CN103228319A - 粒子射线照射装置、粒子射线治疗装置以及数据显示程序 - Google Patents

粒子射线照射装置、粒子射线治疗装置以及数据显示程序 Download PDF

Info

Publication number
CN103228319A
CN103228319A CN2010800703312A CN201080070331A CN103228319A CN 103228319 A CN103228319 A CN 103228319A CN 2010800703312 A CN2010800703312 A CN 2010800703312A CN 201080070331 A CN201080070331 A CN 201080070331A CN 103228319 A CN103228319 A CN 103228319A
Authority
CN
China
Prior art keywords
irradiation position
error
irradiation
value
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800703312A
Other languages
English (en)
Other versions
CN103228319B (zh
Inventor
岩田高明
鉾馆俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN103228319A publication Critical patent/CN103228319A/zh
Application granted granted Critical
Publication of CN103228319B publication Critical patent/CN103228319B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N2005/1074Details of the control system, e.g. user interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus

Abstract

本发明的目的在于得到一种粒子射线照射装置,该粒子射线照射装置能够将和带电粒子束的照射位置相关联的照射位置关联值、与照射位置关联值误差相对应地进行显示。该粒子射线照射装置包括数据处理装置(19),该数据处理装置(19)将照射位置关联值误差与实际照射位置关联值相对应地在显示部(43)上显示,该照射位置关联值误差是和带电粒子束(1)的照射位置相关联的实际照射位置关联值的、相对于和目标照射位置相关联的目标照射位置关联值的误差,数据处理装置(19)具有运算部(42),该运算部(42)在目标照射位置关联值的坐标上显示目标值显示图形(23),在将利用变形系数对照射位置关联值误差进行运算后的坐标加上目标照射位置关联值而得到的坐标、即显示坐标上显示测定值显示图形(24),并显示将测定值显示图形(24)与目标值显示图形(23)相连接的线段(25),其中,该目标值显示图形(23)表示目标照射位置关联值,该测定值显示图形(24)表示实际照射位置关联值。

Description

粒子射线照射装置、粒子射线治疗装置以及数据显示程序
技术领域
本发明涉及一种使用粒子射线来治疗癌症等的粒子射线照射装置以及粒子射线治疗装置。
背景技术
粒子射线治疗装置是将带电粒子束照射到癌症等的患部、来进行治疗的医疗设备。粒子射线治疗装置所需要的功能在于,将治疗所需的量的剂量给予癌症等的患部,并形成照射野,使得尽量不将剂量照射到其他正常组织上。对于形成照射野的方法,存在有宽射束照射法以及扫描照射法这两大类。
关于宽射束照射法,是首先利用散射体等来扩大照射野、再通过准直器及团块等根据患部来形成照射野的方法。由于通过临床试验确认了宽射束照射法的安全性,因此宽射束照射法在现有的粒子射线治疗装置中应用最广泛。然而,由于每个患者的患部形状有所不同,或者即使同一患者随着治疗的进程而患部会缩小,因此此时必须每次制备团块,从这一情况来看,希望一种自由度更高的照射野形成方法。因而,近年来,积极进行将扫描照射法应用于粒子射线治疗装置中的研究开发。
所谓的扫描照射法,是指根据患部的形状、来使细束状的细小的带电粒子束进行三维扫描以进行照射的方法。而特别是所谓的束点扫描法,是指重复地将该细束状的细小的带电粒子束进行照射及停止照射、从而进行点描绘式照射而成束点状的方法。另外,特别是所谓的光栅扫描法,是指在保持将细束状的细小的带电粒子束进行照射的状态下进行扫描、从而进行一笔画式照射的方法。无论在哪种情况下,对细束状的细小的带电粒子束的扫描均使用被称作为扫描电磁铁(以下称作“扫描电磁铁”)的、高速地使磁场发生变化的电磁铁。
对于扫描电磁铁的扫描精度、即粒子射线治疗装置的照射精度,当然需要对扫描电磁铁进行适当的控制。然而,即使一开始就对其进行调整,粒子射线治疗装置的照射精度也会随着时间的流逝而产生误差。因此,希望显示照射位置精度,使得一眼就能明白其趋势,从而能够适当地维持粒子射线治疗装置的照射精度,并对其进行维护。专利文献1中,公开了一种带电粒子束照射系统,该系统基于来自位置监视器的检测信号来计算射束的照射位置的偏差(与目标值的差值),并判断该计算出的照射位置的偏差是否超过容许值,例如在判断为照射位置的偏差超过容许值的情况下,对输出部输出联锁信号及显示信号,并中止射束照射。
现有技术文献
专利文献
专利文献1:日本专利特开2009-39219号公报(第0043段落至第0050段落)
发明内容
发明所要解决的技术问题
专利文献1中的带电粒子束照射系统虽然能够基于来自位置监视器的检测信号来计算射束的照射位置的偏差(与目标值的差值),并判断该计算出的照射位置的偏差是否超过容许值,在判断为照射位置的偏差超过容许值的情况下,中止射束照射,然而其没有显示带电粒子束照射系统的照射位置精度而使得一眼就能明白其趋势的方法,故不具备该功能。特别是,在以使射束进行扫描的方式进行照射的类型的装置中,要能够将照射位置与照射位置误差相对应地进行显示,或者能够将和照射位置相关联的照射位置关联值与照射位置关联值误差相对应地进行显示,这对于维持照射精度、以及维护来说至关重要。
所谓的“和照射位置相关联的照射位置关联值”,未必是照射位置本身,而是指和照射位置有一对一关系的、能根据该值导出照射位置的值。例如,可以是位置监视器的输出值、或安装在扫描电磁铁上的磁场传感器的值等。另外,所谓的照射位置关联值误差,是指照射位置关联值的相对于目标照射位置关联值的误差。这里,所谓的目标照射位置关联值,未必是目标照射位置本身,而是指根据与上述照射位置和照射位置关联值相同的相关联关系、从而和目标照射位置具有一对一关系的、能根据该值导出目标照射位置的值。
本发明鉴于解决上述问题,其目的在于提供一种粒子射线照射装置,该粒子射线照射装置能够将照射位置与照射位置误差相对应地进行显示,或者能够将和带电粒子束的照射位置相关联的照射位置关联值与照射位置关联值误差相对应地进行显示。
解决技术问题所采用的技术方案
包括:检测器,该检测器检测和带电粒子束的照射位置相关联的实际照射位置关联值;以及数据处理装置,该数据处理装置将照射位置关联值误差与实际照射位置关联值相对应地在显示部上显示,该照射位置关联值误差是实际照射位置关联值的、相对于目标照射位置关联值的误差,该目标照射位置关联值和带电粒子束的目标照射位置相关联,数据处理装置具有:输入部,该输入部输入实际照射位置关联值以及目标照射位置关联值;以及运算部,该运算部在和带电粒子束的照射区域相关联的照射区域关联区域上、显示表示实际照射位置关联值的测定值显示图形以及表示目标照射位置关联值的目标值显示图形时,在目标照射位置关联值的坐标上显示目标值显示图形,在将利用变形系数对照射位置关联值误差进行运算后的坐标加上目标照射位置关联值而得到的坐标、即显示坐标上显示测定值显示图形,并显示将测定值显示图形与目标值显示图形相连接的线段。
另外,包括:检测器,该检测器检测和带电粒子束的照射位置相关联的实际照射位置关联值;以及数据处理装置,该数据处理装置基于实际照射位置关联值来计算带电粒子束的实际照射位置,并将实际照射位置的相对于带电粒子束的目标照射位置的误差即照射位置误差、与实际照射位置相对应地在显示部上显示,数据处理装置具有:输入部,该输入部输入实际照射位置关联值以及目标照射位置;以及运算部,该运算部在带电粒子束的照射区域上显示表示目标照射位置的目标值显示图形以及表示实际照射位置的测定值显示图形时,在目标照射位置的坐标上显示目标值显示图形,在将利用变形系数对照射位置误差进行运算后的坐标加上目标照射位置而得到的坐标、即显示坐标上显示测定值显示图形,并显示将测定值显示图形与目标值显示图形相连接的线段。
发明效果
本发明所涉及的粒子射线照射装置能够将和照射位置相关联的照射位置关联值、与照射位置关联值误差相对应,从而显示出带电粒子束的照射位置精度。另外,还能够将照射位置与照射位置误差相对应,从而显示出带电粒子束的照射位置精度。因此,能够直观上易于察觉,容易掌握将和带电粒子束的照射位置相关联的照射位置关联值与照射位置关联值误差相对应后的照射位置精度、将带电粒子束的实际照射位置与照射位置误差相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
附图说明
图1是本发明的实施方式1的粒子射线照射装置的简要结构图。
图2是表示由图1的数据处理装置所显示的枕形(pincushion)显示的图。
图3是表示用于与图2的枕形显示进行比较的照射位置的图。
图4是表示由图1的数据处理装置所显示的X方向误差的时间序列显示的图。
图5是表示由图1的数据处理装置所显示的Y方向误差的时间序列显示的图。
图6是表示由图1的数据处理装置所显示的误差矢量显示的图。
图7是表示本发明的实施方式2的第1枕形显示的图。
图8是表示本发明的实施方式2的第2枕形显示的图。
图9是本发明的实施方式3的粒子射线照射装置的简要结构图。
图10是表示由图9的数据处理装置所显示的枕形显示的图。
图11是表示由图9的数据处理装置所显示的X方向误差的时间序列显示的图。
图12是表示由图9的数据处理装置所显示的Y方向误差的时间序列显示的图。
图13是表示由图9的数据处理装置所显示的误差矢量显示的图。
图14是表示本发明的实施方式4的第1枕形显示的图。
图15是表示本发明的实施方式4的第2枕形显示的图。
图16是本发明的实施方式5的数据显示程序的流程图。
图17是表示本发明的实施方式6的粒子射线治疗装置的结构图。
图18是本发明的实施方式6的粒子射线治疗装置的控制框图。
实施方式
实施方式1
图1是本发明的实施方式1的粒子射线照射装置的简要结构图。粒子射线照射装置58具有:照射设备部2、以及对照射设备部2进行控制及管理的控制管理部3。照射设备部2包括:X方向扫描电磁铁10以及Y方向扫描电磁铁11,该X方向扫描电磁铁10以及Y方向扫描电磁铁11使带电粒子束1在与带电粒子束1垂直的方向、即X方向以及Y方向上进行扫描;上游一侧的位置监视器12a;剂量监视器13;下游一侧的位置监视器12b;以及扫描电磁铁电源14。控制管理部3包括:照射控制装置15,该照射控制装置15控制照射设备部2;以及数据处理装置19。此外,带电粒子束1的前进方向为Z方向。
X方向扫描电磁铁10是使带电粒子束1在X方向上进行扫描的扫描电磁铁,而Y方向扫描电磁铁11是使带电粒子束1在Y方向上进行扫描的扫描电磁铁。上游一侧的位置监视器12a以及下游一侧的位置监视器12b对利用X方向扫描电磁铁10及Y方向扫描电磁铁11进行扫描后的带电粒子束1所通过的射束的射束峰值位置(通过位置)进行检测。剂量监视器13检测带电粒子束1的剂量。照射控制装置15基于由未图示的治疗计划装置生成的治疗计划数据,来控制照射对象18上的带电粒子束1的照射位置,并且在由剂量监视器13所测定到的、被转换成数字数据的剂量达到目标剂量的情况下,停止带电粒子束1。扫描电磁铁电源14基于从照射控制装置15输出的对X方向扫描电磁铁10及Y方向扫描电磁铁11的控制输入(指令电流),来改变X方向扫描电磁铁10及Y方向扫描电磁铁11的设定电流。
数据处理装置19将带电粒子束1的照射位置(X、Y)与照射位置(X、Y)的误差相对应,在和照射区域相关联的照射区域上进行显示,或者,将和带电粒子束1的照射位置(X、Y)相关联的照射位置关联值(AX、AY)、与照射位置关联值的误差(照射位置关联值误差(EX、EY))相对应,在和照射区域相关联的照射区域关联区域上进行显示。照射位置关联值(AX、AY)包含:目标照射位置关联值(A0X、A0Y),该目标照射位置关联值(A0X、A0Y)和带电粒子束1的目标照射位置(X0、Y0)相关联;以及实际照射位置关联值(A1X、A1Y),该实际照射位置关联值(A1X、A1Y)和由位置监视器12a、12b所测定到、并计算出的带电粒子束1的实际照射位置(X1、Y1)相关联。照射位置关联值误差(EX、EY)是从实际照射位置关联值(A1X、A1Y)减去目标照射位置关联值(A0X、A0Y)后的差值。和照射区域相关联的照射区域关联区域是二维地表示位置监视器12a、12b的输出值的位置监视器值区域。这里,利用从带电粒子束1的位置监视器值区域转换成照射对象上的照射位置(X、Y)后的照射区域、来进行说明。此外,若反过来表示照射位置、目标照射位置、实际照射位置、位置误差,则能够如下那样表示。照射位置相当于转换照射位置关联值之后的信息。目标照射位置相当于转换目标照射位置关联值之后的信息。实际照射位置相当于转换实际照射位置关联值之后的信息。位置误差相当于转换照射位置关联值误差之后的信息。另外,对于照射区域关联区域、照射位置关联值、目标照射位置关联值、实际照射位置关联值、照射位置关联值误差,对该部分适当添加括号来进行显示。
数据处理装置19可以使用专用的硬件,也可以使用通用的个人计算机或工作站。这里,为了容易理解,对使用通用的个人计算机或工作站的情况进行说明。数据处理装置19具有:输入部41,该输入部41用于输入照射区域(照射区域关联区域)上的目标照射位置(目标照射位置关联值)以及实际照射位置(实际照射位置关联值);显示部43,该显示部43用于在画面上重现并显示照射区域;以及运算部42,该运算部42进行用于在显示部43上进行显示的处理。数据处理装置19具有第1至第4功能,图2中示出了利用这些功能实现的结果。图2是表示由本发明的实施方式1的数据处理装置所显示的枕形显示的图。此外,对于枕形显示的定义等,在下面阐述。
数据处理装置19的第1功能在于,在数据处理装置19的显示部画面上重现并显示带电粒子束1的照射区域(照射区域关联区域)。第1功能由运算部42中的区域显示运算部来进行处理。图2中,将横轴21设为X方向,将纵轴22设为Y方向,并标上刻度,由虚线描绘成栅格状的部分相当于由第1功能所实现的显示。可以使在显示部画面上重现并显示的枕形显示20(20a)的原点与作为照射基准的等中心(isocenter)相对应。另外,虽然在粒子射线治疗装置中可以任意地确定该X方向及Y方向,但一般设置有X方向扫描电磁铁以及Y方向扫描电磁铁,使得射束的扫描方向与所定义的X方向及Y方向相同。
数据处理装置19的第2功能在于,将目标照射位置(目标照射位置关联值)重叠于利用第1功能在画面上重现的照射区域(照射区域关联区域)上,来进行显示。第2功能由运算部42中的目标值运算部来进行处理。图2中,未被涂满的圆形的图形、即由实线描绘外边缘的圆23相当于由第2功能实现的显示。另外,在图2中,圆23的配置位置相当于后述的“针”的“目标位置(插针的位置、目标值)”。将圆23适当地称作为目标照射位置图形(目标值显示图形)23。
数据处理装置19的第3功能在于,进一步将实际照射位置(实际照射位置关联值)重叠并显示在利用第1功能在画面上重现的照射区域(照射区域关联区域)、以及利用第2功能重叠显示的目标照射位置(目标照射位置关联值)上。第3功能由运算部42中的测定值运算部来进行处理。图2中,被涂满的圆24的图形相当于由第3功能实现的显示。另外,在图2中,圆24的配置位置相当于后述的“针”的“实际照射位置(针头、测定值)”。将圆24适当地称作为实际照射位置图形(测定值显示图形)24。此外,在本发明中,对该实际照射位置(实际照射位置关联值)的显示做了进一步的深入研究。研究点在于,将该实际照射位置上的位置误差(照射位置关联值误差)进行变形(以夸张或强调特征的方式来进行变换),来显示实际照射位置。若以数学式来表示,则如下所示。
利用Pdesired来表示目标照射位置,利用Pmeasured来表示实际照射位置。位置误差Perror能够如数学式(1)那样表示,而将位置误差进行变形后的实际照射位置Pdef能如数学式(2)那样表示。
error=Pmeasured-Pdesired···(1)
def=Pdesired+k(Perror)···(2)
式中,k是变形系数。另外,目标照射位置Pdesired、实际照射位置Pmeasured、将位置误差进行变形后的实际照射位置Pdef以及位置误差Perror全部是矢量显示,并表示照射区域上的坐标。利用数学式(2)计算出的实际照射位置Pdef的坐标是在照射区域上进行显示时的显示坐标。此外,对于目标照射位置关联值、实际照射位置关联值、照射位置关联值误差、经变形后的实际照射位置关联值,分别由PRdesired、PRmeasure 、PRerror、PRdef表示,在上述式(1)、式(2)中,将Pdesire 、Pmeasured、Perror、Pdef分别替换成PRdesired、PRmeas ured、PRerror、PRdef即可,即、替换成带有R的标号即可。此后,带有R的标号表示与照射位置关联值相关。
如果将变形系数k设为1,则实际照射位置Pdef未经变形,而实际照射位置图形24的配置位置被显示于未经变形的现实的实际照射位置上。如果将变形系数k设为0,则所给予的实际照射位置Pdef是相当于目标照射位置Pdesired的位置。作为示例,图2中,多个实际照射位置图形24分别示出了将变形系数k设为30时的实际照射位置Pdef。此外,图3示出了不使用变形系数k而仅显示实际照射位置Pdef。图3是表示用于与图2的枕形显示20进行比较的照射位置的图。照射位置显示35中的虚线圆A所表示的部分是放大对象部分,虚线圆B所表示的部分是将放大对象部分放大后的部分。虚线圆33是目标照射位置图形,相当于图2的目标照射位置显示23。为了能查看到与实际照射位置显示图形24的外周之差,利用虚线来表示。相比于照射位置显示35中的照射区域的宽度,照射位置误差较小,因此若不将其进行变形,则如图3所示那样,一般较难以对其趋势进行判断。
数据处理装置19的第4功能在于,利用线段将由上述第2功能显示的目标照射位置Pdesired(目标照射位置关联值PRdesired)、与由上述第3功能显示的将位置误差Perror(照射位置关联值误差PRerror)进行变形后的实际照射位置Pdef(实际照射位置关联值PRdef)相连接,并进行显示。第4功能由运算部42中的线段显示运算部来进行处理。图2中,线段25相当于由第4功能实现的显示。另外,线段25相当于后述的“针”的“针本体”的部分。在上述第3功能中,如果增大变形系数k,则在存在有位置误差Perror的情况下,将位置误差Perror进行变形后的实际照射位置Pdef逐渐远离目标照射位置Pdesired。因此,通过第4功能来利用线段25将表示目标照射位置的目标照射位置图形23与表示实际照射位置的实际照射位置显示图形24相连接并进行显示,从而能够清楚地查看到对应关系。第3功能及第4功能可称作为本发明的特殊的技术特征。
这里,对于针及枕形显示进行说明。图2中,被涂满的圆24及线段25看似一枚针(记号针)。图2所示的数据处理装置19的显示部画面上的显示好像是在枕头上插针的样子,因此这里将这种显示称作为“枕形显示”。另外,若与在枕头上插针的样子相对应,则枕形显示20中的目标照射位置图形23、实际照射位置图形24(包含未经变形的情况以及经变形后的情况)以及将它们相连接的线段25分别相当于“插针的位置”、“针头”以及“针本体”。
实施方式1的粒子射线照射装置58包括具有上述四个功能的数据处理装置19,因此能够将照射位置P与照射位置误差Perror相对应,从而显示出带电粒子束1的照射位置精度。另外,还能够将和照射位置相关联的照射位置关联值PR、与照射位置关联值误差PRerror相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将带电粒子束1的照射位置P与照射位置误差Perror相对应后的照射位置精度、将和带电粒子束1的照射位置相关联的照射位置关联值PR与照射位置关联值误差PRerror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
在数据处理装置19的显示部画面中,也可以添加用于辅助枕形显示20的其他显示。图4及图5是将位置误差分为X方向分量及Y方向分量、并以时间序列进行显示的图(以下称作为“时间序列显示”)。图4是表示X方向误差的时间序列显示30(30a)的图,图5是表示Y方向误差的时间序列显示30(30b)的图。横轴是表示照射带电粒子束1的顺序的照射编号,纵轴是位置(照射位置关联值)的误差。照射编号较大的数据是经过的时间比照射编号较小的数据要长的数据。因此,时间序列显示30(30a、30b)在将位置误差(照射位置关联值误差)和时间相关联来进行分析时,提供了有效的信息。例如,能够容易掌握在照射编号n(时刻tn)以后误差变大等信息。
另外,在数据处理装置19的显示部画面中,也可以添加用于辅助枕形显示20的其他显示。图6是以矢量的方式来显示位置(照射位置关联值)的误差的图。下面,将以矢量的方式来显示误差的图称作为“误差矢量显示”,而将以矢量的方式来显示位置的误差的图称作为“位置误差(照射位置关联值误差)矢量显示”。横轴为X方向误差,纵轴为Y方向误差。误差矢量显示31中,与带电粒子束1的照射束点相对应地显示有误差点32。如图6这样在误差平面上的显示、即误差矢量显示31中,将位置误差中的误差矢量显示31作为位置误差矢量显示31a加以区分。在判断实际的照射是否在粒子射线照射装置58的容许误差范围内进行时,误差矢量显示31是最有效的显示方法。在误差矢量显示31中,通过进一步显示表示容许误差范围边界的边界线,从而能够容易判断出实际的照射是否在容许误差范围内进行。
用于生成枕形显示20、时间序列显示30或误差矢量显示31的数据、即实际照射位置关联数据在带电粒子束1的照射过程中可获得,在进行粒子射线治疗时也可获得。实际照射位置关联数据是和带电粒子束1的实际照射位置相关联的数据。在实施方式1中,实际照射位置关联数据是由位置监视器12a、12b检测并计算出的带电粒子束1的位置数据。实际照射位置关联数据也可以是由后述的磁场传感器8、9(参照图9)检测到的带电粒子束1的磁场数据。
此外,实际照射位置关联数据除了是通过位置监视器12a或12b的位置数据以外,也可以是在某个基准面上的带电粒子束1的位置数据。例如,可以将基准面设为对照射对象18进行切片后的切面,并将实际照射位置关联数据作为切面上的带电粒子束1的位置数据。
能够在照射过程中对枕形显示20、时间序列显示30、误差矢量显示31进行显示(在线显示),也能够在照射结束后的任意时刻进行显示(离线显示)。在存储实际照射位置关联数据的存储器容量有限时,只要在特定事件发生时获取数据即可,例如在粒子射线照射装置58的工作日的早晨进行第一次校准时、或在该日进行第一次治疗时等获取数据。就算测定数据中产生误差,但由于误差存在容许范围,因此即使在发生特定事件时获取数据的情况下,也能够判断进行维护的时期。
即使在对粒子射线照射装置58进行设定或校准时,也能使用枕形显示20、事件序列显示30、误差矢量显示31。特别是在线显示较有效。在该情况下,也能够将照射位置P与照射位置误差Perror相对应,从而显示出带电粒子束1的照射位置精度。另外,还能够将和照射位置相关联的照射位置关联值PR、与照射位置关联值误差PRerror相对应,从而显示出带电粒子束1的照射位置精度。因此,能够容易得出设定时的调整的方案,即、在哪个方向(X方向、Y方向)上以多少的量来进行修正。
在进行离线显示时,例如能够将三天的结果重叠在一起来进行显示,从而观察出误差的变化。另外,通过重叠基准日的数据来进行显示,能够观察出与基准日之差。在观察误差的变化、与基准日之差的同时,还能判断维护的时期。
对各个装置选择变形计数k的输入值。一般来说,扫描电磁铁越大,则误差越大。另外,扫描电磁铁与照射对象的距离越远,则误差越大。误差较大,使得能够清楚地察觉出实际照射位置Pmeasured(实际照射位置关联值PRmeasured)与目标照射位置Pdesired(目标照射位置关联值PRdesired)之差,此时即使不进行变形也可以,即、可以将变形计数k设为1。在误差非常小的情况下,通过使用较大的变形计数k,能够容易掌握照射位置精度。此外,可以将变形系数设定为1、或者设定为上次使用的值,以作为默认值。通过使用默认值,能够在进行枕形显示时,无需每次从外部输入变形系数。
根据上述实施方式1的粒子射线照射装置58,由于包括:检测器12a、12b,该检测器12a、12b检测和带电粒子束1的照射位置相关联的实际照射位置关联值PRmeasured;以及数据处理装置19,该数据处理装置19将照射位置关联值误差PRerror与实际照射位置关联值PRmeasured相对应地在显示部43上显示,该照射位置关联值误差PRerror是实际照射位置关联值PRmeasured的、相对于目标照射位置关联值PRdesired的误差,该目标照射位置关联值PRdesired和带电粒子束1的目标照射位置相关联,数据处理装置19具有:输入部41,该输入部41输入实际照射位置关联值PRmeasured以及目标照射位置关联值PRdesired;以及运算部42,该运算部42在和带电粒子束1的照射区域相关联的照射区域关联区域上、显示表示目标照射位置关联值PRdesired的目标值显示图形23以及表示实际照射位置关联值PRmeasured的测定值显示图形24时,在目标照射位置关联值PRdesired的坐标上显示目标值显示图形23,在将利用变形系数k对照射位置关联值误差PRerror进行运算后的坐标加上目标照射位置关联值PRdesired而得到的坐标、即显示坐标PRdef上显示测定值显示图形24,并显示将测定值显示图形24与目标值显示图形23相连接的线段25,因此能够将和照射位置相关联的照射位置关联值PR与照射位置关联值误差PRerror相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将和带电粒子束1的照射位置相关联的照射位置关联值PR、与照射位置关联值误差PRerror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
另外,根据实施方式1的粒子射线照射装置58,由于包括:检测器12a、12b,该检测器12a、12b检测和带电粒子束1的照射位置相关联的实际照射位置关联值PRmeasured;以及数据处理装置19,该数据处理装置19基于实际照射位置关联值PRmeasured来计算带电粒子束1的实际照射位置Pmeasured,并将照射位置误差Perror与实际照射位置Pmeasured相对应地在显示部43上显示,该照射位置误差Perror是实际照射位置P easured的、相对于带电粒子束1的目标照射位置的误差,数据处理装置19具有:输入部41,该输入部41输入实际照射位置关联值PRmeasured以及目标照射位置Pdesired;以及运算部42,该运算部42在带电粒子束1的照射区域上显示表示目标照射位置Pdesired的目标值显示图形23以及表示实际照射位置Pmeasured的测定值显示图形24时,在目标照射位置Pde sired的坐标上显示目标值显示图形23,在将利用变形系数k对照射位置误差Perror进行运算后的坐标加上目标照射位置Pdesired而得到的坐标、即显示坐标Pdef上显示测定值显示图形24,并显示将测定值显示图形24与目标值显示图形23相连接的线段25,因此能够将照射位置P与照射位置误差Perror相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将带电粒子束1的照射位置P与照射位置误差Perror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
实施方式2
在实施方式1中,提出了成为枕形显示的基础的数学式(2),并导入了所谓变形系数这一概念。在实施方式2中,示出了将该变形系数分为X方向分量用和Y方向分量用、并分别进行保存的方法。图7是表示本发明的实施方式2的第1枕形显示的图,图8是表示本发明的实施方式2的第2枕形显示的图。图7是表示对X方向进行30倍的变形、并对Y方向进行1倍的变形时的枕形显示20(20b)的示例。另外,图8是表示对X方向进行1倍的变形、并对Y方向进行30倍的变形时的枕形显示20(20c)的示例。
在X方向及Y方向分别具有变形系数的情况下,位置误差Perror能够由数学式(5)来表示,而将位置误差进行变形后的实际照射位置Pdef能由数学式(6)来表示。如在实施方式1中说明的那样,目标照射位置Pdesir ed、实际照射位置Pmeasured、将位置误差进行变形后的实际照射位置P ef以及位置误差Perror全部是矢量显示。此外,对于目标照射位置关联值、实际照射位置关联值、照射位置关联值误差、经变形后的实际照射位置关联值,只要替换成带有R的标号即可。
[数学式1]
P desired = p desired _ x p desired _ y · · · ( 3 )
[数学式2]
P measured = p _ x p _ y · · · ( 4 )
[数学式3]
P error = P measured - P desired = p desired _ x p desired _ y - p _ x p _ y = : p error _ x p error _ y · · · ( 5 )
[数学式4]
P def = P desired + K ( P error ) = p desired _ x p desired _ y + k _ x 0 0 k _ y p error _ x p error _ y
= : p def _ x p def _ y · · · ( 6 )
式中,K是变形系数矩阵,k-x及k-y是X方向变形系数及Y方向变形系数。
将变形系数分成X方向及Y方向所具有的效果在于,能够对应于将使带电粒子束1进行扫描的扫描电磁铁10、11分成X方向用及Y方向用,分别观察出X方向及Y方向的位置误差Perror(照射位置关联值误差PRerro )的趋势。
与实施方式1相同,实施方式2的粒子射线照射装置58由于包括具有上述四个功能的数据处理装置19,因此能够将照射位置P与照射位置误差Per ror相对应,从而显示出带电粒子束1的照射位置精度。另外,还能够将和照射位置相关联的照射位置关联值PR、与照射位置关联值误差PRerror相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将带电粒子束1的照射位置P与照射位置误差Perror相对应后的照射位置精度、将和带电粒子束1的照射位置相关联的照射位置关联值PR与照射位置关联值误差PRerror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。另外,由于能够分别观察出X方向及Y方向的位置误差Perror(照射位置关联值误差PR rror)的趋势,因此能够容易得出在X方向或Y方向上以怎样的量进行修正的结论。
另外,在数据处理装置19的显示部画面中,也可以添加用于辅助枕形显示20的其他显示,即、与实施方式1相同的X方向误差的时间序列显示30(30a)、Y方向误差的时间序列显示30(30b)、误差矢量显示31。
实施方式3
在实施方式1中,作为照射位置关联值(AX、AY)、PR以及照射位置关联值误差(EX、EY)、PRerror的示例,对使用位置监视器12a、12b的输出值的情况进行了说明。在实施方式3中,作为照射位置关联值(AX、AY)、PR以及照射位置关联值误差(EX、EY)、PRerror的示例,对使用磁场传感器的输出值的情况进行说明。利用X方向扫描电磁铁10及Y方向扫描电磁铁11的磁场、使带电粒子束1偏转,从而对照射对象18进行扫描。即,利用X方向扫描电磁铁10及Y方向扫描电磁铁11所产生的磁场,来对带电粒子束1的照射位置(X、Y)、P进行控制。因此,X方向扫描电磁铁10及Y方向扫描电磁铁11所产生的磁场和照射位置(X、Y)、P相关联。和照射区域相关联的照射区域关联区域是磁场区域。
图9是本发明的实施方式3的粒子射线照射装置的简要结构图。实施方式3的粒子射线照射装置61包括:照射设备部4,该照射设备部4具有磁场传感器8、9;以及控制管理部5,该控制管理部5对由磁场传感器8、9检测出的带电粒子束1的磁场数据进行处理,并对照射设备部4进行控制,这点与实施方式1的粒子射线照射装置58不同。
磁场传感器8检测X方向扫描电磁铁10的磁场,磁场传感器9检测Y方向扫描电磁铁11的磁场。控制管理部5包括:照射控制装置16,该照射控制装置16控制照射设备部4;以及数据处理装置28。数据处理装置28具有输入部41、运算部44、显示部43。在实施方式3中,由磁场空间来表示照射区域关联区域。输入部41输入照射区域关联区域上的目标磁场Bdesired、以及实际测定到的磁场即实际磁场Bmeasured。显示部43在画面上重现并显示照射区域关联区域。运算部44进行用于在显示部43上进行显示的处理。与实施方式1相同,数据处理装置28具有第1至第4功能,图10中示出了利用这些功能实现的结果。图10是表示由本发明的实施方式3的数据处理装置所显示的枕形显示20(20d)的图。
图10中,横轴21是X方向的磁场BX,纵轴22是Y方向的磁场BY。与实施方式1相同,利用线段25将目标值显示图形即圆27与测定值显示图形即圆26相连接,来进行显示。在磁场空间中,也可以分别将目标值显示图形即圆27以及测定值显示图形即圆26称作为目标磁场显示图形以及实际磁场图形。适当地,分别将圆26及圆27称作为目标磁场显示图形及实际磁场图形。
数据处理装置28的第1功能在于,在数据处理装置28的显示部画面上重现并显示带电粒子束1的照射区域。第1功能由运算部44中的区域显示运算部来进行处理。
数据处理装置28的第2功能在于,将目标磁场Bdesired(目标照射位置关联值)重叠于利用第1功能在画面上重现的照射区域上,并进行显示。第2功能由运算部44中的目标值运算部来进行处理。
数据处理装置28的第3功能在于,进一步将实际磁场Bmeasured(实际照射位置关联值)重叠并显示在利用第1功能在画面上重现的照射区域、以及利用第2功能重叠显示的目标磁场Bdesired上。第3功能由运算部44中的测定值运算部来进行处理。实际磁场Bmeasured的显示通过将该实际磁场Bmeasured的磁场误差Berror(照射位置关联值误差)进行变形、来进行。若以数学式来表示,则如下所示。
磁场误差Berror能够如数学式(7)那样表示,而将磁场误差进行变形后的实际磁场Bdef能如数学式(8)那样表示。勭
error=Bmeasured-Bdesired···(7)
def=Bdesired+k(Berror)···(8)
式中,k是变形系数。另外,目标磁场Bdesired、实际磁场Bmeasur ed、将磁场误差进行变形后的实际磁场Bdef以及磁场误差Berror全部是矢量显示,并表示照射区域关联区域上的坐标。利用数学式(8)计算出的实际磁场Bdef的坐标是在照射区域关联区域上进行显示时的显示坐标。
数据处理装置28的第4功能在于,利用线段将由上述第2功能显示的目标磁场Bdesired、与由上述第3功能显示的将磁场误差Berror进行变形后的实际磁场Bdef相连接,并进行显示。第4功能由运算部44中的线段显示运算部来进行处理。
实施方式3的粒子射线照射装置61由于包括具有上述四个功能的数据处理装置28,因此能够将和照射位置P相关联的照射位置关联值PR即磁场(BX、BY)、与照射位置关联值误差PRerror即磁场误差Berror相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将和带电粒子束1的照射位置P相关联的照射位置关联值PR、与照射位置关联值误差PRerror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
另外,由于利用磁场来掌握照射位置精度,因此即使实际不照射带电粒子束1,也能通过驱动X方向扫描电磁铁10及Y方向扫描电磁铁11,来测定磁场。在实际不照射带电粒子束1的情况下,可以不使加速器等进行动作,因此,能够在无需加速器等准备的情况下进行维护,从而能够在短时间内对粒子射线照射装置进行维护。另外,即使在加速器等的维护过程中,也能对粒子射线照射装置进行维护。
在数据处理装置28的显示部画面中,也可以添加用于辅助枕形显示20的其他显示。图11及图12是将磁场误差分为X方向分量及Y方向分量、并以时间序列来进行显示的时间序列显示。图11是表示X方向误差的时间序列显示30(30c)的图,图12是表示Y方向误差的时间序列显示30(30d)的图。横轴是表示照射带电粒子束1的顺序、或预定照射的顺序的照射编号,纵轴是磁场的误差。照射编号较大的数据是在时间上较照射编号较小的数据要靠后的数据。因此,时间序列显示30(30c、30d)在将磁场误差和时间相关联来进行分析时,提供了有效的信息。例如,能够容易掌握在照射编号n(时刻tn)以后误差变大等信息。
另外,在数据处理装置28的显示部画面中,也可以添加用于辅助枕形显示20的其他显示。图13是以矢量的方式来显示磁场误差的误差矢量显示。将以矢量的方式来显示磁场的误差的图称作为“磁场误差矢量显示”。横轴为X方向误差,纵轴为Y方向误差。误差矢量显示31(31b)中,与带电粒子束1的照射束点相对应地显示有误差点36。在判断实际的照射是否在粒子射线照射装置61的容许误差范围内进行、或者能否进行照射时,误差矢量显示31(31b)是最有效的显示方法。在误差矢量显示31(31b)中,通过进一步显示表示容许误差范围边界的边界线,从而能够容易判断出实际的照射是否在容许误差范围内进行。
与实施方式1相同,能够在照射过程中对枕形显示20、时间序列显示30、误差矢量显示31进行显示(在线显示),也能够在照射结束后的任意时刻进行显示(离线显示)。
此外,数据处理装置28也可以对实施方式1及2所示的枕形显示20(20a、20b、20c)、时间序列显示30(30a、30b)、误差矢量显示31(31a)进行显示。在该情况下,在治疗过程中,可以使用通过位置监视器12a或12b的位置数据,以作为实际照射位置关联数据,在工作日的早晨进行第一次校准时、或进行维护作业时,可以使用由磁场传感器8、9检测出的带电粒子束1的磁场数据,以作为实际照射位置关联数据。由于能够较多地使用容易掌握照射位置精度的显示,因此较为方便,并且能够根据情况来进行数据收集、和照射位置精度的判断。
实施方式4
在实施方式3中,示出了利用磁场空间来表示照射区域关联区域的枕形显示的示例。在实施方式4中,示出将变形系数分为X方向分量用和Y方向分量用、并分别进行保存的方法。图14是表示本发明的实施方式4的第1枕形显示的图,图15是表示本发明的实施方式4的第2枕形显示的图。图14是表示对X方向进行30倍的变形、并对Y方向进行1倍的变形时的枕形显示20(20e)的示例。另外,图15是表示对X方向进行1倍的变形、并对Y方向进行30倍的变形时的枕形显示20(20f)的示例。
在X方向及Y方向分别具有变形系数的情况下,磁场误差Berror能够由数学式(11)来表示,而将磁场误差进行变形后的实际磁场Bdef能由数学式(12)来表示。如在实施方式3中说明的那样,目标磁场Bdesired、实际磁场Bmeasured、将磁场误差进行变形后的实际磁场Bdef以及磁场误差Berror全部是矢量显示。
[数学式5]
b desired = b desired _ x b desired _ y · · · ( 9 )
[数学式6]
B measured = b _ x b _ y · · · ( 10 )
[数学式7]
B error = B measured - B desired
= b desired _ x b desired _ y - b _ x b _ y = : b error _ x b error _ y · · · ( 11 )
[数学式8]
B def = B desired + K ( B error )
= b desired _ x b desired _ y + k _ x 0 0 k _ y b error _ x b error _ y
= : b def _ x b def _ y · · · ( 12 )
式中,K是变形系数矩阵,k-x及k-y是X方向变形系数及Y方向变形系数。
将变形系数分成X方向及Y方向所具有的效果在于,能够对应于将使带电粒子束1进行扫描的扫描电磁铁10、11分成X方向用及Y方向用,分别观察出X方向及Y方向的磁场误差Berror的趋势。
与实施方式3相同,实施方式4的粒子射线照射装置61由于包括具有上述四个功能的数据处理装置28,因此能够将和照射位置P相关联的照射位置关联值PR即磁场(BX、BY)、与照射位置关联值误差PRerror即磁场误差Berror相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将和带电粒子束1的照射位置P相关联的照射位置关联值PR、与照射位置关联值误差PRerror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。另外,由于能够分别观察出X方向及Y方向的磁场误差Berror的趋势,因此能够容易得出在X方向或Y方向上以怎样的量进行修正的结论。
此外,在数据处理装置28的显示部画面中,也可以添加用于辅助枕形显示20的其他显示,即、与实施方式3相同的X方向误差的时间序列显示30(30c)、Y方向误差的时间序列显示30(30d)、误差矢量显示31(31b)。
实施方式5
在实施方式1至4中,对数据处理装置19、28的功能进行了说明。然而,如实施方式1所述那样,数据处理装置可以使用专用的硬件,也可以使用通用的个人计算机或工作站。即,本发明的核心在于实现枕形显示20的方法。实现枕形显示20的方法可以通过执行软件、即程序来完成。所以,在实施方式5中,对程序进行说明。
图16是本发明的实施方式5的数据显示程序的流程图。基于图16,对本发明的流程进行说明。首先,在开始程序时,执行读取各种数据的步骤(步骤S1)。所谓所读取的各种数据,是指初始参数、目标照射数据以及实际照射数据。目标照射数据是和目标照射位置相关联的目标照射位置关联值的数据,或是目标照射位置的数据。实际照射数据是和照射位置相关联的实际照射位置关联值的数据。具体而言,在实施方式1及2的示例中,目标照射数据是目标照射位置关联值的数据,或是目标照射位置的数据,而实际照射数据是实际照射位置关联值的数据。另外,在实施方式3及4的示例中,目标照射数据及实际照射数据是目标磁场的数据及实际照射磁场的数据。这里,所谓初始参数,是表示照射区域的范围、变形系数的默认值、进行画面显示的枕形的颜色等的参数。
接下来,执行输入由数学式(2)、(8)所示的变形系数k或由数学式(6)、(12)所示的变形系数k-x及k-y的步骤(步骤S2)。这里,执行本程序的操作员通过键盘等来输入根据需要的变形系数。此外,指定并输入由数学式(2)、(8)所示的变形系数k与对由数学式(6)、(12)所示的变形系数k-x及k-y输入相同值k实质上是一样的。
接下来,执行如下步骤:使用数学式(6)、(12),来计算将误差进行变形后的实际照射位置Pdef、经变形后的实际照射位置关联值PRdef、实际磁场Bdef(步骤S3)。接下来,执行如下步骤:使用已在实施方式1及3中说明过的第1至第4功能,在显示器(显示部)上显示枕形显示20(步骤S4)。步骤S1至S4是基本功能的流程。
为了在希望改变变形系数k(k-x、k-y)后重新显示时也能进行执行,在本程序中还设有重新输入变形系数的模块以及用于重新显示的模块。步骤S5中,判断是否输入有进行重新显示处理的指令,在进行重新显示的情况下,返回到步骤S2。在不进行重新显示的情况下,则结束程序。执行本程序的操作者根据需要来调用这些模块,具体而言,例如能够通过点击画面上所指定的按钮,从而重新进行枕形显示。
根据上述情况,实施方式5中的数据显示程序由于执行如下步骤:输入目标照射数据以及实际照射数据的步骤,该目标照射数据是和带电粒子束1的目标照射位置相关联的目标照射位置关联值PRdesired(Bdesired)的数据,该实际照射数据是和带电粒子束1的照射位置相关联的实际照射位置关联值PRmeasured(Bmeasured)的数据;输入变形系数k的步骤;在和带电粒子束1的照射区域相关联的照射区域关联区域上、计算显示坐标PRdef(Bdef)的步骤,该显示坐标PRdef(Bdef)是将利用变形系数k对照射位置关联值误差PRerror(Berror)进行运算后的坐标、加上目标照射位置关联值PRdesired(Bdesired)而得到的坐标,该照射位置关联值误差PRerror(Berror)是实际照射位置关联值PR easured(Bmeasured)的、相对于目标照射位置关联值PRdesired(Bdesired)的误差;以及在照射区域关联区域上、分别在显示坐标PRdef(Bdef)及目标照射位置关联值PRdesired(Bdesired)的坐标上显示测定值显示图形24(26)以及目标值显示图形23(27)、并显示线段25的步骤,其中,该测定值显示图形24(26)表示实际照射位置关联值PRmeasured(Bmeasured),该目标值显示图形23(27)表示目标照射位置关联值PRdesired(Bdesired),该线段25将测定值显示图形24(26)与目标值显示图形23(27)相连接,因此可以将通用的个人计算机或工作站作为硬件、来实现实施方式1至4所示的数据处理装置。其结果是,能够将和照射位置相关联的照射位置关联值PR(B)、与照射位置关联值误差PRerror(Berror)相对应,从而显示出照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将和带电粒子束1的照射位置相关联的照射位置关联值PR(B)、与照射位置关联值误差PRerror(Berror)相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
另外,实施方式5中的数据显示程序由于执行如下步骤:输入目标照射数据以及实际照射数据的步骤,该目标照射数据是带电粒子束1的目标照射位置Pdesired的数据,该实际照射数据是和带电粒子束1的照射位置相关联的实际照射位置关联值PRmeasured(Bmeasured)的数据;输入变形系数k的步骤;在带电粒子束1的照射区域上、基于实际照射位置关联值PRmeasured(Bmeasured)来计算带电粒子束1的实际照射位置Pmea sured、并计算显示坐标Pdef的步骤,该显示坐标Pdef是将利用变形系数k对照射位置误差Perror进行运算后的坐标、加上目标照射位置Pdesire 而得到的坐标,该照射位置误差Perror是实际照射位置Pmeasured的、相对于目标照射位置Pdesired的误差;以及在照射区域上、分别在显示坐标Pdef及目标照射位置Pdesired的坐标上显示测定值显示图形24(26)以及目标值显示图形23(27)、并显示线段25的步骤,其中,该测定值显示图形24(26)表示实际照射位置Pmeasured,该目标值显示图形23(27)表示目标照射位置Pdesired,该线段25将测定值显示图形24(26)与目标值显示图形23(27)相连接,因此可以将通用的个人计算机或工作站作为硬件、来实现实施方式1至4所示的数据处理装置。其结果是,能够将照射位置P与照射位置误差Perror相对应,从而显示出照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将带电粒子束1的照射位置P与照射位置误差Perror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
实施方式6
在实施方式1至4中,以粒子射线照射装置的形式对实施方式进行了说明。另外,在实施方式5中,以数据显示程序的形式对实施方式进行了说明。在实施方式6中,对将粒子射线照射装置安装到粒子射线治疗装置中的情况进行说明。
图17是表示本发明的实施方式6的粒子射线治疗装置的结构图。粒子射线治疗装置51包括射束发生装置52、射束传输系统59、以及粒子射线照射装置58a、58b(或61a、61b)。射束发生装置52具有离子源(未图示)、前级加速器53、以及同步加速器54。粒子射线照射装置58b(61b)设置于旋转机架(未图示)上。粒子射线照射装置58a(61a)设置于不具有旋转机架的治疗室内。射束传输系统59的作用在于连接同步加速器54与粒子射线照射装置58a、58b(61a、61b)。射束传输系统59的一部分设置于旋转机架(未图示)上,并且在该部分上具有多个偏转电磁铁55a、55b、55c。
由离子源产生的质子射线、碳射线(重粒子射线)等粒子射线即带电粒子束1经前级加速器53加速,并入射到同步加速器54中。带电粒子束1被加速至规定的能量。同步加速器54中,利用高频率的电场来进行加速,并利用磁铁来进行弯曲,与此同时,被加速至大约光速的约70~80%。从同步加速器54射出的带电粒子束1经由射束传输系统59、被传输至粒子射线照射装置58a(61a)、58b(61b)。在射束传输系统59中,给予了充分能量的带电粒子束1在由真空导管制成的通路中,利用电磁铁根据需要改变轨道,从而导入至所指定的治疗室的粒子射线照射装置58a(61a)、58b(61b)。粒子射线照射装置58a(61a)、58b(61b)根据照射对象18即患者的患部的大小、深度来形成照射野,并将带电粒子束1照射到照射对象18(参照图1、图9)。
这里,虽然记作为“所指定的治疗室”,然而从治疗效率的观点来看,粒子射线治疗装置一般包括多个治疗室。即,所具备的粒子射线照射装置58(61)的数量需要与治疗室的数量相同。一般来说,像这样的由多个子系统组成的大型且复杂的系统大多由专门控制各子系统的子控制器以及指挥并控制整个系统的主控制器组成。对于本发明的实施方式6所示的粒子射线治疗装置51,也对采用该主控制器及子控制器的结构的情况进行说明。为了方便,这里将射束发生装置52以及射束传输系统59所具有的所有子系统称作为加速器系统60。将粒子射线照射装置58(61)、旋转机架称作为“照射系统”。在图17中,示出了具有水平照射室以及机架照射室这两个治疗室的情况。然而,在粒子射线治疗装置51中,控制器一般使用工作站或计算机。因此,大多情况下,将控制器称作为“计算机”。
图18是本发明的实施方式6的粒子射线治疗装置的控制框图。基于图18,对粒子射线治疗装置51由怎样的系统来控制进行说明。主控制器70相当于照射系统公用计算机。子控制器71a、71b相当于设备控制计算机。由此,在粒子射线治疗装置(系统)51中,包括主控制器70以及子控制器71a、71b。照射系统80由主控制器70、配置于照射操作室81的设备、配置于治疗室82a的设备、以及配置于82b的设备构成。治疗室82a中,配置有粒子射线照射装置58的照射设备部2a或粒子射线照射装置61的照射设备部4a。治疗室82b中,配置有粒子射线照射装置58的照射设备部2b或粒子射线照射装置61的照射设备部4b。
与子控制器71a、71b相连的操作台72a、72b、73a、73b、74a、74b是所谓的键盘或显示器等、或是控制箱等终端,是人机接口部。操作台72a、72b设置于照射操作室81,操作台73a、74a设置于治疗室A(82a),操作台73b、74b设置于治疗室B(82b)。控制盘75a、75b与子控制器71a、71b的下游部相连。具体而言,控制盘75a、75b是作为控制对象的各种设备76a、76b、77a、77b的驱动器、放大器以及定序器等。另外,控制盘75a、75b使主控制器70、呼吸导航装置78a、78b、照射设备部2a(4a)、2b(4b)的信号通过。经由控制盘75a、75b,下游部还与设备76a、76b、77a、77b、呼吸导航装置78a、78b以及照射设备部2a(4a)、2b(4b)相连。具体而言,所谓设备76a、76b、77a、77b,是用于使治疗台的各轴转动的电动机、驱动照射装置内的X射线摄影装置的电动机等。
这里,上述治疗台用的电动机、X射线摄影装置用的电动机在射束照射过程中不进行动作。即,无需与由加速器系统60控制的加速器等的电磁铁同步地、对其进行控制。主控制器70与子控制器71a、71b的通信的目的在于,使其知晓彼此的状态,例如:发送Ready信号来表示哪个治疗室的照射设备部2a(4a)、2b(4b)完成定位而处于可进行照射的状态,或者发送通知哪个治疗室的照射设备部2a(4a)、2b(4b)照射射束、照射完毕的信号等。简而言之,就是进行连续事件的图像。
主控制器70的作用可列举为进行像“哪个治疗室的照射设备部在争夺加速器”的照射管理。然而,在想要进行更高精度的照射的情况下,将产生必须要与加速器系统60同步地控制其他设备的情况。例如,呼吸同步照射或利用呼吸导航的照射相当于该情况。在存在有与加速器系统60同步地来进行控制的设备(呼吸导航装置78a、78b)的情况下,采用图18中的结构。
图18中,对呼吸导航装置78a、78b的指令值不从设备控制计算子控制器71a、71b发送,而是直接从主控制器70送达。这是由于,虽然也考虑到使主控制器70与子控制器71a、71b同步地来执行的方法,但通过进一步减少经由的设备,能够避免因浪费时间(延迟)而产生的问题。由于照射设备部2a(4a)、2b(4b)也需要与加速器系统60同步地来进行控制,因此根据同样的理由,由主控制器70来对其进行控制。主控制器70的其他作用在于像这样指挥整个粒子射线治疗装置,可列举出对需要与加速器系统60同步地来进行控制的设备的控制。
如上所述,对粒子射线治疗装置51的主控制器70以及子控制器71a、71b均一般使用工作站或计算机的情况进行了说明。另外,在实施方式5中,对本发明的数据显示程序是能由通用的工作站或计算机执行的程序的情况进行了说明。因此,若在粒子射线治疗装置51的主控制器(照射系统公用计算机)70或子控制器(设备控制计算机)71a、71b上执行实施方式5所示的数据显示程序,则具有能够共用硬件的优点。
另外,通过在粒子射线治疗装置的主控制器(照射系统公用计算机)70或子控制器(设备控制计算机)71a、71b上执行数据显示程序,从而具有能够实时地进行枕形显示20的优点。图18中示出了数据显示程序被安装于子控制器71a71b中的示例。与数据显示程序的步骤相对应的处理在于控制器71a71b的数据处理部40a、40b中执行。若实时地进行枕形显示20,则粒子射线治疗装置51的使用者不仅可以确认照射的进程,还能够实时地将照射位置P与照射位置误差Perror相对应,从而显示出带电粒子束1的照射位置精度。另外,还能够将和带电粒子束1的照射位置P相关联的照射位置关联值PR(磁场)、与照射位置关联值误差PRerror(磁场误差)相对应,来进行确认。
如上所述,根据实施方式6的粒子射线治疗装置51,由于包括:射束发生装置52,该射束发生装置52生成带电粒子束1,并利用加速器54使该带电粒子束1加速;射束传输系统59,该射束传输系统59传输经加速器54加速后的带电粒子束1;以及粒子射线照射装置58(61),该粒子射线照射装置58(61)将经射束传输系统59传输的带电粒子束1照射到照射对象18,粒子射线照射装置58(61)包括:检测器12a、12b(8、9),该检测器12a、12b(8、9)检测和带电粒子束1的照射位置相关联的实际照射位置关联值PRmeasured(Bmeasured)以及数据处理装置19(28),该数据处理装置19(28)将照射位置关联值误差PRerror(Berror)与实际照射位置关联值PRmeasured(Bmeasured)相对应地在显示部43上显示,该照射位置关联值误差PRerror(Berror)是实际照射位置关联值PRmeasured(Bmeasured)的、相对于目标照射位置关联值PRdesi red(Bdesired)的误差,该目标照射位置关联值PRdesired(Bdes ired)和带电粒子束1的目标照射位置相关联,数据处理装置19(28)具有:输入部41,该输入部41输入实际照射位置关联值PRmzasured(Bm easured)以及目标照射位置关联值PRdesired(Bdesired);以及运算部42(44),该运算部42(44)在和带电粒子束1的照射区域相关联的照射区域关联区域上、显示表示目标照射位置关联值PRdesired(Edesi red)的目标值显示图形23(27)以及表示实际照射位置关联值PRmeasur ed(Bmeasured)的测定值显示图形24(26)时,在目标照射位置关联值PRdesired(Bdesired)的坐标上显示目标值显示图形23(27),在将利用变形系数k对照射位置关联值误差PRerror(Berror)进行运算后的坐标加上目标照射位置关联值PRdesired(Bdesired)而得到的坐标、即显示坐标Pdef(Bdef)上显示测定值显示图形24(26),并显示将测定值显示图形24(26)与目标值显示图形23(27)相连接的线段25,因此能够将和照射位置相关联的照射位置关联值PRmeasured(Bmeasure d)与照射位置关联值误差PRerror(Berror)相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将和带电粒子束1的照射位置相关联的照射位置关联值PRmeasur ed(Bmeasured)、与照射位置关联值误差PRerror(Berror)相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
另外,根据实施方式6的粒子射线治疗装置51,由于包括:射束发生装置52,该射束发生装置52生成带电粒子束1,并利用加速器54使该带电粒子束1加速;射束传输系统59,该射束传输系统59传输经加速器54加速后的带电粒子束1;以及粒子射线照射装置58(61),该粒子射线照射装置58(61)将经射束传输系统59传输的带电粒子束1照射到照射对象18,粒子射线照射装置58(61)包括:检测器12a、12b,该检测器12a、12b检测和带电粒子束1的照射位置相关联的实际照射位置关联值PRmeasured;以及数据处理装置19,该数据处理装置19基于实际照射位置关联值PRmeasur ed来计算带电粒子束1的实际照射位置Pmeasured,并将照射位置误差P rror与实际照射位置Pmeasured相对应地在显示部43上显示,该照射位置误差Perror是实际照射位置Pmeasured的、相对于带电粒子束1的目标照射位置的误差,数据处理装置19具有:输入部41,该输入部41输入实际照射位置关联值PRmeasured以及目标照射位置Pdesired;以及运算部42,该运算部42在带电粒子束1的照射区域上、显示表示目标照射位置Pdesired的目标值显示图形23以及表示实际照射位置Pmeasured的测定值显示图形24时,在目标照射位置Pdesired的坐标上显示目标值显示图形23,在将利用变形系数k对照射位置误差Perror进行运算后的坐标加上目标照射位置Pdesired而得到的坐标、即显示坐标Pdef上显示测定值显示图形24,并显示将测定值显示图形24与目标值显示图形23相连接的线段25,因此能够将照射位置P与照射位置误差Perror相对应,从而显示出带电粒子束1的照射位置精度。因而,对于使用者来说,能够直观上易于察觉,容易掌握将带电粒子束1的照射位置P与照射位置误差Perror相对应后的照射位置精度,并适当地维持照射位置精度,对其进行维护。
此外,本发明以使用束点扫描照射法的粒子射线照射装置为例进行了说明,但也可以适用于使用光栅扫描照射法的粒子射线照射装置。若是使用光栅扫描法的粒子射线照射装置,则可以将在每隔规定采样时间获取到的位置数据、磁场数据作为实际照射位置关联数据。另外,还可以获取带电粒子束在折返点上的数据、在与规定位置相对应的时间内进行采样而得到的实际照射位置关联数据。
此外,在枕形显示、时间序列显示、误差矢量显示中,对将纵轴及横轴的坐标轴配置于外侧的示例进行了说明,但并不局限于外边缘一侧,也可以配置于内侧。
标号说明
1…带电粒子束
8…磁场传感器
9…磁场传感器
10…X方向扫描电磁铁
11…Y方向扫描电磁铁
12a、12b…位置监视器
18…照射对象
19…数据处理装置
23…目标照射位置图形(目标值显示图形)
24…实际照射位置显示图形(测定值显示图形)
25…线段
26…目标磁场显示图形(目标值显示图形)
27…实际磁场图形(测定值显示图形)
28…数据处理装置
30…时间序列显示
31…误差矢量显示
41…输入部
42…运算部
43…显示部
44…运算部
51…粒子射线治疗装置
52…射束发生装置
54…同步加速器
58、58a、58b…粒子射线照射装置
59…射束传输系统
61、61a、61b…粒子射线照射装置
k、k-x、k-y…变形系数
P…照射位置
Pdesired…目标照射位置
Pmeasured…实际照射位置
Perroe…位置误差
Pdef…将位置误差进行变形后的实际照射位置
PR…照射位置关联值
PRdesired…目标照射位置关联值
PRmeasured…实际照射位置关联值
PRerror…照射位置关联值误差
PRdef…将照射位置关联值误差进行变形后的实际照射位置关联值
Edesired…目标磁场
Bmeasured…实际磁场
Eerror…磁场误差
Bdef…将磁场误差进行变形后的实际磁场

Claims (18)

1.一种粒子射线照射装置,利用扫描电磁铁使经加速器加速后的带电粒子束进行扫描,并向照射对象照射,该粒子射线照射装置包括:
检测器,该检测器检测和所述带电粒子束的照射位置相关联的实际照射位置关联值;以及
数据处理装置,该数据处理装置将照射位置关联值误差与所述实际照射位置关联值相对应地在显示部上显示,该照射位置关联值误差是所述实际照射位置关联值的、相对于目标照射位置关联值的误差,该目标照射位置关联值和所述带电粒子束的目标照射位置相关联,
所述数据处理装置具有:
输入部,该输入部输入所述实际照射位置关联值以及所述目标照射位置关联值;以及
运算部,该运算部在和所述带电粒子束的照射区域相关联的照射区域关联区域上、显示表示所述目标照射位置关联值的目标值显示图形以及表示所述实际照射位置关联值的测定值显示图形时,在所述目标照射位置关联值的坐标上显示所述目标值显示图形,在将利用变形系数对所述照射位置关联值误差进行运算后的坐标加上所述目标照射位置关联值而得到的坐标、即显示坐标上显示所述测定值显示图形,并显示将所述测定值显示图形与所述目标值显示图形相连接的线段。
2.如权利要求1所述的粒子射线照射装置,其特征在于,
所述运算部具有:
测定值运算部,该测定值运算部计算所述显示坐标,并在所述显示坐标上显示所述测定值显示图形;
目标值运算部,该目标值运算部在所述目标照射位置关联值的坐标上显示所述目标值显示图形;以及
线段显示运算部,该线段显示运算部显示将所述测定值显示图形与所述目标值显示图形相连接的线段。
3.如权利要求1或2所述的粒子射线照射装置,其特征在于,
所述检测器是检测所述带电粒子束的通过位置的位置监视器,
所述实际照射位置关联值是所述位置监视器根据所述带电粒子束通过所述位置监视器的位置来输出的值,所述目标照射位置关联值是所述位置监视器对应于所述带电粒子束为实现照射到目标照射位置上而应当通过所述位置监视器的位置来输出的形式的值,所述照射位置关联值误差是所述照射位置与所述目标照射位置之差、即位置误差,所述照射区域关联区域是在所述位置监视器上、所述带电粒子束能通过的区域。
4.如权利要求1或2所述的粒子射线照射装置,其特征在于,
所述检测器是检测所述扫描电磁铁的磁场的磁场传感器,
所述实际照射位置关联值是由所述磁场传感器所检测出的磁场、即实际磁场,所述目标照射位置关联值是所述扫描电磁铁的目标磁场,所述照射位置关联值误差是所述实际磁场与所述目标磁场之差、即磁场误差,所述照射区域关联区域是所述扫描电磁铁的磁场区域。
5.一种粒子射线照射装置,利用扫描电磁铁使经加速器加速后的带电粒子束进行扫描,并向照射对象照射,该粒子射线照射装置包括:
检测器,该检测器检测和所述带电粒子束的照射位置相关联的实际照射位置关联值;以及
数据处理装置,该数据处理装置基于所述实际照射位置关联值来计算所述带电粒子束的实际照射位置,并将照射位置误差与所述实际照射位置相对应地在显示部上显示,该照射位置误差是所述实际照射位置的、相对于所述带电粒子束的目标照射位置的误差,
所述数据处理装置具有:
输入部,该输入部输入所述实际照射位置关联值以及所述目标照射位置;以及
运算部,该运算部在所述带电粒子束的照射区域上、显示表示所述目标照射位置的目标值显示图形以及表示所述实际照射位置的测定值显示图形时,在所述目标照射位置的坐标上显示所述目标值显示图形,在将利用变形系数对所述照射位置误差进行运算后的坐标加上所述目标照射位置而得到的坐标、即显示坐标上显示所述测定值显示图形,并显示将所述测定值显示图形与所述目标值显示图形相连接的线段。
6.如权利要求5所述的粒子射线照射装置,其特征在于,
所述运算部具有:
测定值运算部,该测定值运算部计算所述显示坐标,并在所述显示坐标上显示所述测定值显示图形;
目标值运算部,该目标值运算部在所述目标照射位置的坐标上显示所述目标值显示图形;以及
线段显示运算部,该线段显示运算部显示将所述测定值显示图形与所述目标值显示图形相连接的线段。
7.如权利要求5或6所述的粒子射线照射装置,其特征在于,
所述检测器是检测所述带电粒子束的通过位置的位置监视器,
所述实际照射位置关联值是所述位置监视器根据所述带电粒子束通过所述位置监视器的位置来输出的值。
8.如权利要求5或6所述的粒子射线照射装置,其特征在于,
所述检测器是检测所述扫描电磁铁的磁场的磁场传感器,
所述实际照射位置关联值是由所述磁场传感器检测出的磁场、即实际磁场。
9.如权利要求1至8中任一项所述的粒子射线照射装置,其特征在于,
所述变形系数包含:与所述照射区域的X方向相对应的X方向变形系数、以及与所述照射区域的Y方向相对应的Y方向变形系数,
所述运算部使用所述X方向变形系数以及所述Y方向变形系数来计算所述显示坐标。
10.如权利要求1至8中任一项所述的粒子射线照射装置,其特征在于,
所述变形系数被设定为1或上次使用的值即默认值,或者被设定为所输入的值。
11.如权利要求9所述的粒子射线照射装置,其特征在于,
所述X方向变形系数以及所述Y方向变形系数分别被设定为1或上次使用的值即默认值,或者被设定为所输入的值。
12.如权利要求1至4、以及9至11中任一项所述的粒子射线照射装置,其特征在于,
所述数据处理装置在所述显示部上显示以时间序列的方式来显示所述照射位置关联值误差的时间序列显示。
13.如权利要求1至4、以及9至12中任一项所述的粒子射线照射装置,其特征在于,
所述数据处理装置在所述显示部上显示误差矢量显示,该误差矢量显示对于所述照射位置关联值误差,以矢量的方式来显示与所述照射区域关联区域的X方向相对应的X方向误差、以及与所述照射区域关联区域的Y方向相对应的Y方向误差。
14.如权利要求5至8中任一项所述的粒子射线照射装置,其特征在于,
所述数据处理装置在所述显示部上显示以时间序列的方式来显示所述照射位置误差的时间序列显示。
15.如权利要求5至8中任一项所述的粒子射线照射装置,其特征在于,
所述数据处理装置在所述显示部上显示误差矢量显示,该误差矢量显示对于所述照射位置误差,以矢量的方式来显示与所述照射区域的X方向相对应的X方向误差、以及与所述照射区域的Y方向相对应的Y方向误差。
16.一种粒子射线治疗装置,其特征在于,包括:
射束发生装置,该射束发生装置生成带电粒子束,并利用加速器使该带电粒子束加速;
射束传输系统,该射束传输系统传输经所述加速器加速后的带电粒子束;以及
粒子射线照射装置,该粒子射线照射装置将经所述射束传输系统传输的带电粒子束照射到照射对象上,
所述粒子射线照射装置是权利要求1至15中任一项所述的粒子射线照射装置。
17.一种数据显示程序,在显示部上显示粒子射线照射装置的数据,该粒子射线照射装置利用扫描电磁铁使经加速器加速后的带电粒子束进行扫描,并向照射对象照射,该数据显示程序用于执行如下步骤:
输入目标照射数据以及实际照射数据的步骤,该目标照射数据是和所述带电粒子束的目标照射位置相关联的目标照射位置关联值的数据,该实际照射数据是和所述带电粒子束的照射位置相关联的实际照射位置关联值的数据;
输入变形系数的步骤;
在和所述带电粒子束的照射区域相关联的照射区域关联区域上、计算显示坐标的步骤,该显示坐标是将利用所述变形系数对照射位置关联值误差进行运算后的坐标、加上所述目标照射位置关联值而得到的坐标,该照射位置关联值误差是所述实际照射位置关联值的、相对于所述目标照射位置关联值的误差;以及
在所述照射区域关联区域上、分别在所述显示坐标及所述目标照射位置关联值的坐标上显示测定值显示图形以及目标值显示图形、并显示线段的步骤,其中,该测定值显示图形表示所述实际照射位置关联值,该目标值显示图形表示所述目标照射位置关联值,该线段将所述测定值显示图形与所述目标值显示图形相连接。
18.一种数据显示程序,在显示部上显示粒子射线照射装置的数据,该粒子射线照射装置利用扫描电磁铁使经加速器加速后的带电粒子束进行扫描,并向照射对象照射,该数据显示程序用于执行如下步骤:
输入目标照射数据以及实际照射数据的步骤,该目标照射数据是所述带电粒子束的目标照射位置的数据,该实际照射数据是和所述带电粒子束的照射位置相关联的实际照射位置关联值的数据;
输入变形系数的步骤;
在所述带电粒子束的照射区域上、基于所述实际照射位置关联值来计算所述带电粒子束的实际照射位置、并计算显示坐标的步骤,该显示坐标是将利用所述变形系数对照射位置误差进行运算后的坐标、加上所述目标照射位置而得到的坐标,该照射位置误差是所述实际照射位置的、相对于所述带电粒子束的目标照射位置的误差;以及
在所述照射区域上、分别在所述显示坐标及所述目标照射位置的坐标上显示测定值显示图形以及目标值显示图形、并显示线段的步骤,其中,该测定值显示图形表示所述实际照射位置,该目标值显示图形表示所述目标照射位置,该线段将所述测定值显示图形与所述目标值显示图形相连接。
CN201080070331.2A 2010-12-24 2010-12-24 粒子射线照射装置、粒子射线治疗装置以及数据显示方法 Active CN103228319B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073373 WO2012086062A1 (ja) 2010-12-24 2010-12-24 粒子線照射装置、粒子線治療装置及びデータ表示プログラム

Publications (2)

Publication Number Publication Date
CN103228319A true CN103228319A (zh) 2013-07-31
CN103228319B CN103228319B (zh) 2016-05-04

Family

ID=46313361

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080070331.2A Active CN103228319B (zh) 2010-12-24 2010-12-24 粒子射线照射装置、粒子射线治疗装置以及数据显示方法

Country Status (6)

Country Link
US (1) US8563943B2 (zh)
EP (1) EP2656878B1 (zh)
JP (1) JP5496364B2 (zh)
CN (1) CN103228319B (zh)
TW (1) TWI418379B (zh)
WO (1) WO2012086062A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107648749A (zh) * 2017-09-28 2018-02-02 上海联影医疗科技有限公司 放射治疗系统及其束流控制装置和束流准直方法
CN107708803A (zh) * 2015-07-01 2018-02-16 三菱电机株式会社 剂量分布运算装置、粒子射线治疗装置及剂量分布运算方法
CN110740782A (zh) * 2017-03-27 2020-01-31 医科达私人有限公司 用于带电粒子束终点的磁场定位的系统和方法
CN110787376A (zh) * 2019-11-29 2020-02-14 合肥中科离子医学技术装备有限公司 一种基于质子成像的肿瘤患者定位系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010048233B4 (de) * 2010-10-12 2014-04-30 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Verfahren zur Erstellung einer Bestrahlungsplanung sowie Verfahren zur Applizierung einer ortsaufgelösten Strahlendosis
US8854048B2 (en) * 2011-03-10 2014-10-07 Mitsubishi Electric Corporation Sensitivity correction method for dose monitoring device and particle beam therapy system
JP6692115B2 (ja) * 2014-02-25 2020-05-13 株式会社日立製作所 ビーム位置監視装置及び荷電粒子ビーム照射システム
JP6869479B2 (ja) * 2015-11-02 2021-05-12 東芝エネルギーシステムズ株式会社 粒子線ビーム照射装置及び粒子線ビーム表示プログラム
JP6588158B2 (ja) * 2016-05-19 2019-10-09 株式会社日立製作所 線量誤差分布演算装置および線量誤差分布演算装置を備えた粒子線治療装置
WO2019058536A1 (ja) * 2017-09-25 2019-03-28 三菱電機株式会社 安全解析監視装置及び粒子線治療装置
JP2020099569A (ja) 2018-12-25 2020-07-02 株式会社日立製作所 粒子線治療システムおよび線量分布評価システム、ならびに粒子線治療システムの作動方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661773A (en) * 1992-03-19 1997-08-26 Wisconsin Alumni Research Foundation Interface for radiation therapy machine
US20020049362A1 (en) * 2000-10-20 2002-04-25 Wei Ding Computer assisted radiotherapy dosimeter system and a method therefor
US6736831B1 (en) * 1999-02-19 2004-05-18 Gesellschaft Fuer Schwerionenforschung Mbh Method for operating an ion beam therapy system by monitoring the distribution of the radiation dose
CN101032651A (zh) * 2006-03-10 2007-09-12 三菱重工业株式会社 放射治疗装置控制设备以及放射线照射方法
US20090003524A1 (en) * 2007-06-27 2009-01-01 Mitsubishi Electric Corporation Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
JP2009160309A (ja) * 2008-01-09 2009-07-23 Toshiba Corp 放射線治療システム、放射線治療支援装置及び放射線治療支援プログラム
JP2010183976A (ja) * 2009-02-10 2010-08-26 Mitsubishi Heavy Ind Ltd 放射線治療装置制御装置および放射線照射方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298115B1 (en) * 2000-01-13 2001-10-02 Scanditronix Medical Ab Method for calibrating a detector means
JP4310319B2 (ja) * 2006-03-10 2009-08-05 三菱重工業株式会社 放射線治療装置制御装置および放射線照射方法
JP2008054973A (ja) * 2006-08-31 2008-03-13 Hitachi Ltd スキャニング方式の粒子線照射装置
US7856082B2 (en) * 2007-02-27 2010-12-21 Wisconsin Alumni Research Foundation System and method for optimization of a radiation therapy plan in the presence of motion
JP4726869B2 (ja) 2007-08-07 2011-07-20 株式会社日立製作所 荷電粒子ビーム照射システム及びその制御方法
US8238516B2 (en) 2008-01-09 2012-08-07 Kabushiki Kaisha Toshiba Radiotherapy support apparatus
US8212223B2 (en) 2009-06-09 2012-07-03 Mitsubishi Electric Corporation Particle beam irradiation apparatus
US8217364B2 (en) 2009-06-09 2012-07-10 Mitsubishi Electric Corporation Particle beam irradiation apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661773A (en) * 1992-03-19 1997-08-26 Wisconsin Alumni Research Foundation Interface for radiation therapy machine
US6736831B1 (en) * 1999-02-19 2004-05-18 Gesellschaft Fuer Schwerionenforschung Mbh Method for operating an ion beam therapy system by monitoring the distribution of the radiation dose
US20020049362A1 (en) * 2000-10-20 2002-04-25 Wei Ding Computer assisted radiotherapy dosimeter system and a method therefor
CN101032651A (zh) * 2006-03-10 2007-09-12 三菱重工业株式会社 放射治疗装置控制设备以及放射线照射方法
US20090003524A1 (en) * 2007-06-27 2009-01-01 Mitsubishi Electric Corporation Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same
JP2009160309A (ja) * 2008-01-09 2009-07-23 Toshiba Corp 放射線治療システム、放射線治療支援装置及び放射線治療支援プログラム
JP2010183976A (ja) * 2009-02-10 2010-08-26 Mitsubishi Heavy Ind Ltd 放射線治療装置制御装置および放射線照射方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708803A (zh) * 2015-07-01 2018-02-16 三菱电机株式会社 剂量分布运算装置、粒子射线治疗装置及剂量分布运算方法
CN107708803B (zh) * 2015-07-01 2020-04-21 株式会社日立制作所 剂量分布运算装置、粒子射线治疗装置及剂量分布运算方法
CN110740782A (zh) * 2017-03-27 2020-01-31 医科达私人有限公司 用于带电粒子束终点的磁场定位的系统和方法
CN110740782B (zh) * 2017-03-27 2021-06-15 医科达私人有限公司 用于带电粒子束终点的磁场定位的系统和方法
US11253728B2 (en) 2017-03-27 2022-02-22 Elekta Pty Ltd. Systems and methods for magnetic field localization of charged particle beam end point
US11904183B2 (en) 2017-03-27 2024-02-20 Elekta Pty Ltd. Systems and methods for magnetic field localization of charged particle beam end point
CN107648749A (zh) * 2017-09-28 2018-02-02 上海联影医疗科技有限公司 放射治疗系统及其束流控制装置和束流准直方法
CN107648749B (zh) * 2017-09-28 2020-02-07 上海联影医疗科技有限公司 放射治疗系统及其束流控制装置和束流准直方法
CN110787376A (zh) * 2019-11-29 2020-02-14 合肥中科离子医学技术装备有限公司 一种基于质子成像的肿瘤患者定位系统
CN110787376B (zh) * 2019-11-29 2021-04-06 合肥中科离子医学技术装备有限公司 一种基于质子成像的肿瘤患者定位系统

Also Published As

Publication number Publication date
WO2012086062A1 (ja) 2012-06-28
EP2656878B1 (en) 2019-06-19
EP2656878A4 (en) 2014-10-15
US20120161030A1 (en) 2012-06-28
JPWO2012086062A1 (ja) 2014-05-22
TW201226006A (en) 2012-07-01
JP5496364B2 (ja) 2014-05-21
EP2656878A1 (en) 2013-10-30
US8563943B2 (en) 2013-10-22
TWI418379B (zh) 2013-12-11
CN103228319B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN103228319A (zh) 粒子射线照射装置、粒子射线治疗装置以及数据显示程序
EP3517171B1 (en) Neutron capture therapy system
CN100403986C (zh) 医学放射治疗相关设备定位精度的检测方法及其装置
EP2707100B1 (en) An apparatus for particle beam range verification
CN103785113A (zh) 用于发射引导的放疗的方法和装置
CN110366439A (zh) 摆位方法、装置及放射治疗系统
US6907282B2 (en) Intensity map resampling for multi-leaf collimator compatibility
CN104155671A (zh) 一种辐射安全监测设备检测系统及设计方法
CN211675930U (zh) 放射线照射系统
TW202202197A (zh) 中子劑量檢測裝置及中子捕獲治療設備
CN208355948U (zh) 中子捕获治疗系统
CN110787376A (zh) 一种基于质子成像的肿瘤患者定位系统
JP2024038221A (ja) 放射線照射システム
CN1589741B (zh) X-射线ct装置
Geoghegan et al. Mechanical characterization and validation of the dynamic collimation system prototype for proton radiotherapy
CN110101977A (zh) 一种实现医用直线加速器位置校准的方法及装置
JP4436342B2 (ja) 放射線治療装置制御装置および放射線照射方法
JP5078972B2 (ja) 放射線治療装置制御方法および放射線治療装置制御装置
CN201939889U (zh) 一种医学放射治疗设备的定位精度检测装置
JPH02104490A (ja) 3次元レーザ加工機用ティーチング方法およびその装置
JP2015019693A (ja) 放射線治療システム、放射線治療装置、及び医用画像処理装置
Bloch et al. The Indiana University proton radiation therapy project
CN2597943Y (zh) 以激光空间定位显示放射线工作点标准量具
JPWO2022002231A5 (zh)
Drosg et al. Absolute differential cross sections over the entire angular range for the reaction/sup 3/H (d, n)/sup 4/He at 7. 0 and 10. 0 MeV

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190125

Address after: Tokyo, Japan

Patentee after: Hitachi Ltd.

Address before: Tokyo, Japan

Patentee before: Missubishi Electric Co., Ltd.