CN103249483A - 制备负载型催化剂的方法及该催化剂用于酯化植物油中游离脂肪酸的用途 - Google Patents

制备负载型催化剂的方法及该催化剂用于酯化植物油中游离脂肪酸的用途 Download PDF

Info

Publication number
CN103249483A
CN103249483A CN2011800530483A CN201180053048A CN103249483A CN 103249483 A CN103249483 A CN 103249483A CN 2011800530483 A CN2011800530483 A CN 2011800530483A CN 201180053048 A CN201180053048 A CN 201180053048A CN 103249483 A CN103249483 A CN 103249483A
Authority
CN
China
Prior art keywords
inorganic material
chemical formula
catalyst
acid
organo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800530483A
Other languages
English (en)
Inventor
R·豪斯曼
M·富克斯
S·勒德
C·特里翁费蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Publication of CN103249483A publication Critical patent/CN103249483A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/123Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
    • B01J31/124Silicones or siloxanes or comprising such units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/123Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
    • B01J31/124Silicones or siloxanes or comprising such units
    • B01J31/127Silicones or siloxanes or comprising such units the siloxane units, e.g. silsesquioxane units, being grafted onto other polymers or inorganic supports, e.g. via an organic linker
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

基于羟基化的无机材料制备负载型催化剂的方法,所述无机材料选自由二氧化硅(SiO2)、氧化铝(AL2O3)、二氧化钛(TiO2)、氧化锆(ZrO2)、氧化镧(La2O3)或者它们的混合物组成的组,其特征在于,所述羟基化的无机材料与有机硅化合物接触,所述有机硅化合物选自化学式1,即[(RO)ySi-[O-(RO)ySi]y-O-Si(RO)y]或者化学式2,即(RO)y-Si-R1-S2-4-R1-Si-(RO)y,其中R是烷基并且R1是具有1-5个碳原子的线性或枝化亚烷基,并且y是1-3的整数。

Description

制备负载型催化剂的方法及该催化剂用于酯化植物油中游离脂肪酸的用途
技术领域
本发明涉及一种制备负载型催化剂及所述负载型催化剂用于酯化植物油中游离脂肪酸的方法。
背景技术
生物柴油是可持续的且可再生的由各种油、脂肪和游离脂肪酸产生的燃料。当今,主要通过甘油酯与一元醇的酯交换反应生产生物柴油,最常见的是过量使用甲醇以增强反应物的混合从而改变反应平衡和提高反应速率。
酯交换是典型的以碱作为均相催化剂的催化反应,碱例如NaOH,KOH和/或与它们相应的醇盐(参见,例如,J.Ruwwe,Chemistry Today,第26卷第1期,2008)。此外,通过采用非均相碱作为催化剂的酯交换反应生产生物柴油也已经由Axens在美国专利5908946中描述的那样被实施和商业化。然而,在这两种情况下,为了以下目的,都需要使用经过预处理的原料/油:
(i)避免由于皂化导致的设备停工,以及
(ii)保持产品的高收率(参见,L.C.Meher等.,Renewable andSustainable Energy Reviews,第10卷,第3期,2006)。
于是,最普通的和商业上可用的技术的使用,例如,均相酯交换,被局限于处理相对清洁的含有非常低浓度游离脂肪酸、水和磷的植物油,即,满足下列条件的油:
(i)游离脂肪酸浓度小于0.5重量%,
(ii)水含量小于500ppm,以及
(iii)磷含量大约10ppm或者更低。
这里需要强调的是生物柴油的生产成本主要受原料成本控制。整体因素如投资费用、公用工程和劳动力仅仅扮演了一个次要的角色,与此同时,原料成本例如豆油和菜籽油占生物柴油总成本的80%。
众所周知,具有高含量游离脂肪酸的不太昂贵的原料也是可以使用的,例如,麻风果油(Jatropha oil)、废弃植物油(WVO)、动物脂肪。尽管生物柴油也可以通过上述原料生产,但由于用于甘油三酯酯交换的均相碱催化剂会使游离脂肪酸皂化,生产时会存在严重的工艺问题。这可能导致(i)损失催化剂和(ii)需要另外的高成本的操作,例如中和、洗涤、分离、回收纯产品和产生污染的工业废水。
一种用于改善处理廉价原料的方法是,在转化成生物柴油之前,从植物油中去除游离脂肪酸。在工业范畴内,该工艺可以通过物理和化学的方法进行。尽管物理方法,例如,(i)在高温高压下去除脂肪酸和(ii)超临界萃取法一般被认为更可行,但它们的能量消耗特别高。
经典的化学方法用到的条件看起来不太苛刻。其在酸性催化剂,例如无机酸(H2SO4、HCl等)存在的条件下,使游离脂肪酸酯化为烷基酯。因此,经过预处理的植物油中游离脂肪酸含量被降至约0.5重量%,然后在标准酯交换条件下(参见H.N.Basu等人的的美国专利,专利号:5,525,126)进行处理。
这个预处理步骤通过使用硫酸(S.Koona等人1993年的欧洲专利,专利号:566047)已经被成功验证。不幸的是,其缺点在于该方法用到了强酸,例如H2SO4或者p-Me(C6H4)SO3H,这使得必须附加中和和分离步骤。更为重要的是,所需酸的总量远远高于用于将中性的油转换为生物柴油的催化剂的总量。此外,与油的酯交换反应相比,预处理植物油的反应也不会进行的太完全,这将会导致由此产生的生物柴油产品中的脂肪酸超出其限值。
此外,由于法律规定柴油中硫含量低于20ppm的现实,因此需要更进一步的处理。高硫原料需要与低硫原料混合以降低产品中的硫含量,或者一点都不使用高硫原料。
用于脂肪酸的酯交换反应的均相酸催化剂的使用能够明确地改善现有技术,可使催化剂原位活性持续更长的时间而无需任何附加的步骤。此外,来自于各种原料的植物油的使用和用于预处理的非均相催化剂的组合能够降低用于制备生物柴油的成本。路易斯(Lewis)和布朗(Bronsted)固体酸催化剂,例如金属氧化物适于催化脂肪酸的酯交换反应,但反应温度相对高一些,高于140℃(参见G.Rothenberg等,Energy&Fuels,22,598-604,2008。然而,当脂肪酸溶于植物油中,催化剂的活性和稳定性会显著地降低。因此,固体酸催化剂的实际缺点是仅仅通过使用以下条件可记录可评价的活性,
(i)温度高于200℃,其中能够发生产品降解,以及
(ii)为了从植物油相中提取游离脂肪酸,用到大大过量的甲醇(约50∶1)。
根据所述条件并且在布朗酸催化剂的情况下,由于一方面水解或者另一方面浸出酸位导致催化剂降解,使得他们的稳定性看起来是主要的挑战。
在文献中无机材料和有机硅酸化合物之间相互的影响是众所周知的,并且它最初是旨在提高填充物和橡胶化合物之间混合和相互作用的(例如用于轮胎工业)的技术的目标,(参见美国专利,专利号:4,514,231)。更加特别的是,使用二氧化硅与硅氧烷和/或硅醇的组合阻止磺酸基团也已经作为一个新类别的固体酸在文献中得到描述(参见Lansink Rotgerink等人的美国专利,专利号:5,919,566)并且被用于若干酸催化的反应(参见S.Wieland等人的美国专利,专利号:5,922,900)。然而,这里的挑战来自分离包含硫和低密度活性酸位的复合物。通过使用负载型材料如圆柱形造粒或者球形颗粒时,由于不规则造型使得缺点更加明显。因此制备稳定的可用于固定床的活性固体催化剂可能是面临的另一个主要挑战。
表面活性剂-模块化的中孔结构性二氧化硅基材料由于较高的表面积和规则的孔已经得到很大的注意。这些材料可通过在表面活性剂微团模块的烷氧基硅烷的聚合而得到。这些材料可通过加入包含磺酸基团的官能化的有机基团进行改性。尽管它们用于脂肪酸酯交换反应的效率已经成功地被证明(参见D.R.Radu等人的美国专利,专利号:7,122,688),为了避免孔堵塞和快速钝化,一种更好的设计表面孔结构的方式是当前面临的问题。
于是,本发明的目标是提供一种用于制备催化剂的方法及适合将植物油中游离脂肪酸酯化的催化剂,该方法至少减少了现有技术中提到的缺点。
所述目标根据有关的权利要求获得。
特别是本发明的一个特征在于提供一种基于羟基化的无机材料制备负载型催化剂的方法,所述无机材料选自由二氧化硅(SiO2)、氧化铝(AL2O3)、二氧化钛(TiO2)、氧化锆(ZrO2)、氧化镧(La2O3)或者它们的混合物组成的组,其特征在于,所述羟基化的无机材料与至少一种有机硅化合物接触,所述有机硅化合物选自化学式1,即[(RO)ySi-[O-(RO)ySi]y-O-Si(RO)y]或者化学式2,即(RO)y-Si-R1-S2-4-R1-Si-(RO)y,其中R是烷基并且R1是具有1-6个碳原子的线性或枝化亚烷基,并且y是1-3的整数。
所述方法提供了一种强酸负载型催化剂,该催化剂基于高羟基化的无机氧化硅、氧化铝、氧化钛、氧化锆和氧化镧,可用于固定床。
所述的羟基化的无机材料在商业上是可得到的。
本发明的方法通过使用接枝技术得到一种官能化的负载型催化剂,其具有长使用寿命和高热稳定性。根据接枝的分子,可以获得对水解的高稳定性。分别地,(i)催化剂形状和尺寸,(ii)甚至在皂的存在下催化剂的性能,以及(iii)独特的以及低成本的生产方法将会很容易获取用于现有生物柴油技术的材料。
优选通过有机硅化合物处理羟基化的无机材料,以获得疏水性的负载担体,用于保护催化剂的活性部位远离水分子的钝化。
用到的有机硅化合物具有通式1,即[(RO)ySi-[O-(RO)ySi]y-O-Si(RO)y]或者通式2,即(RO)y-Si-R1-S2-4-R1-Si-(RO)y
根据本发明所述的方法的初始材料是亲水性的,最终的产品是疏水性的。
疏水性的程度通过接触角度描述。优选的根据本发明的方法获得的负载型催化剂具有大于80°的接触角(θ),更加优选是在80°和100°之间。接触角根据所谓的标准座滴法(Standard Sessile Drop Method)测定。在这种情况下,接触角的测定通过使用当前的生产系统(current-generation systems)而进行,应用到高分辨率照相机和软件来捕捉和分析接触角。
R优选的是甲基、乙基、丙基或者丁基,更加优选的是甲基或者乙基。
R1优选的是具有1或者2个碳原子的线性亚烷基,例如,亚甲基或者亚乙基。亚烷基是指二价的烷基,也经常被称为亚烷基(alkanediyl)。
最优选的是,根据化学式2得到的有机硅化合物选自由
(CH3CH2O)3-Si-CH2-CH2-S4-CH2-CH2-Si-(OCH2CH3)3、(CH3CH2O)3-Si-CH2-CH2-S4-CH2-CH2-Si-(OCH2CH2CH3)3组成的组。
仅在涂层情况下,由于化学式1所示的化合物和之前提及的无机固体载体的其中之一之间的相互作用,能够通过使用通式3[(RO)ySi-R1-SO3 -]x zM的不同化合物对表面特性进行进一步改性。
于是优选在本发明的方法中伴随用化学式1的有机硅化合物处理所述羟基化的无机材料或者在该处理之后,用化学式3[(RO)ySi-R1-SO3 -]x zM的有机硅化合物进行处理,
其中y、R和R1具有如上所述的定义,
x是1-4的整数,
M选自由H+、NH4+或者化合价为1-4的金属离子组成的组,并且
z是1-4的整数,取决于M的离子电荷,从而使得化学式3的化合物的离子电荷为中性,例如,如果x是4并且M是H+,那么z是4。如果x是2并且M是具有二价正电荷Me++的金属离子,那么z是1。
根据化学式1所述的有机硅化合物可以与根据化学式3所述的有机硅化合物相混合,然后所述混合物用于处理羟基化的无机材料。
最优选的是,根据化学式1所述的有机硅化合物选自由[(CH3CH2O)3Si-[O-(CH3CH2O)2Si]4-O-Si(OCH2CH3)3]、[(CH3CH2CH2O)3Si-[O-(CH3CH2CH2O)2Si]4-O-Si(OCH2CH2CH3)3]组成的组。
根据化学式3所述的无机硅化合物最优选的选自由
[(HO)3Si-CH2 CH2-SO3-]H+、[(HO)3Si-CH2 CH2 CH2-SO3-]H+、[(HO)3Si-CH2 CH2 CH2 CH2-SO3-]H+组成的组。
通过使用化学式1和化学式2的有机硅化合物的混合物进行的表面改性可以增加氧化物表面的酸性。固定的酸性官能化基团可以引起用于催化目的的混合颗粒增加。化学式1和化学式3的化合物的比值为约1∶1至10∶1并且它们也不得不根据所使用的固体载体的量进行调整。
优选的实例集中倾向于二氧化硅作为无机载体。由于Si-O-Si的形成,可以确定观察到的稳定性提高。二氧化硅表面积一般特别高,从100-600m2/g。其与化学式1、2、3中描述的长链化合物发生反应的表面性能通过吸附探针分子(即具有4-8之间的碳链)和高浓度羟基基团的检测来测试,其很大地增加了每m2材料的反应活性。上述羟基基团作为活性的官能化基团并且在不超过250℃时很稳定。
二氧化硅优选孔径为2-100纳米的中孔二氧化硅(mesoporous silica)。优选粒子尺寸从25微米开始至1.2mm。更加优选的是,最初的载体材料是在控制PH条件下通过沉淀制备的不规则球形颗粒。所述颗粒更容易压成粒状。用于沉淀的时间强烈地影响着微粒形状的规则性。
在另一个优选的实例中,催化剂的形态由大孔控制。上述材料看起来像海绵并且化学组成揭示了其中主要存在的仅仅是硅的氧化物。
SEARS值是羟基化程度的度量。为了计算SEARS值,所述硅表面用NACl溶液(250g/l)处理。其与表面羟基基团发生反应产生HCl,所述HCl用KOH溶液(0.1N)进一步滴定。
用在本发明方法中的羟基化的载体优选的具有大于20[OH]/m2的SEARS值。更加优选的SEARS值为20至30。对于高的SEARS值,所述材料在浸渍后太疏水而不可能将负载型催化剂压成粒状。
更加优选的,CTAB比表面积:BET比表面积为0.90-1.00,更加优选的是0.95-0.98。所述BET比表面积通过用Brunauer、Emmett和Teller理论确定。包括在温度为77K条件下,在吸附层内,在未与吸附层相互作用的情况下,氮分子从单层至多层在表面发生物理吸附。所述CTAB比表面积用ASTM方法D3765计算。
于是,由将化学式3的化合物和化学式1所示的化合物的混合物在乙醇中的分散体,制备本发明的负载型催化剂,包括一个或者多个具有充分酸性的官能团,例如磺酸。上述两种化合物的缩合及与二氧化硅表面的相互作用优选在60-130℃之间进行,可以很大程度对载体性能和硅酸盐的孔进行改进。
所述浸渍步骤,即通过浸渍法、始润浸渍法或者喷雾浸渍法可以进行用有机硅化合物对羟基化载体的处理。整个催化剂混合物和官能化试剂在相对较高的温度下搅拌。浸渍之后,负载型催化剂可以通过过滤分离并且在水和醇中洗涤以去除未反应的物质。可选的干燥过程在高于130℃的温度下进行以去除溶剂。此外,在100至200℃的较高温度范围内,固化步骤也可以进行。可以化学定量和可选择地滴定在孔表面上结合的官能团。
在浸渍过程中,载体的羟基与有机硅化合物发生反应形成Si-O-S键并且在载体上由有机硅化合物形成一个层。所述层平均孔径接近于80nm,形成均一的海绵状结构。这被称之为开放式结构,可使来自有机硅化合物的大部分磺酸基团容易接近。所述磺酸基团的可接近度由酸值描述。所述酸值通过表面滴定确定。于是,获得的负载型催化剂的酸值优选在80-180mgKOH/g样品之间,最好在100-130mgKOH/g样品之间。
也可以通过用含巯基的烷氧基硅烷处理羟基化的无机材料来制备本发明的负载型催化剂,羟基化的无机材料优选羟基化的二氧化硅,含巯基的烷氧基硅烷即化学式2的有机硅化合物。
经过处理之后,巯基可以被转换为如下描述的酸根。化学式2的有机硅化合物的优势是,基于缩合反应依附于羟基化载体是非常快速和强烈的,并且由此产生的材料可以显示出位于表面上的巯基单层。
通过使用氧化剂例如H2O2或者酸例如硝酸,将由此产生的包含固定的巯基烷基基团的材料氧化为-SO3H基团。这一过程优选在包含水和乙醇的混合物中进行。通常溶解在醇中的过氧化氢是约3体积%。经过一段合适的时间,过滤悬浮体并且用水和醇冲洗。湿物质可以可选的再一次在无机酸(例如,硝酸)的水溶液中悬浮。最后所述材料将会用水强烈洗涤并且在升温下干燥,从而得到负载型催化剂。酸活化的物质用后缀-SO3H来表示。
本发明的负载型催化剂的成形可以在羟基化无机载体的浸渍/官能化之前或者优选之后进行。在后一种情况中,如前面描述的具有几个微米的颗粒尺寸的酸性官能化负载型催化剂应该具有较低疏水性,从而可以被压在一起来形成在2.5-5mm之间的各种尺寸的粒状。此外,官能化酸性负载型催化剂粉末通过使用具有低分解温度(优选低于200℃)的粘合剂压实。此外,直径为1-3mm的压出物也可以通过煅烧(优选在不高于200℃的温度下)获得。使用标准的压粒机(compactor)也是优选的。
根据本发明生产的酸性的官能化的负载型催化剂尤其适合将植物油中含有的游离脂肪酸(ffa)酯化为相应的脂肪酸烷基酯。
因此,本发明也包括酯化植物油中游离脂肪酸的方法,该方法在80℃-160℃的温度下,利用脂肪醇将所述游离脂肪酸酯化成相应的脂肪酸烷基酯,所述脂肪醇含有的最大碳原子数为4,其特征在于,使用本发明的负载型催化剂,或者根据本发明制备的负载型催化剂,来实施所述方法。
优选醇是甲醇并且所述的烷基酯是脂肪酸甲酯。
进一步优选的是,酯化植物油中游离脂肪酸(ffa)的方法,其特征在于,植物油中游离脂肪酸和脂肪醇的比例在1∶5至1∶25的范围内,更加优选的是在1∶5至1∶15的范围内,最优选的是在1∶5至1∶10的范围内。
酯化反应通常在动力学上不利的,因为脂肪酸在甘油三酯中的溶解性高于在所用醇中的溶解性。于是,醇和游离脂肪酸相比要非常过量,ffa与醇的比例至少是1∶40,经常是1∶50或者更高通常是必须的。本发明的优势在于催化剂,所述催化剂可以选择性地转化脂肪酸和(即甲醇),ffa∶醇的典型比例为1∶5至1∶25。
优选对脂肪酸进行连续处理。酯化反应在80℃-160℃的温度下进行,优选100℃-120℃。酯化反应优选在固定床反应器中低于10bars的压力下进行。更加优选的,酯化反应在滴流床反应器(trickle bed reactor)中进行。如果负载型催化剂是粗糙的颗粒,优选固定床反应器用于酯化反应。当使用的负载型催化剂为粉末时,例如,颗粒尺寸小于100微米,流化床反应器也是可以用的。
用于酯化游离脂肪酸的LHSV(液时空速)例如可以为0.5-1.5h-1。液时空速是指每小时提供的反应物的液体体积除以所使用催化剂的体积得到。所述液时空速可以通过升高反应温度而增加。
即使含有高游离脂肪酸的原料也可以通过采用本发明生产的负载型催化剂来发生酯化反应而容易地处理。脂肪酸烷基酯和甘油三酯的混合物可以在随后被直接送至酯化反应单元。
植物油经常包含甘油三酯和游离脂肪酸。所述游离脂肪酸必须在甘油三酯的酯化反应发生之前被转换为脂肪酸烷基酯。由于所述酯化反应典型地由碱作为均相催化剂进行催化,所述催化剂将会导致游离脂肪酸的皂化。如果通过使用本发明生产的负载型催化剂将游离脂肪酸被转换成脂肪酸烷基酯,就可以避免肥皂的形成。
本发明进一步通过下列非限制性实施例说明。对于具有不同碳链长度(即5-18)和不同饱和度的双键(0-3)的羧酸,进行脂肪酸的酯化测试。
实施例1
约44.0g硅酸乙酯Wacker TES
Figure BPA00001731715500081
与约24.0g Si285(德固赛产品[(HO)3Si-CH2 CH2 CH2-SO3-]H+)和49.0g乙醇混合。所述混合物在20-50℃的温度下,优选20℃,反应1小时。然后,所述混合物与30.0g沉淀二氧化硅粉末发生反应,所述沉淀二氧化硅粉末已经在低于200℃的温度下处理过,使得羟基依然存在并且SEARS值为22并且CTAB∶BET表面积比值是0.97。所述反应在20℃的温度下发生。在搅拌下将具有特定密度和粘度的糊状物保持1小时以使其变得均匀。然后所述材料在120-150℃的较高温度下,优选135℃,在真空烤箱内固化20小时。由此产生的固体被压碎和研磨。此后所述催化剂用水洗涤直至在水流中的pH值达到5,然后在120-150℃温度下,优选135℃,干燥6小时。由此产生的粉末在准备成形为粒状前经历一个额外的研磨步骤。造粒工艺在未使用任何粘合剂的情况下进行,获得4mm的颗粒。
实施例2
约44.0g硅酸乙酯Wacker TES
Figure BPA00001731715500082
与约24.0g Si285和49.0g乙醇混合。所述混合物在室温下反应1小时。然后,所述混合物与30.0g的二氧化硅粉末(德固赛Sipernat
Figure BPA00001731715500083
-50)和作为粘合剂的约10g的水合硅酸铝镁(ACTI-GEL208)发生反应。粗颗粒的SEARS值是21并且CTAB∶BET表面积比值是0.97。所述反应在室温下发生。很快得到致密固体。所述材料使用挤出机成形并且获得尺寸为1-3mm的挤出物。然后,所述挤出物在120-150℃的较高温度下在真空烤箱内固化20小时。此后所述催化剂用水洗涤直至在水流中的pH值达到5,然后在120-150℃温度下干燥6小时。
实施例3
约44.0g硅酸乙酯Wacker TES
Figure BPA00001731715500091
与约24.0g Si285和49.0g乙醇混合。所述混合物在20℃的温度下反应1小时。然后,所述混合物与30.0g的聚集二氧化硅(Sipernat-50,含有纤维素作为粘合剂)发生反应。所述粗颗粒直径为0.8-1.2mm并且SEARS值是21。CTAB∶BET表面积比值是0.94。所述反应在室温下发生,例如,在20℃下。所述材料然后在120-150℃的较高温度下在真空烤箱内固化20小时。此后所述催化剂用水洗涤直至在水流中的pH值达到5,然后在120-150℃温度下干燥6小时,很快得到致密固体。所述材料可以通过使用挤出机进行成形,其中在混合过程中添加硅溶胶,并且可以获得尺寸为1-3mm的挤出物。然后,所述挤出物在120-200℃的较高温度下固化5小时。可替代的,未经过任何研磨步骤的所述材料可以成形为直径不超过4mm的粒状。
实施例4
分散在20.0g乙醇中的约3.6g的有机硅烷剂Wacker Si69
Figure BPA00001731715500093
与30.0g的二氧化硅粉末(德固赛Sipernat
Figure BPA00001731715500094
-50)发生反应,所述二氧化硅粉末的SEARS值21并且CTAB∶BET表面积比值是0.95。所述反应在20℃发生。将具有特定密度和粘度的糊状物在搅拌下保持1小时从而均匀。然后在温度为120-150℃的较高温度下在烤箱内在氮气的存在下固化5小时。然后,催化剂用乙醇洗涤,过滤并且然后在50-80℃的温度下干燥12小时。然后所述材料在室温条件下悬浮在1.5升含有50ml的H2O2(30%)和硝酸的水中。所述催化剂粉末然后用水洗涤并且在130℃在氮气存在下干燥7小时。由此产生的粉末在准备成形为粒状之前经历额外的研磨步骤。造粒在未使用任何粘合剂的情况下进行,获得直径是3-5mm的颗粒。
实施例5-植物油中存在的游离脂肪酸的连续酯化
如实施例1中描述的约20ml体积的催化剂被加载至固定床反应器。操作温度是120℃并且以液时空速为1h-1分别提供豆油和油酸(约10重量%)的混合物。10ml/h的豆油和约0.2ml/h的油酸通过泵进料。额外的泵提供0.15ml/h的甲醇并且安装所需的压力是约7bar。于是,安装一种滴流床装置。植物油和脂肪酸的混合物的酸值在转化之前是约16mg KOH/g,并且催化反应之后记录的值是约1mgKOH/g。所述酸值在特定的时候之后通过采用探针取样进行测定,并且所述催化剂在所述条件下可以使用更长的时间并且表现出高稳定性。所述催化剂不需要任何预处理并且ffa∶CH3OH的摩尔比值是1∶6时已经处于活性状态。进过这样一轮处理,植物油就可以准备进料至传统的通过酯交换反应生产的生物柴油装置。

Claims (11)

1.基于羟基化的无机材料制备负载型催化剂的方法,所述无机材料选自由二氧化硅(SiO2)、氧化铝(AL2O3)、二氧化钛(TiO2)、氧化锆(ZrO2)、氧化镧(La2O3)或者它们的混合物组成的组,其特征在于,所述羟基化的无机材料与至少一种有机硅化合物接触,所述有机硅化合物选自化学式1,即[(RO)ySi-[O-(RO)ySi]y-O-Si(RO)y]和化学式2,即(RO)y-Si-R1-S2-4-R1-Si-(RO)y,其中R是烷基,并且R1是具有1-6个碳原子的线性或枝化亚烷基,并且y是1-3的整数。
2.如权利要求1所述的方法,其特征在于,伴随用化学式1的有机硅化合物处理所述羟基化的无机材料或者在该处理之后,用化学式3[(RO)ySi-R1-SO3 -]x zM的有机硅化合物进行处理,
其中y、R和R1如权利要求1中所定义,
x是1-4的整数,
M选自由H+、NH4+或者化合价为1-4的金属离子组成的组,并且
z是1-4的整数,取决于M的离子电荷,从而使得化学式3的化合物的离子电荷为中性。
3.如权利要求1所述的方法,其特征在于,利用化学式2的有机硅化合物处理所述羟基化的无机材料。
4.如权利要求3所述的方法,其特征在于,通过使用氧化剂或酸来氧化所述经过处理的材料。
5.如权利要求1-4中任一项所述的方法,其特征在于,所述羟基化的无机材料是中孔二氧化硅。
6.如权利要求1-5中任一项所述的方法,其特征在于,所述羟基化的无机材料的SEARS值是20或者更高。
7.可通过如权利要求1-6中任一项所述的方法获得的负载型催化剂。
8.如权利要求7所述的负载型催化剂,其特征在于,所述负载型催化剂的接触角为80°或者更高。
9.酯化植物油中游离脂肪酸的方法,该方法在80℃-160℃的温度下,利用脂肪醇将所述游离脂肪酸酯化成相应的脂肪酸烷基酯,所述脂肪醇含有的最大碳原子数为4,其特征在于,使用如权利要求7所述的负载型催化剂,或者如权利要求1-5中任一项所述的方法制备的负载型催化剂,来实施所述方法。
10.如权利要求9所述的方法,其特征在于,所述植物油中的游离脂肪酸与脂肪醇的比例为1∶5至1∶25。
11.如权利要求9-10所述的方法,其特征在于,所述脂肪醇是甲醇。
CN2011800530483A 2010-11-02 2011-10-19 制备负载型催化剂的方法及该催化剂用于酯化植物油中游离脂肪酸的用途 Pending CN103249483A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10189674.4 2010-11-02
EP10189674A EP2446965A1 (en) 2010-11-02 2010-11-02 Process for preparation of supported catalysts and use of the catalyst for the esterification of free fatty acids in vegetable oil
PCT/EP2011/068209 WO2012059323A1 (en) 2010-11-02 2011-10-19 Process for preparation of supported catalysts and use of the catalyst for the esterification of free fatty acids in vegetable oil

Publications (1)

Publication Number Publication Date
CN103249483A true CN103249483A (zh) 2013-08-14

Family

ID=44482457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011800530483A Pending CN103249483A (zh) 2010-11-02 2011-10-19 制备负载型催化剂的方法及该催化剂用于酯化植物油中游离脂肪酸的用途

Country Status (6)

Country Link
US (1) US20130237718A1 (zh)
EP (2) EP2446965A1 (zh)
JP (1) JP2014504945A (zh)
CN (1) CN103249483A (zh)
BR (1) BR112013010907A2 (zh)
WO (1) WO2012059323A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877958A (zh) * 2014-03-12 2014-06-25 南京大学昆山创新研究院 用于制备生物柴油的催化剂及制备方法和生物柴油的制备工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2016004133A (es) * 2016-03-31 2017-09-29 Inst Mexicano Del Petróleo Uso de catalizadores acidos heterogeneos a base de sales metalicas mxtas para producir biodiesel.
JP6770554B2 (ja) 2018-07-23 2020-10-14 国立大学法人東京農工大学 バイオ燃料の製造方法
WO2021106619A1 (ja) * 2019-11-29 2021-06-03 富士通商株式会社 流通式反応装置を用いたバイオ燃料の製造方法
JP7045775B2 (ja) * 2019-11-29 2022-04-01 国立大学法人東京農工大学 流通式反応装置を用いたバイオ燃料の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066839A (zh) * 1991-03-25 1992-12-09 Dsm有限公司 制备烷酮和/或烷醇的方法
CN1317508A (zh) * 2000-04-04 2001-10-17 三井化学株式会社 聚有机硅氧烷催化剂
US20050107624A1 (en) * 2003-10-16 2005-05-19 Lin Victor S. Use of functionalized mesoporous silicates to esterify fatty acids and transesterify oils
CN101263218A (zh) * 2005-09-16 2008-09-10 法国石油公司 由甘油三酸酯和醇生产脂肪酸乙酯的方法
CN101405325A (zh) * 2006-02-10 2009-04-08 磷化有限公司 取代的有机聚硅氧烷及其用途
CN101705153A (zh) * 2009-11-18 2010-05-12 广西科学院 高酸价废弃油脂制备生物柴油的方法
CN101903509A (zh) * 2007-12-19 2010-12-01 拜尔技术服务有限责任公司 用于制备脂肪酸烷基酯的方法
CN101918523A (zh) * 2007-11-05 2010-12-15 国立大学法人东京工业大学 采用固体酸催化剂的脂肪酸单酯化物的制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1527598A (en) * 1974-11-12 1978-10-04 Dow Corning Ltd Catalysts and carriers therefor
NZ195265A (en) * 1979-10-27 1983-05-10 British Petroleum Co Catalytic esterification of carboxylic acids or anhydrides thereof
DE3314742A1 (de) 1983-04-23 1984-10-25 Degussa Ag, 6000 Frankfurt An der oberflaeche modifizierte natuerliche oxidische oder silikatische fuellstoffe, ein verfahren zur herstellung und deren verwendung
JP3291754B2 (ja) 1992-04-13 2002-06-10 住友化学工業株式会社 カルボン酸エステルの製造方法
TW419458B (en) * 1994-07-21 2001-01-21 Mitsui Chemicals Inc Process for preparing bisphenol A
US5525126A (en) 1994-10-31 1996-06-11 Agricultural Utilization Research Institute Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst
DE19540497A1 (de) 1995-10-31 1997-05-07 Degussa Sulfonat- und mercaptogruppenhaltige anorganische Trägermaterialien, Verfahren zu ihrer Herstellung und Verwendung als Katalysatoren
FR2752242B1 (fr) 1996-08-08 1998-10-16 Inst Francais Du Petrole Procede de fabrication d'esters a partir d'huiles vegetales ou animales et d'alcools
DE19635769A1 (de) 1996-09-04 1998-03-05 Degussa Verfahren zur Herstellung von Carbonsäureestern und dafür geeignete Katalysatoren

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066839A (zh) * 1991-03-25 1992-12-09 Dsm有限公司 制备烷酮和/或烷醇的方法
CN1317508A (zh) * 2000-04-04 2001-10-17 三井化学株式会社 聚有机硅氧烷催化剂
US20050107624A1 (en) * 2003-10-16 2005-05-19 Lin Victor S. Use of functionalized mesoporous silicates to esterify fatty acids and transesterify oils
CN101263218A (zh) * 2005-09-16 2008-09-10 法国石油公司 由甘油三酸酯和醇生产脂肪酸乙酯的方法
CN101405325A (zh) * 2006-02-10 2009-04-08 磷化有限公司 取代的有机聚硅氧烷及其用途
CN101918523A (zh) * 2007-11-05 2010-12-15 国立大学法人东京工业大学 采用固体酸催化剂的脂肪酸单酯化物的制造方法
CN101903509A (zh) * 2007-12-19 2010-12-01 拜尔技术服务有限责任公司 用于制备脂肪酸烷基酯的方法
CN101705153A (zh) * 2009-11-18 2010-05-12 广西科学院 高酸价废弃油脂制备生物柴油的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877958A (zh) * 2014-03-12 2014-06-25 南京大学昆山创新研究院 用于制备生物柴油的催化剂及制备方法和生物柴油的制备工艺
CN103877958B (zh) * 2014-03-12 2017-06-13 南京大学昆山创新研究院 用于制备生物柴油的催化剂及制备方法和生物柴油的制备工艺

Also Published As

Publication number Publication date
JP2014504945A (ja) 2014-02-27
BR112013010907A2 (pt) 2016-09-13
US20130237718A1 (en) 2013-09-12
WO2012059323A1 (en) 2012-05-10
EP2446965A1 (en) 2012-05-02
EP2635377A1 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
Rattanaphra et al. Simultaneous conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia
Zhang et al. Biodiesel production by esterification of oleic acid over brønsted acidic ionic liquid supported onto Fe-incorporated SBA-15
Song et al. Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes
Melero et al. Biodiesel production from crude palm oil using sulfonic acid-modified mesostructured catalysts
Xie et al. Heterogeneous CaO–MoO3–SBA-15 catalysts for biodiesel production from soybean oil
Brahmkhatri et al. Biodiesel production by esterification of free fatty acids over 12-tungstophosphoric acid anchored to MCM-41
Zu et al. CaO supported on porous carbon as highly efficient heterogeneous catalysts for transesterification of triacetin with methanol
Yu et al. Phosphotungstic acid and propylsulfonic acid bifunctionalized ordered mesoporous silica: A highly efficient and reusable catalysts for esterification of oleic acid
Kong et al. Esterification of glycerol with oleic acid over hydrophobic zirconia-silica acid catalyst and commercial acid catalyst: optimization and influence of catalyst acidity
CN103249483A (zh) 制备负载型催化剂的方法及该催化剂用于酯化植物油中游离脂肪酸的用途
CN1858160A (zh) 采用纳米固体酸或碱催化制备生物柴油的方法
Essamlali et al. Natural phosphate supported titania as a novel solid acid catalyst for oleic acid esterification
Duan et al. Water-tolerant heteropolyacid on magnetic nanoparticles as efficient catalysts for esterification of free fatty acid
Singh et al. Selective green esterification and oxidation of glycerol over 12-tungstophosphoric acid anchored to MCM-48
Song et al. Intriguing catalyst (CaO) pretreatment effects and mechanistic insights during propylene carbonate transesterification with methanol
Wang et al. Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst
Kong et al. Development of a novel hydrophobic ZrO2–SiO2 based acid catalyst for catalytic esterification of glycerol with oleic acid
Xie et al. Production of medium-chain structured lipids using dual acidic ionic liquids supported on Fe3O4@ SiO2 composites as magnetically recyclable catalysts
Chen et al. Effect of the formation of diglycerides/monoglycerides on the kinetic curve in oil transesterification with methanol catalyzed by calcium oxide
Xie et al. Phenylsulfonic acid functionalized mesoporous SBA-15 silica: A heterogeneous catalyst for removal of free fatty acids in vegetable oil
CN111375431A (zh) 一种固体酸催化剂及其制备方法和在酯化酯交换反应中的应用
dos Santos et al. Methanolysis of soybean oil using tungsten-containing heterogeneous catalysts
CA2964273C (en) Heterogeneous catalyst for transesterification and method of preparing same
Chen et al. Efficient synthesis of biodiesel over well-dispersed sulfated mesoporous SiO2 colloidal spheres
US9062081B1 (en) Preparation of phenol- or thiophenyl-sulfonic acid functionalized solid acids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C05 Deemed withdrawal (patent law before 1993)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130814