CN103234326A - 应用于基荷型天然气液化工厂的双混合冷剂液化系统 - Google Patents

应用于基荷型天然气液化工厂的双混合冷剂液化系统 Download PDF

Info

Publication number
CN103234326A
CN103234326A CN2013101577562A CN201310157756A CN103234326A CN 103234326 A CN103234326 A CN 103234326A CN 2013101577562 A CN2013101577562 A CN 2013101577562A CN 201310157756 A CN201310157756 A CN 201310157756A CN 103234326 A CN103234326 A CN 103234326A
Authority
CN
China
Prior art keywords
heat exchanger
liquefaction
gas
exchanger device
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101577562A
Other languages
English (en)
Other versions
CN103234326B (zh
Inventor
陈杰
单彤文
黄虎龙
花亦怀
浦晖
罗婷婷
程昊
高玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC Gas and Power Group Co Ltd
Original Assignee
China National Offshore Oil Corp CNOOC
CNOOC Gas and Power Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, CNOOC Gas and Power Group Co Ltd filed Critical China National Offshore Oil Corp CNOOC
Priority to CN201310157756.2A priority Critical patent/CN103234326B/zh
Publication of CN103234326A publication Critical patent/CN103234326A/zh
Application granted granted Critical
Publication of CN103234326B publication Critical patent/CN103234326B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明公开了一种应用于基荷型天然气液化工厂的双混合冷剂液化系统。它包括预冷换热器、液化换热器、预冷混合冷剂制冷循环机构和液化混合冷剂制冷循环机构;本发明中预冷部分采用混合制冷剂,较现有丙烷预冷工艺换热效率较高,且换热器数量较少,流程结构简单;预冷换热器和深冷换热器均采用绕管式换热器,应对恶劣操作工况的适应能力强,使用寿命长;预冷换热采用三级节流,较现有两级节流有效降低换热功耗;低温BOG直接与原料气进行换热,较现有工艺多采用BOG与冷剂进行换热提高了换热效率。

Description

应用于基荷型天然气液化工厂的双混合冷剂液化系统
技术领域
本发明涉及一种应用于基荷型天然气液化工厂的双混合冷剂液化系统,属于天然气液化技术领域。
背景技术
目前国内常见天然气液化技术多为氮膨胀和单级混合冷剂循环制冷工艺,只能适用于规模较小的LNG装置,通常采用板翅式换热器,对高压气源适应性不高,且使用寿命较短。国外用于大型天然气液化工厂的液化工艺多采用丙烷预冷混合制冷剂液化工艺(C3/MR)或双混合冷剂制冷液化工艺(DMR),前者(C3/MR)预冷换热器通常采用浮头式换热器,对于多股流换热需要设置的换热器数量较多,从而造成流程结构复杂;后者(DMR)预冷和深冷换热器多采用两级制冷换热,换热效率较低。此外,国外DMR工艺通常采用BOG深冷冷剂进行换热,冷却后的深冷冷剂节流后再与原料气进行换热,较本工艺采用BOG直接与原料气换热方式换热效率较低。
发明内容
本发明的目的是提供一种应用于基荷型天然气液化工厂的双混合冷剂液化系统,本发明提供的液化系统的适应性高、安全可靠,稳定性强,考虑到了大型绕管式换热器国产化后的工程应用,减少了设备投资成本,可提高液化工艺的液化能力。
本发明所提供的一种应用于基荷型天然气液化工厂的双混合冷剂液化系统,它包括预冷换热器、液化换热器、预冷混合冷剂制冷循环机构和液化混合冷剂制冷循环机构;
所述预冷混合冷剂制冷循环机构包括依次连通的缓冲罐Ⅰ、一级预冷冷剂压缩机、预冷冷剂冷却器Ⅰ、气液分离器Ⅰ、二级预冷冷剂压缩机、预冷冷剂冷却器Ⅱ和气液分离器Ⅱ;所述缓冲罐Ⅰ与所述预冷换热器的底部相连通;所述气液分离器Ⅰ的液相出口与所述预冷换热器的底部相连通;所述气液分离器Ⅱ的液相出口与所述预冷换热器的底部相连通;
所述气液分离器Ⅱ的气相出口通过管路Ⅰ与所述预冷换热器的底部相连通,所述管路Ⅰ延伸至所述预冷换热器的顶部,然后从所述顶部引出后经节流与所述预冷换热器相连通;
所述气液分离器Ⅱ的液相出口通过管路Ⅱ与所述预冷换热器的底部相连通,所述管路Ⅱ延伸至所述预冷换热器的中部,然后从所述中部引出后经节流与所述预冷换热器相连通;
所述液化混合冷剂制冷循环机构包括依次连通的缓冲罐Ⅱ、液化冷剂压缩机和液化冷剂冷却器;所述缓冲罐Ⅱ与所述预冷换热器的底部相连通;所述液化冷剂冷却器的出口通过管路Ⅲ与所述预冷换热器的底部相连通,所述管路Ⅲ从所述预冷换热器的顶部引出后与气液分离器Ⅲ相连通;所述气液分离器Ⅲ的气相出口通过管路Ⅳ与所述液化换热器的底部相连通,所述管路Ⅳ延伸至所述液化换热器的顶部,然后从所述顶部引出后经节流与所述液化换热器相连通;所述气液分离器Ⅲ的液相出口通过管路Ⅴ与所述液化换热器的底部相连通,所述管路Ⅴ延伸至所述液化换热器的中部,然后从所述中部引出后经节流与所述液化换热器相连通。
上述的双混合冷剂液化系统中,所述预冷换热器和所述液化冷却器均可为绕管式换热器。
使用本发明的双混合冷剂液化系统时,首先预处理合格后的天然气(是指经过脱硫、脱碳、脱汞、脱水后满足基荷型天然气液化工厂对进入液化单元天然气的质量要求)经预冷换热器预冷后,进入液化换热器进一步降温,最后经过节流进入LNG储罐,储罐中蒸发气经过换热器为预冷后的天然气提供冷量。预冷和液化混合冷剂分别通过独立的压缩机循环系统将混合冷剂压缩、冷却后引入预冷和液化换热器为天然气提供冷量。
本发明可适用于年产LNG规模在100万吨以上的天然气液化工厂。
本发明具有如下优点:
1、预冷部分采用混合制冷剂,较现有丙烷预冷工艺换热效率较高,且换热器数量较少,流程结构简单;
2、预冷换热器和深冷换热器均采用绕管式换热器,应对恶劣操作工况的适应能力强,使用寿命长;
3、预冷换热采用三级节流,较现有两级节流有效降低换热功耗;低温BOG直接与原料气进行换热,较现有工艺多采用BOG与冷剂进行换热提高了换热效率。
附图说明
图1为本发明提供的双混合冷剂液化系统的结构示意图。
图2为本发明使用状态的示意图。
图中各标记如下:1预冷换热器、2液化换热器、3缓冲罐Ⅰ、4一级预冷冷剂压缩机、5预冷冷剂冷却器Ⅰ、6气液分离器Ⅰ、7二级预冷冷剂压缩机、8预冷冷剂冷却器Ⅱ、9气液分离器Ⅱ、10管路Ⅰ、11管路Ⅱ、12缓冲罐Ⅱ、13液化冷剂压缩机、14液化冷剂冷却器、15管路Ⅲ、16气液分离器Ⅲ、17管路Ⅳ、18管路Ⅴ、19原料气冷却器。
具体实施方式
下面结合附图对本发明做进一步说明,但本发明并不局限于以下实施例。
实施例1、
如图1所示,本发明提供的双混合冷剂液化系统包括预冷换热器1、液化换热器2、预冷混合冷剂制冷循环机构和液化混合冷剂制冷循环机构;预冷换热器1和液化换热器2均为绕管式换热器。其中预冷混合冷剂制冷循环机构包括依次连通的缓冲罐Ⅰ3、一级预冷冷剂压缩机4、预冷冷剂冷却器Ⅰ5、气液分离器Ⅰ6、二级预冷冷剂压缩机7、预冷冷剂冷却器Ⅱ8和气液分离器Ⅱ9;该缓冲罐Ⅰ3与预冷换热器1的底部相连通;气液分离器Ⅰ6的液相出口与预冷换热器1的底部相连通;气液分离器Ⅱ9的液相出口与预冷换热器1的底部相连通。气液分离器Ⅱ9的气相出口通过管路Ⅰ10与预冷换热器1的底部相连通,该管路Ⅰ10延伸至预冷换热器1的顶部,然后从该顶部引出后经节流与预冷换热器1相连通;气液分离器Ⅱ9的液相出口通过管路Ⅱ11与预冷换热器1的底部相连通,该管路Ⅱ11延伸至预冷换热器1的中部,然后从该中部引出后经节流与预冷换热器1相连通;其中液化混合冷剂制冷循环机构包括依次连通的缓冲罐Ⅱ12、液化冷剂压缩机13和液化冷剂冷却器14;该缓冲罐Ⅱ12与预冷换热器1的底部相连通;液化冷剂冷却器14的出口通过管路Ⅲ15与预冷换热器1的底部相连通,管路Ⅲ15从预冷换热器1的顶部引出后与气液分离器Ⅲ16相连通;该气液分离器Ⅲ16的气相出口通过管路Ⅳ17与液化换热器2的底部相连通,该管路Ⅳ17延伸至液化换热器2的顶部,然后从该顶部引出后经节流与液化换热器2相连通;气液分离器Ⅲ16的液相出口通过管路Ⅴ18与液化换热器2的底部相连通,该管路Ⅴ18延伸至液化换热器2的中部,然后从该中部引出后经节流与液化换热器2相连通。
使用上述的液化系统对某海外某气田的原料天然气液化,原料气组分为98.68%甲烷,0.33%乙烯,0.27%丙烷,丁烷0.16%,异丁烷0.22%,0.11%异戊烷、0.11%戊烷和0.11%氮气。其中预冷混合冷剂由13.86%甲烷、40.39%乙烷、18.77%丙烷、6.55%异丁烷、6.11%丁烷和14.31%异戊烷组成;液化混合冷剂由42.86%甲烷、41.07%乙烷、5.36%丙烷和10.71%氮气组成,均为质量份数。可按照下述步骤进行:
预处理合格的天然气(7.9MPag,40℃)首先进入预冷换热器1中从下向上流动,冷却至-57℃后抽出分离成两股,其中一股与LNG储罐中的BOG换热冷却后节流至0.15MPag、-160℃,另一股进入液化换热器2中继续冷却,冷却至-150℃后抽出节流至0.15MPag、-160℃,这两股天然气混合后进入LNG储罐。
从预冷换热器1换热后的气相混合冷剂进入压缩机(一级预冷冷剂压缩机4和二级预冷冷剂压缩机7)经两级压缩至1.9MPag后,进入冷却器冷却至40℃,经过气液分离器Ⅰ6分成气液相分别从底部进入预冷换热器1的换热管中从下向上流动,液相混合冷剂从预冷换热器1的中部抽出节流后返回预冷换热器1的壳程,气相混合冷剂从换热器顶部抽出节流后返回换热器壳程,分别从上向下流动蒸发为预冷换热器1提供冷量。蒸发后的预冷冷剂(0.19MPag、34.25℃)进入压缩机进行两级压缩和冷却,完成一个循环。
从液化换热器2换热后的气相混合冷剂进入液化冷剂压缩机13压缩至3.95MPag,冷却至40℃后进入预冷换热器1中,预冷至-57℃抽出并分离成气液相,分别从液化换热器2的底部进入液化换热器2的换热管中从下向上流动,其中液相混合冷剂从液化换热器2的中部抽出节流后返回液化换热器2的壳程,气相混合冷剂从液化换热器2的顶部抽出节流后返回液化换热器2的壳程,分别从上向下流动蒸发为换热器提供冷量。蒸发后的液化冷剂(0.24MPag-64.38℃)进入压缩机进行两级压缩和冷却,完成一个循环。
实施例2、
使用实施例1中的液化系统对GB19204中第三种典型LNG组分的原料气液化,
原料气组分为甲烷87.2%、乙烷8.61%、丙烷2.74%、丁烷0.65%、异丁烷0.42%、戊烷0.02%和氮气0.36%;所用到的预冷混合冷剂和液化混合冷剂的组成。
具体步骤与实施例1中基本相同,因为原料气组分中重组分增加,因此预冷混合冷剂制冷循环机构的出口需要对原料气中冷凝出的重烃进行脱除,经过计算,预冷、液化单元的混合冷剂组分配比需要优化。
经过预冷混合冷剂制冷循环机构原料气中脱除重烃量为20t/h。流程中其余参数与实例1相同,得到的产品液化率为91%。
实施例3、
使用实施例1中的液化系统对某寒冷海域将一定组分的原料天然气液化,用于冷却的海水温度为13℃,如图2所示,由于冷媒介质温度比较低,在预冷换热器1进口原料气增设了原料气冷却器19将原料气进行冷却,此外预冷、液化混合冷剂循环中的冷却器出口温度降低至25℃。
原料气组分为98.68%甲烷,0.33%乙烯,0.27%丙烷,丁烷0.16%,异丁烷0.22%,0.11%异戊烷、0.11%戊烷、0.11%氮气。主要实施步骤如下:
预处理合格的天然气(7.9MPag,25℃)首先进入预冷换热器1中从下向上流动,冷却至-60℃后抽出分离成两股,其中一股与LNG储罐中的BOG换热冷却后节流至0.15MPag、-160℃,另一股进入液化换热器2中继续冷却,冷却至-150℃后抽出节流至0.15MPag、-160℃,这两股天然气混合后进入LNG储罐。
从预冷换热器1换热后的气相混合冷剂进入压缩机(一级预冷冷剂压缩机4和二级预冷冷剂压缩机7)经两级压缩至1.9MPag后,进入冷却器冷却至25℃,经过气液分离器Ⅰ6分成气液相分别从底部进入预冷换热器1的换热管中从下向上流动,液相冷剂从预冷换热器1中部抽出节流后返回换热器壳程,气相冷剂从预冷换热器1顶部抽出节流后返回换热器壳程,分别从上向下流动蒸发为换热器提供冷量。蒸发后的预冷冷剂(0.19MPag、22.06℃)进入压缩机进行两级压缩和冷却,完成一个循环。
从液化换热器2换热后的气相冷剂进入液化冷剂压缩机13压缩至3.95MPag,冷却至25℃后进入预冷换热器1,预冷至-60℃抽出并分离成气液相,分别从底部进入液化换热器2的换热管中从下向上流动,液相冷剂从液化换热器2中部抽出节流后返回换热器壳程,气相冷剂从液化换热器2顶部抽出节流后返回换热器壳程,分别从上向下流动蒸发为换热器提供冷量。蒸发后的液化冷剂(0.24MPag-62.98℃)进入压缩机进行两级压缩和冷却,完成一个循环。
本实施实例采用的预冷混合冷剂由2.5%甲烷、47.9%乙烷、22.7%丙烷、6.25%异丁烷、6.25%丁烷和14.4%异戊烷组成;液化混合冷剂由42.6%甲烷、39.7%乙烷、4.0%丙烷和13.7%氮气组成。

Claims (2)

1.一种应用于基荷型天然气液化工厂的双混合冷剂液化系统,其特征在于:所述液化系统包括预冷换热器、液化换热器、预冷混合冷剂制冷循环机构和液化混合冷剂制冷循环机构;
所述预冷混合冷剂制冷循环机构包括依次连通的缓冲罐Ⅰ、一级预冷冷剂压缩机、预冷冷剂冷却器Ⅰ、气液分离器Ⅰ、二级预冷冷剂压缩机、预冷冷剂冷却器Ⅱ和气液分离器Ⅱ;所述缓冲罐Ⅰ与所述预冷换热器的底部相连通;所述气液分离器Ⅰ的液相出口与所述预冷换热器的底部相连通;所述气液分离器Ⅱ的液相出口与所述预冷换热器的底部相连通;
所述气液分离器Ⅱ的气相出口通过管路Ⅰ与所述预冷换热器的底部相连通,所述管路Ⅰ延伸至所述预冷换热器的顶部,然后从所述顶部引出后经节流与所述预冷换热器相连通;
所述气液分离器Ⅱ的液相出口通过管路Ⅱ与所述预冷换热器的底部相连通,所述管路Ⅱ延伸至所述预冷换热器的中部,然后从所述中部引出后经节流与所述预冷换热器相连通;
所述液化混合冷剂制冷循环机构包括依次连通的缓冲罐Ⅱ、液化冷剂压缩机和液化冷剂冷却器;所述缓冲罐Ⅱ与所述预冷换热器的底部相连通;所述液化冷剂冷却器的出口通过管路Ⅲ与所述预冷换热器的底部相连通,所述管路Ⅲ从所述预冷换热器的顶部引出后与气液分离器Ⅲ相连通;所述气液分离器Ⅲ的气相出口通过管路Ⅳ与所述液化换热器的底部相连通,所述管路Ⅳ延伸至所述液化换热器的顶部,然后从所述顶部引出后经节流与所述液化换热器相连通;所述气液分离器Ⅲ的液相出口通过管路Ⅴ与所述液化换热器的底部相连通,所述管路Ⅴ延伸至所述液化换热器的中部,然后从所述中部引出后经节流与所述液化换热器相连通。
2.根据权利要求1所述的双混合冷剂液化系统,其特征在于:所述预冷换热器和所述液化冷却器均为绕管式换热器。
CN201310157756.2A 2013-05-02 2013-05-02 应用于基荷型天然气液化工厂的双混合冷剂液化系统 Active CN103234326B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310157756.2A CN103234326B (zh) 2013-05-02 2013-05-02 应用于基荷型天然气液化工厂的双混合冷剂液化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310157756.2A CN103234326B (zh) 2013-05-02 2013-05-02 应用于基荷型天然气液化工厂的双混合冷剂液化系统

Publications (2)

Publication Number Publication Date
CN103234326A true CN103234326A (zh) 2013-08-07
CN103234326B CN103234326B (zh) 2015-11-25

Family

ID=48882378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310157756.2A Active CN103234326B (zh) 2013-05-02 2013-05-02 应用于基荷型天然气液化工厂的双混合冷剂液化系统

Country Status (1)

Country Link
CN (1) CN103234326B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291710A (zh) * 1999-10-12 2001-04-18 气体产品与化学公司 利用混合制冷剂在中间温度下部分冷凝的作用的气体液化方法
WO2008009721A2 (en) * 2006-07-21 2008-01-24 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
WO2008019999A2 (en) * 2006-08-14 2008-02-21 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
CN201463463U (zh) * 2009-08-13 2010-05-12 山东绿能燃气实业有限责任公司 三段混合制冷天然气液化装置
CN101893367A (zh) * 2010-08-13 2010-11-24 唐建峰 一种利用混合制冷剂液化天然气的方法
CN203310202U (zh) * 2013-05-02 2013-11-27 中国海洋石油总公司 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291710A (zh) * 1999-10-12 2001-04-18 气体产品与化学公司 利用混合制冷剂在中间温度下部分冷凝的作用的气体液化方法
WO2008009721A2 (en) * 2006-07-21 2008-01-24 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
WO2008019999A2 (en) * 2006-08-14 2008-02-21 Shell Internationale Research Maatschappij B.V. Method and apparatus for cooling a hydrocarbon stream
CN201463463U (zh) * 2009-08-13 2010-05-12 山东绿能燃气实业有限责任公司 三段混合制冷天然气液化装置
CN101893367A (zh) * 2010-08-13 2010-11-24 唐建峰 一种利用混合制冷剂液化天然气的方法
CN203310202U (zh) * 2013-05-02 2013-11-27 中国海洋石油总公司 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统

Also Published As

Publication number Publication date
CN103234326B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN101893367A (zh) 一种利用混合制冷剂液化天然气的方法
CN102564059A (zh) 双级多组分混合冷剂制冷天然气液化系统及方法
CN102538390B (zh) 一种天然气液化系统及其方法
CN102538391B (zh) 多级单组分制冷天然气液化方法
CN103438661A (zh) 一种低能耗的新型天然气液化工艺
CN102927791A (zh) 带预冷的双复合冷剂制冷系统及方法
CN102748918A (zh) 双级混合冷剂循环天然气液化系统
CN203310202U (zh) 一种应用于基荷型天然气液化工厂的双混合冷剂液化系统
CN104807287A (zh) 一种小型天然气液化制冷系统及方法
CN202813975U (zh) 一种基于缠绕管式换热器的非常规天然气液化系统
CN104019626B (zh) 一种混合冷剂二级制冷制备液化天然气的方法及装置
CN103216998A (zh) 一种单循环混合冷剂压缩与输送的方法和系统
CN102564057A (zh) 一种应用于基荷型天然气液化工厂的丙烷预冷混合冷剂液化系统
KR20140003260A (ko) 천연가스 액화시스템 및 액화 방법
CN102628634B (zh) 三循环复叠式制冷天然气液化系统及方法
CN100441990C (zh) 利用空分制冷系统的小型天然气液化装置
CN102620460B (zh) 带丙烯预冷的混合制冷循环系统及方法
CN103175379B (zh) 利用管道压力能制备液化天然气的装置及使用方法
CN204630250U (zh) 一种小型天然气液化制冷系统
CN101614464A (zh) 高低温氮气双膨胀天然气液化方法
CN102645084B (zh) 一种混合冷剂三级制冷制备液化天然气的方法及装置
CN110186251A (zh) 一种适用于超大规模的三循环天然气液化装置及方法
CN102564061B (zh) 一种应用于基荷型天然气液化工厂的双级混合冷剂循环液化系统
CN102304403B (zh) 一种丙烯预冷混合冷剂液化天然气的方法及装置
CN202692600U (zh) 一种双级混合冷剂循环天然气液化系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee after: CNOOC Gas & Power Group

Patentee after: China Offshore Oil Group Co., Ltd.

Address before: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee before: CNOOC Gas & Power Group

Patentee before: China National Offshore Oil Corporation