧型聚铁碳硅烷。
所使用的原料液态超支化聚碳硅烷的平均结构式为—[SiH1.5(CH3)0.5—CH2]n—,数均分子量为600,分散系数为3.5;反应后所得的液态无氧型聚铁碳硅烷的数均分子量为1000,分散系数为4.5;合成产率为95.2wt%。由热重分析法(TGA)测定液态无氧型聚铁碳硅烷1200℃裂解产物的陶瓷产率为83.2wt%,而原料液态超支化聚碳硅烷1200℃裂解产物的陶瓷产率为59.5wt%。经1300℃高温处理后,液态无氧型聚铁碳硅烷的裂解产物组成为SiC1.12Fe0.026,电阻率为4.2Ω·m,饱和磁化强度为1.34emu/g。
实施例3
(1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为20%;
(2)在惰性气氛保护下,将步骤(1)所述的混合物在0℃冰水浴中搅拌36h,制得液态无氧型聚铁碳硅烷。
所使用的原料液态超支化聚碳硅烷的平均结构式为—[SiH1.5(CH3)0.3(C≡CH)0.2—CH2]n—,数均分子量为600,分散系数为3.5;反应后所得的液态无氧型聚铁碳硅烷的数均分子量为1500,分散系数为6.2;合成产率为85.3wt%。由热重分析法(TGA)测定液态无氧型聚铁碳硅烷1200℃裂解产物的陶瓷产率为84.2wt%,而原料液态超支化聚碳硅烷1200℃裂解产物的陶瓷产率为67.5wt%。经1300℃高温处理后,液态无氧型聚铁碳硅烷的裂解产物组成为SiC1.28Fe0.041,电阻率为2.6Ω·m,饱和磁化强度为1.82emu/g。
实施例4
(1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为30%;
(2)在惰性气氛保护下,将步骤(1)所述的混合物在40℃油浴中搅拌6h,制得液态无氧型聚铁碳硅烷。
所使用的原料液态超支化聚碳硅烷的平均结构式为—[SiH1.6(CH3)0.1(CH2CH=CH2)0.2—CH2]n—,数均分子量为500,分散系数为3.8;反应后所得的液态无氧型聚铁碳硅烷的数均分子量为1400,分散系数为5.2;合成产率为91.4wt%。由热重分析法(TGA)测定液态无氧型聚铁碳硅烷1200℃裂解产物的陶瓷产率为78.2wt%,而原料液态超支化聚碳硅烷1200℃裂解产物的陶瓷产率为64.3wt%。经1300℃高温处理后,液态无氧型聚铁碳硅烷的裂解产物组成为SiC1.31Fe0.063,电阻率为1.8Ω·m,饱和磁化强度为2.25emu/g。
实施例5
(1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为20%;
(2)在惰性气氛保护下,将步骤(1)所述的混合物在50℃油浴中搅拌30h,制得液态无氧型聚铁碳硅烷。
所使用的原料液态超支化聚碳硅烷的平均结构式为—[SiH2—CH2]n—,数均分子量为500,分散系数为3.6;反应后所得的液态无氧型聚铁碳硅烷的数均分子量为1300,分散系数为5.9;合成产率为87.2wt%。由热重分析法(TGA)测定液态无氧型聚铁碳硅烷1200℃裂解产物的陶瓷产率为79.3wt%,而原料聚碳硅烷1200℃裂解产物的陶瓷产率为57.7wt%。经1300℃高温处理后,液态无氧型聚铁碳硅烷的裂解产物组成为SiC1.06Fe0.037,电阻率为3.1Ω·m,磁饱和强度为1.75emu/g。
实施例6
(1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为50%;
(2)在惰性气氛保护下,将步骤(1)所述的混合物在80℃油浴中搅拌2h,制得液态无氧型聚铁碳硅烷。
所使用的原料液态超支化聚碳硅烷的平均结构式为—[SiH1.6(CH3)0.4—CH2]n—,数均分子量为700,分散系数为3.8;反应后所得的液态无氧型聚铁碳硅烷的数均分子量为1300,分散系数为5.2;合成产率为89.8wt%。由热重分析法(TGA)测定液态无氧型聚铁碳硅烷1200℃裂解产物的陶瓷产率为83.5wt%,而原料液态超支化聚碳硅烷1200℃裂解产物的陶瓷产率为61.3wt%。经1300℃高温处理后,液态无氧型聚铁碳硅烷的裂解产物组成为SiC1.09Fe0.075,电阻率为0.35Ω·m,饱和磁化强度为3.97emu/g。
实施例7
(1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为50%;
(2)在惰性气氛保护下,将步骤(1)所述的混合物在0℃的冰水浴中搅拌48h,制得液态无氧型聚铁碳硅烷。
所使用的原料液态超支化聚碳硅烷的平均结构式为—[SiH1.7(CH3)0.2(CH2CH=CH2)0.1—CH2]n—,数均分子量为800,分散系数为2.3;反应后所得的液态无氧型聚铁碳硅烷的数均分子量为1300,分散系数为6.1;合成产率为92.3wt%。由热重分析法(TGA)测定液态无氧型聚铁碳硅烷1200℃裂解产物的陶瓷产率为79.2wt%,而原料液态超支化聚碳硅烷1200℃裂解产物的陶瓷产率为65.4wt%。经1300℃高温处理后,液态无氧型聚铁碳硅烷的裂解产物组成为SiC1.18Fe0.071,电阻率为0.68Ω·m,饱和磁化强度为3.48emu/g。
本发明通过乙烯基二茂铁的C=C双键与含有丰富活性官能团的液态超支化聚碳硅烷的Si-H或C=C双键反应,所制得的液态无氧型聚铁碳硅烷可用作高聚物浸渍裂解法制备含铁的碳化硅陶瓷基复合材料的先驱体,陶瓷产率高,并具有良好的电磁性能,能改善现有的聚铁碳硅烷不溶不熔、含氧、铁元素分散不均匀等问题。

Claims (1)

1.一种制备液态无氧型聚铁碳硅烷的方法,其特征在于包括以下步骤:
1)在惰性气氛保护下,在液态超支化聚碳硅烷中加入乙烯基二茂铁,乙烯基二茂铁与液态超支化聚碳硅烷的质量比为1%~50%;所述聚碳硅烷的平均结构式为—[SiHR—CH2]n—,其中R为氢原子、烷基、烯基、炔基有机基团,n≧3;
2)在惰性气氛保护下,将步骤1)所得的混合物搅拌,即得液态无氧型聚铁碳硅烷;所述搅拌的条件是在0~80℃下搅拌2~48h。
CN201310236851.1A 2013-06-15 2013-06-15 一种制备液态无氧型聚铁碳硅烷的方法 Expired - Fee Related CN103254440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310236851.1A CN103254440B (zh) 2013-06-15 2013-06-15 一种制备液态无氧型聚铁碳硅烷的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310236851.1A CN103254440B (zh) 2013-06-15 2013-06-15 一种制备液态无氧型聚铁碳硅烷的方法

Publications (2)

Publication Number Publication Date
CN103254440A CN103254440A (zh) 2013-08-21
CN103254440B true CN103254440B (zh) 2014-12-10

Family

ID=48958683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310236851.1A Expired - Fee Related CN103254440B (zh) 2013-06-15 2013-06-15 一种制备液态无氧型聚铁碳硅烷的方法

Country Status (1)

Country Link
CN (1) CN103254440B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528725B (zh) * 2015-01-08 2016-04-27 厦门大学 一种磁性碳化硅陶瓷纳米粒子的制备方法
CN105085925B (zh) * 2015-09-28 2017-06-23 中国人民解放军国防科学技术大学 一种可热固化交联的聚碳硅烷的合成方法
CN107988712B (zh) * 2017-11-24 2019-05-10 中国科学院宁波材料技术与工程研究所 亚微米/纳米无氧碳化硅纤维毡及其制备方法
CN109485857B (zh) * 2018-10-25 2021-08-10 航天材料及工艺研究所 一种液态聚碳硅烷的制备方法
CN110078951B (zh) * 2019-05-17 2022-05-31 湖北科技学院 一种液态聚碳硅烷的辐射还原与固化的方法
CN112279665B (zh) * 2020-11-06 2022-06-07 浙江华茂航天科技股份有限公司 一种吸波陶瓷先驱体及其制备方法和应用
CN115253938B (zh) * 2022-08-10 2023-04-18 航天特种材料及工艺技术研究所 一种耐高温抗辐射弹性碳化硅纳米纤维气凝胶材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199811A (zh) * 2011-04-13 2011-09-28 中国人民解放军国防科学技术大学 一种微米/亚微米/纳米磁性碳化硅纤维及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199811A (zh) * 2011-04-13 2011-09-28 中国人民解放军国防科学技术大学 一种微米/亚微米/纳米磁性碳化硅纤维及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Iron Nanoparticle-Containing Silicon Carbide Fibers Prepared by Pyrolysis of Fe(CO)5-Doped Polycarbosilane Fibers;xiaojun chen et al.;《Journal of The American Ceramic Society》;20091029;第93卷(第1期);89-95 *
xiaojun chen et al..Iron Nanoparticle-Containing Silicon Carbide Fibers Prepared by Pyrolysis of Fe(CO)5-Doped Polycarbosilane Fibers.《Journal of The American Ceramic Society》.2009,第93卷(第1期),89-95. *
余兆菊等.液态超支化聚碳硅烷的研究进展.《功能材料》.2010,第41卷(第7期),1113-1119. *
液态超支化聚碳硅烷的研究进展;余兆菊等;《功能材料》;20100720;第41卷(第7期);1113-1119 *

Also Published As

Publication number Publication date
CN103254440A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
CN103254440B (zh) 一种制备液态无氧型聚铁碳硅烷的方法
CN102674845B (zh) 一种具有氮化硅表层的碳化硅纤维的制备方法
Zhao et al. Synthesis, pyrolysis of a novel liquid SiBCN ceramic precursor and its application in ceramic matrix composites
CN102424597B (zh) 碳/碳-碳化硅陶瓷复合材料的制备方法
CN104528725B (zh) 一种磁性碳化硅陶瓷纳米粒子的制备方法
CN103396653B (zh) 一种石墨烯微片/环氧树脂纳米复合材料的制备方法
CN102796374B (zh) 一种碳纳米管/苯并噁嗪/双马来酰亚胺复合材料及其制备方法
CN107311662A (zh) 一种石墨电极接头及其制备方法
CN103275326B (zh) 一种制备液态无氧型聚锆碳硅烷的方法
CN107419364A (zh) 一种高耐温性的高结晶近化学计量比连续SiC纤维的制备方法
Zhou et al. Preparation of Si–C–N–Fe magnetic ceramic derived from iron-modified polysilazane
CN108033801A (zh) 氮化硅纳米线增强多孔氮化硅复合材料及其制备方法
CN103275327B (zh) 一种制备液态无氧型聚钛碳硅烷的方法
Wang et al. Synthesis of ZrC–SiC powders from hybrid liquid precursors with improved oxidation resistance
Yu et al. Synthesis and ceramic conversion of a novel processible polyboronsilazane precursor to SiBCN ceramic
CN102502595A (zh) 一种各向同性石墨的制备方法
Liu et al. Fabrication and properties of precursor-derived SiBN ternary ceramic fibers
Xie et al. Polyaluminocarbosilane as precursor for aluminum-containing SiC fiber from oxygen-free sources
CN106496476B (zh) 一种有机硅改性酚醛树脂及其应用
Wang et al. Synthesis, characterization and ceramization of a novel vinyl-rich liquid precursor for Si (O) C ceramic
CN107353015A (zh) 一种碳化硅‑氮化硅多孔复合陶瓷制备方法
CN102093564A (zh) 碳化硅陶瓷前驱体热固性聚硅烷树脂的制备
CN103409851B (zh) 一种含钴碳化硅纤维的制备方法
Wang et al. Fine-diameter microwave-absorbing SiC-based fiber
Gou et al. The preparation and characterization of polymer-derived Fe/Si/C magnetoceramics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210

Termination date: 20200615