WO2019058536A1 - 安全解析監視装置及び粒子線治療装置 - Google Patents

安全解析監視装置及び粒子線治療装置 Download PDF

Info

Publication number
WO2019058536A1
WO2019058536A1 PCT/JP2017/034429 JP2017034429W WO2019058536A1 WO 2019058536 A1 WO2019058536 A1 WO 2019058536A1 JP 2017034429 W JP2017034429 W JP 2017034429W WO 2019058536 A1 WO2019058536 A1 WO 2019058536A1
Authority
WO
WIPO (PCT)
Prior art keywords
interest
amount
particle beam
irradiation
signal
Prior art date
Application number
PCT/JP2017/034429
Other languages
English (en)
French (fr)
Inventor
原田 久
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/034429 priority Critical patent/WO2019058536A1/ja
Publication of WO2019058536A1 publication Critical patent/WO2019058536A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a particle beam therapy apparatus that performs therapy by irradiating a particle beam to an affected area such as a tumor, and a safety analysis and monitoring apparatus that monitors parameters for securing the safety of particle beam irradiation.
  • Particle therapy uses a device such as an accelerator to accelerate charged particles such as protons or carbon ions to several hundred mega electron volts, and irradiates the patient with charged particles (particle beams) in the form of tumor in the body.
  • an accelerator to accelerate charged particles such as protons or carbon ions to several hundred mega electron volts, and irradiates the patient with charged particles (particle beams) in the form of tumor in the body.
  • Dose to treat cancer Generally, when an object (including the human body) is irradiated with particle beams accelerated by an accelerator, the three-dimensional dose distribution in the object has a characteristic that the dose maximum peak is present at a certain point. This dose maximum peak is called a Bragg peak.
  • the irradiation field to which the particle beam is irradiated is formed by irradiating the particle beam by controlling the position of the Bragg peak.
  • particle beam radiotherapy using particle beam can focus on cancerous area as compared with conventional radiotherapy such as X-ray, gamma ray etc. It is possible to irradiate with particle beam and to treat without affecting normal cells.
  • a safety device that monitors the beam position of a particle beam with a beam position monitor and immediately shuts off (beams off) the particle beam if the beam position deviates from an allowable range, that is, an interlock device (See, for example, Patent Document 1 and Patent Document 2).
  • an interlock device In this interlock device, in order to secure the safety of particle beam irradiation, parameters such as the beam position of the particle beam to be irradiated are monitored individually, and the difference between each measured value and the desired value (set value) is measured. The irradiation beam is automatically stopped when the threshold provided for each item is exceeded.
  • the amount of interest in terms of beam position error, it is not realistic to always meet the threshold set by the interlock, or it becomes an excessive accuracy requirement for the desired dose distribution accuracy.
  • the difference (deviation) between the monitor value of the beam position and the setting value is random and Gaussian distribution
  • the standard deviation is 0.25 mm and the deviation threshold is ⁇ 0.5 mm, ie, the upper threshold is +0
  • the probability of exceeding the threshold is 4.55%, and 455 spots will be out of range if 10,000 spots are irradiated with one treatment irradiation. It will If 100 therapeutic irradiations are given in a day, the interlock will be activated 45,500 times.
  • the number of interlocking operations is for one parameter, and when the parameter to be monitored increases, the frequency of occurrence of interlocking operations further increases, which significantly hinders the execution of particle beam irradiation. Further, the interlock indicates an abnormal state, and if such a state occurs frequently, the operator gets used to the "abnormal state", which is not desirable in operation. If the allowable range of interlock is expanded to 6 ⁇ (6 times the standard deviation ⁇ ), the number of times of irradiation termination can be reduced to 0.2 times for 100 treatment irradiations, but the allowable range of positional deviation is 1. It needs to be as wide as 5 mm. That is, high precision particle beam irradiation can not be performed.
  • the particle beam treatment system of patent document 1 As a method of improving such a subject, the particle beam treatment system of patent document 1, the beam position monitoring apparatus of patent document 2, a charged particle beam irradiation system, etc. are reported.
  • the method of setting the allowable range of the beam position disclosed in Patent Document 1 and Patent Document 2 is based on Formula (1).
  • the method of setting the allowable range of the beam position in Patent Document 1 by setting Pimin and Pimax in accordance with the target beam irradiation amount of each irradiation spot, the width of the interlock is widened for the irradiation spot with a small irradiation dose. It is a method.
  • the present invention solves the above-mentioned problems, and a safety analysis and monitoring apparatus capable of eliminating unnecessary interruption of irradiation by interlock operation and enhancing the efficiency of particle beam treatment without impairing the safety of particle beam irradiation. Intended to provide.
  • the safety analysis and monitoring apparatus of the present invention is a safety analysis and monitoring apparatus that determines the irradiation state of particle beams in a particle beam therapy system that scans particle beams accelerated by an accelerator to irradiate a patient.
  • the irradiation of the particle beam is interrupted when the amount of interest matches the predetermined interruption condition with respect to the amount of interest to be determined based on the data output from the device of the particle beam therapy apparatus.
  • an amount-of-interest determination circuit unit that generates an interruption command for instructing
  • the amount-of-interest determination circuit unit generates an interruption command based on a plurality of pieces of information.
  • the plurality of information means that an event in which the amount of interest exceeds the at least one allowable range set for the amount of interest is detected, and the number of times of detection reaches a predetermined number of times or the amount of interest exceeds the allowable range It is the information which added the additional information other than the information of the amount of interest to the event.
  • the safety analysis and monitoring apparatus detects an event in which the amount of interest exceeds the allowable range, and information on the number of times the detection has reached a predetermined number of times or information on the amount of interest for the event in which the amount of interest exceeds the allowable range Since an interruption command is generated based on information in which other additional information is taken into consideration, unnecessary interruption of particle beam irradiation by interlock operation is eliminated without compromising the safety of particle beam irradiation, and the efficiency of particle beam therapy is eliminated. Can be enhanced.
  • FIG. 1 is a block diagram of a particle beam therapy system according to Embodiment 1 of the present invention.
  • 1 is a configuration diagram of a safety analysis and monitoring apparatus according to Embodiment 1 of the present invention. It is a detailed block diagram of the safety analysis monitoring apparatus of FIG. 2, and an interlock system. It is a block diagram of the 1st amount of interest determination circuit part of FIG. It is a block diagram of the 2nd amount determination circuit part of FIG.
  • FIG. 6 is a block diagram of the digital arithmetic circuit of FIGS. 4 and 5; It is a block diagram of the interlock determination apparatus of FIG. It is a block diagram of the safety analysis monitoring apparatus by Embodiment 2 of this invention.
  • FIG. 2 It is a block diagram of the interlock system by Embodiment 2 of this invention. It is a detailed block diagram of the safety analysis monitoring apparatus of FIG. It is a block diagram of the 1st amount of interest determination circuit part of FIG. It is a block diagram of the 2nd amount determination circuit part of FIG. It is a block diagram of the 3rd amount of interest determination circuit part of FIG. It is a block diagram of the 4th amount determination circuit part of FIG. It is a figure which shows the structure of the safety analysis monitoring apparatus by Embodiment 3 of this invention. It is a block diagram of the 1st amount of interest determination circuit part of FIG. It is a block diagram of the 2nd amount determination circuit part of FIG.
  • FIG. 19 is a block diagram of a first interest amount determination circuit unit of FIG. 18;
  • FIG. 19 is a configuration diagram of a second interest amount determination circuit unit of FIG. 18;
  • FIG. 19 is a block diagram of another first interest amount determination circuit unit of FIG. 18;
  • FIG. 19 is a configuration diagram of another second interest amount determination circuit unit of FIG. 18;
  • FIG. 25 is a block diagram of a first interest amount determination circuit unit of FIG. 24;
  • FIG. 25 is a configuration diagram of a second interest amount determination circuit unit of FIG. 24.
  • FIG. 27 is a diagram for explaining an example of setting the counter threshold in FIG. 25 and FIG.
  • FIG. 27 is a figure which shows the structure of the safety analysis monitoring apparatus by Embodiment 6 of this invention.
  • FIG. 30 is a configuration diagram of a second interest amount determination circuit unit of FIG. 29.
  • FIG. 31 is a configuration diagram of the digital arithmetic circuit of FIGS. 30 and 31. It is a figure explaining the integrating
  • FIG. 1 is a block diagram of a particle beam therapy system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram of the safety analysis and monitoring apparatus according to the first embodiment of the present invention
  • FIG. 3 is a detailed block diagram of the safety analysis and monitoring apparatus of FIG. 4 is a block diagram of the first amount-of-interest determination circuit unit of FIG. 3
  • FIG. 5 is a block diagram of the second amount-of-interest determination circuit unit of FIG. 6 is a block diagram of the digital arithmetic circuit of FIGS. 4 and 5
  • FIG. 7 is a block diagram of the interlock judgment device of FIG.
  • the configuration of the particle beam therapy system 100 will be described with reference to FIG.
  • the particle beam treatment apparatus 100 accelerates the charged particles to a necessary energy and generates an accelerated charged particle as the particle beam 11, and the particle beam irradiation apparatus 101 and the affected area of the patient 14 (particle irradiation) Beam transport system 121 for transporting to irradiation point 13 in object 12), particle beam irradiation apparatus 101 for irradiating particle beam 11 transported to the affected part (irradiation target 12) of patient 14, and accelerator control system for controlling accelerator 120 And an irradiation control system 103 for controlling the accelerator control system 104 and the particle beam irradiation apparatus 101, and a safety analysis and monitoring apparatus 300 and an interlock system 200 for ensuring the safety of particle beam irradiation.
  • the amount of interest Pi is a parameter (determination target parameter) monitored by the safety analysis and monitoring apparatus 300 and the interlock system 200.
  • i is a subscript identifying 1 to N monitored parameters.
  • the interlock system 200 is a system for confirming and securing the safety of particle beam irradiation, and shows irradiation interruption generated based on the abnormality determination of the interlock system 200 and the abnormality determination of the safety analysis and monitoring apparatus 300.
  • the accelerator 120 immediately shuts off the particle beam 11 in response to the irradiation interruption signal sige3 to control the particle irradiation to be interrupted.
  • the safety analysis and monitoring apparatus 300 determines the system state by multiple events in each input determination target parameter Pi, that is, determines the presence or absence of an abnormality, and generates multiple events. It is an apparatus for automatically interrupting the irradiation of the particle beam 11 when the number of times exceeds a threshold.
  • the safety analysis and monitoring apparatus 300 indicates a command (interruption command) to interrupt the irradiation of the particle beam 11 when the number of occurrences of the plurality of events exceeds the threshold value, that is, the irradiation interrupt signal sige2 indicating the irradiation suspension. And outputs to the interlock system 200 a radiation interruption signal sige 2 indicating the radiation interruption. Whether or not the number of occurrences of multiple events related to the amount of interest has exceeded a threshold is an interruption condition for interrupting the irradiation of the particle beam 11.
  • the interlock system 200 determines the system state by the single event of each determination target parameter Pi input similarly to the conventional "single event interlock system", and each determination target parameter Pi exceeds the allowable value.
  • An irradiation interruption signal sige1 (see FIG. 3) indicating a command (interruption command) for interrupting the irradiation of the particle beam 11 is generated.
  • the interlock system 200 generates an irradiation interruption signal sige3 indicating irradiation interruption when at least one of an irradiation interruption signal sige1 indicating irradiation interruption and an irradiation interruption signal sige2 indicating irradiation interruption is generated, and indicates the irradiation interruption.
  • the irradiation interruption signal sige3 is output to the accelerator 120.
  • the accelerator control system 104 includes an accelerator timing system 105 that controls the timing of incidence, acceleration, and emission of charged particles in the accelerator 120.
  • the irradiation interruption signal sige3 indicating the irradiation interruption is a command (interruption command) to interrupt the irradiation of the particle beam 11.
  • the signal level at which the irradiation interruption signal sige1, the irradiation interruption signal sige2, and the irradiation interruption signal sige3 indicate that the irradiation is interrupted is the high level (signal value 1).
  • the signal level at which the irradiation interruption signal sige1, the irradiation interruption signal sige2, and the irradiation interruption signal sige3 do not indicate the irradiation interruption is a low level (signal value 0).
  • the particle beam irradiation apparatus 101 includes an X scanning electromagnet 107 and a Y scanning electromagnet 106 for scanning the particle beam 11 in a direction (X direction, Y direction) perpendicular to the beam traveling direction ( ⁇ Z direction) at the irradiation point 13; X scanning electromagnet power supply 117 that outputs excitation current to X scanning electromagnet 107 and Y scanning electromagnet 106, Y scanning electromagnet power supply 116, dose monitor 108 that detects the irradiation dose of particle beam 11, and position that detects the irradiation position It comprises a monitor 109, a dose monitor 108, a signal processor 118 for generating a signal related to the position monitor 109, a position monitor signal processor 119 and the like.
  • the position monitor 109 there are known ones such as a multi-wire chamber, a multi-strip chamber or a fluorescent screen monitor. Both are for measuring the beam center position in the X direction and the Y direction in real time.
  • the position monitor 109 detects beam information for calculating the passing position (beam center position) and size through which the particle beam 11 scanned by the X scanning electromagnet 107 and the Y scanning electromagnet 106 passes.
  • the position monitor signal processing device 119 calculates the passing position (beam center position) and the size of the particle beam 11 based on beam information composed of an analog signal detected by the position monitor 109.
  • the accelerator control system 104, the Y scanning electromagnet power supply 116, the X scanning electromagnet power supply 117, the signal processing device 118, the position monitor signal processing device 119 and the irradiation control system 103 are connected by the irradiation control system wiring 21.
  • the interlock system 200 is connected to the Y scanning electromagnet power supply 116, the X scanning electromagnet power supply 117, the signal processing device 118, the position monitor signal processing device 119, and the accelerator 120 by the interlock system wiring 22.
  • the safety analysis and monitoring apparatus 300 is connected to the irradiation control system 103, the Y scanning electromagnet power supply 116, the X scanning electromagnet power supply 117, the signal processing unit 118, the position monitor signal processing unit 119, and the accelerator 120 by the safety monitoring system wiring 23.
  • the medical staff prepares a treatment plan using the treatment planning device 102 in advance.
  • the treatment volume in the body is divided into each layer in the beam traveling direction (-Z direction) in the assumed irradiation direction, and spots in the plane of each layer perpendicular to the Z direction are spots at grid intersections in the X and Y directions. Place the (irradiation point 13) and calculate the dose to irradiate each spot.
  • the irradiation parameters determined in the treatment plan are expanded in advance to the parameters (plan information data 4) of the particle beam treatment apparatus 100, and upon irradiation of the particle beam 11, the particle beam treatment apparatus 100 performs treatment irradiation accordingly.
  • the position of the spot to be irradiated is controlled by deflecting the particle beam 11 in the X direction and the Y direction by the X scanning electromagnet 107 and the Y scanning electromagnet 106.
  • the position in the Z direction is determined by the beam energy of the particle beam 11 and the composition in the body.
  • the particle beam therapy system 100 confirms by the position monitor 109 that the measurement values of the X position and Y position, which are beam irradiation positions, conform to the treatment plan, and the dose according to the treatment plan is measured while measuring the dose by the dose monitor 108. Confirm that it has been applied to each spot and irradiate it. In the depth direction, each layer determined by the energy of the particle beam 11 is irradiated.
  • the spot position to be irradiated in the i-th determined in the treatment plan is set as a planned position Ppi (Xpi, Ypi, Zpi).
  • a planned position Ppi in the X direction is described as a planned position Xpi
  • a planned position Ppi in the Y direction is described as a planned position Ypi
  • a planned position Ppi in the Z direction is described as a planned position Zpi.
  • the X scanning electromagnet power supply 117 and the Y scanning electromagnet power supply 116 are X scanning electromagnet 107, respectively.
  • the excitation current of the Y scanning electromagnet 106 is changed to move the spot position to the next spot position.
  • the particle beam therapy apparatus 100 changes the energy of the particle beam 11 and irradiates the next layer with the particle beam 11. Then, the particle beam treatment apparatus 100 irradiates all the layers with the particle beam 11, and then the irradiation of the particle beam 11 is temporarily stopped. This series of irradiation is called one irradiation. If a plurality of portals have been designated by the treatment plan, the patient terminates the treatment on that day and leaves the room once after irradiating the plurality of portals from the irradiation angle designated by the treatment plan. Thus, from the patient's entry into the irradiation room to the exit is one session.
  • position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) will be described as an amount of interest to be determined by the safety analysis and monitoring apparatus 300.
  • ⁇ Xi is a positional deviation in the X direction
  • ⁇ Yi is a positional deviation in the Y direction.
  • the positional deviation ⁇ Xi in the X direction is described as positional deviation ⁇ Xi
  • the positional deviation ⁇ Yi in the Y direction is described as positional deviation ⁇ Yi.
  • the particle beam 11 scanned by the particle beam irradiation apparatus 101 is transported from the virtual focus set in the vicinity of the X scanning electromagnet 107 and the Y scanning electromagnet 106 toward the irradiation position (irradiation point 13) of the patient.
  • the planned position Xpi, Ypi in each layer (in the planned position Zpi layer) determined in the treatment plan is at the position of the patient 14 and the position monitor 109 for detecting the beam position of the particle beam 11 is upstream from the patient 14
  • the planned position Ppi (Xpi, Ypi) of the i-th spot is converted to the ideal position Pmi (Xmi, Ymi) on the position monitor 109.
  • the ideal position Pmi in the X direction is described as an ideal position Xmi
  • the ideal position Pmi in the Y direction is described as an ideal position Ymi.
  • the beam position of the particle beam 11 actually irradiated by the position monitor 109 is measured in real time as a measurement position P mmi (X mmi, Y mmi).
  • the measurement position Pmmi in the X direction is referred to as a measurement position Xmmi
  • the measurement position Pmmi in the Y direction is referred to as a measurement position Ymmi.
  • the beam position measured by the position monitor 109 is calculated and read out in real time by the position monitor signal processor 119 at a certain time period (for example, in the unit of 20 microseconds).
  • the beam position information is an example of the amount-of-interest information data2.
  • beam position information There are several types of beam position information, although this varies somewhat depending on the device. For example, “beam position of reading unit” read out at a certain cycle like 20 microseconds, or “measured position” is calculated by moving average of 10 readings, for example “time average beam position”, or calculated for each spot Several quantities are output, such as "spot beam position". Where these quantities do not need to be specifically identified, they will be referred to simply as "beam position" where appropriate. The same applies to the positional deviation, and any of the above three types of the amount of interest, that is, "positional deviation of reading unit", “time average positional deviation", and “spot positional deviation” can be used.
  • the safety analysis and monitoring apparatus 300 includes a determination logic unit 302, a display unit 304 that displays analysis results of the safety analysis and monitoring apparatus 300, a display operation unit 303 that calculates display contents to be displayed on the display unit 304, and a safety analysis and monitoring apparatus
  • a user interface unit 305 for setting 300 and a data storage unit 301 for storing data are provided.
  • the data storage unit 301, the determination logic unit 302, the display operation unit 303, the display unit 304, and the user interface unit 305 are connected to one another by a monitoring device wire 39.
  • the data storage unit 301 includes a memory.
  • the display unit 304 displays an alarm level, a numerical value of a counter, a graph, and the like.
  • the display unit 304 is, for example, a liquid crystal display panel or the like. A specific example of the display will be described later.
  • the safety analysis and monitoring apparatus 300 is provided in parallel to the interlock system 200 including the function of the conventional “single event interlock system”.
  • the amount-of-interest information data2 and accelerator operation information data1 are input to the safety analysis and monitoring apparatus 300 from the particle beam irradiation apparatus 101 and the accelerator timing system 105 of the accelerator 120.
  • the accelerator operation information data1 which is operation information of the accelerator 120 is input from the accelerator timing system 105, and as an example of the amount-of-interest information data2 of the particle beam irradiation apparatus 101, the position monitor signal processor 119 Monitor information is input, and irradiation status information data3, which is information on status signals such as spot irradiation completion, layer irradiation completion, one-field end, one-session end, etc., is input from the irradiation control system 103.
  • the plan information data 4 and the determination value information data 5 are input to the data storage unit 301.
  • the accelerator operation information data1 and the amount-of-interest information data2 include a determination target parameter Pi. Further, the determination target parameter Pi may be generated based on the accelerator operation information data1 and the amount of interest information data2. As described above, since the determination target parameter is the amount of interest, the amount of interest Pi is used as appropriate.
  • the safety analysis and monitoring apparatus 300 includes an interest amount monitoring unit 330a that monitors the position deviation ⁇ Xi, and an interest amount monitoring unit 330b that monitors the position deviation ⁇ Yi.
  • the interest amount monitoring unit 330a and the interest amount monitoring unit 330b are similarly implemented.
  • the determination logic unit 302 configures the amount-of-interest determination circuit unit 307 of each of the amounts-of-interest monitoring units 330 a and 330 b.
  • the display unit 304 displays the amount-of-interest information display 306 of each of the amounts-of-interest monitoring units 330 a and 330 b.
  • the interest amount determination circuit unit 307 includes a flag determination unit 310, a flag counter unit 311, and a signal generation circuit 36.
  • the flag determination unit 310 of the amount of interest monitoring unit 330a includes, for example, three comparison operation circuits 31a, 31b, and 31c.
  • the comparison operation circuits 31a, 31b, 31c compare the position deviation ⁇ Xi with the allowable range (the allowable values Vde1a, Vde1b, Vde1c which are the absolute values of the upper limit value and the lower limit value), and when the allowable range is exceeded, the flag (see FIG. 27). Output).
  • This flag is, for example, a pulse, and is output as flag signals fs1a, fs1b, fs1c.
  • the flag signals fs1a, fs1b and fs1c are signals including pulses corresponding to the number of flags, that is, pulse signals.
  • the flag counter unit 311 includes three digital operation circuits 32a, 32b and 32c according to the number of comparison operation circuits.
  • the digital arithmetic circuits 32a, 32b, 32c measure the number of flags generated, and generate interest level signals cs1a, cs1b, cs1c indicating exceeding of the counter threshold values Nc1a, Nc1b, Nc1c.
  • the digital arithmetic circuits 32a, 32b and 32c output the number of generated flags as count value signals cn1a, cn1b and cn1c.
  • the signal generation circuit 36 outputs the amount-of-interest level signal cs1c to the interlock system 200 as the irradiation interruption signal sige2a.
  • the signal level indicating that the amount-of-interest level signals cs1a, cs1b, cs1c exceed the threshold is the high level (signal value 1).
  • the signal level at which the amount-of-interest level signals cs1a, cs1b, cs1c do not indicate exceeding the threshold is the low level (signal value 0).
  • the signal level indicating that the amount-of-interest level signals cs2a, cs2b, and cs2c exceed the threshold is the high level (signal value 1).
  • the signal level at which the amount-of-interest level signals cs2a, cs2b, cs2c do not indicate exceeding the threshold is the low level (signal value 0).
  • the tolerance values Vde1a, Vde1b and Vde1c of the position deviation ⁇ Xi for determining whether or not to generate a flag are determined from the setting file (determination value information data 5) prepared in advance from the irradiation control system 103 or safety analysis monitoring
  • the setting is made from the user interface unit 305 of the device 300.
  • the setting files of the allowable values Vde1a, Vde1b, and Vde1c are stored in the data storage unit 301.
  • the setting of the counter thresholds Nc1a, Nc1b, and Nc1c may be performed in the same manner as setting of the allowable values Vde1a, Vde1b, and Vde1c of the position deviation ⁇ Xi, or may be set from the user interface unit 305.
  • the setting files for the counter thresholds Nc1a, Nc1b, and Nc1c are stored in the data storage unit 301.
  • a device such as a thumb wheel that is not easy for the operator to change the setting erroneously.
  • the signal of the irradiation status information data 3 from the irradiation control system 103 is used as the counter reset signal sigr 1 for resetting the counters 40 (see FIG. 6) of the digital arithmetic circuits 32 a, 32 b, 32 c.
  • the timing of reset by the counter reset signal sigr1 is, for example, for each session, for each gate, or for each layer.
  • the counter reset signal sigr1 is used properly depending on the operation to be displayed and the like.
  • the irradiation interruption signal sige 2 a output from the safety analysis and monitoring apparatus 300 is output to the interlock system 200.
  • the amount-of-interest determination circuit unit 307 of the amount-of-interest monitoring unit 330a includes three comparison operation circuits 31a, 31b, and 31c that determine the position deviation ⁇ Xi based on three allowable values Vde1a, Vde1b, and Vde1c There is.
  • Each of the comparison operation circuits 31a, 31b, and 31c includes an absolute value calculator 37 and a comparator 38.
  • the absolute value calculator 37 calculates the absolute value
  • One pulse in the flag signal fs1a is a flag.
  • the comparator 38 when the absolute value calculator 37 calculates the absolute value
  • the comparator 38 In the comparison operation circuit 31c, when the absolute value calculator 37 calculates the absolute value
  • the comparator 38 is described by a circuit symbol. “A” and “B” are two inputs, “A> B” is an output, and this output is output when A> B holds.
  • the flag generation condition of the amount-of-interest monitoring unit 330 a is that equation (4) is established.
  • the allowable value Vde1 is a comprehensive expression of the allowable values Vde1a, Vde1b, and Vde1c input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the allowable range of the positional deviation ⁇ Xi is in the range of ⁇ Vde1 to + Vde1.
  • the digital arithmetic circuits 32a, 32b, and 32c have the same configuration, and each include a counter 40 and a comparator 43, as shown in FIG.
  • the code of this digital operation circuit generally uses 32 and uses 32a, 32b and 32c for distinction.
  • the counter 40 receives the flag input signal Fin, measures the number of pulses appearing in the flag input signal Fin, and outputs a count value Ncnt.
  • the comparator 43 compares the count value Ncnt with the threshold value Nref, and outputs a level determination signal Flout indicating threshold excess when the count value Ncnt is larger than the threshold value Nref.
  • the comparator 43 outputs a level determination signal Flout which does not indicate exceeding the threshold value when the count value Ncnt is less than the threshold value Nref.
  • the counter 40 resets the count value Ncnt.
  • the signal level indicating that the level determination signal Flout exceeds the threshold is at a high level (signal value 1), and the signal level at which the level determination signal Flout does not indicate an excess on the threshold is a low level (signal value 0).
  • the digital operation circuits 32a, 32b and 32c of FIG. 4 are described by circuit symbols. In the digital operation circuits 32a, 32b and 32c of FIG.
  • f, n and r respectively represent input terminals for inputting the flag input signal Fin, the threshold value Nref and the reset signal Rst shown in FIG.
  • c and o respectively represent output terminals for outputting the count value Ncnt and the level determination signal Flout shown in FIG.
  • the digital arithmetic circuits 32a, 32b and 32c in the other figures are also described with the same circuit symbols.
  • the comparator 43 is described by a circuit symbol. “A” and “B” are two inputs, “A> B” is an output, and this output is output when A> B holds.
  • the flag determination unit 310 of the amount of interest monitoring unit 330 b is similar to the flag determination unit 310 of the amount of interest monitoring unit 330 a. As shown in FIG. 5, the flag determination unit 310 of the amount-of-interest monitor unit 330b includes, for example, three comparison operation circuits 31a, 31b, and 31c.
  • the comparison operation circuits 31a, 31b, 31c compare the position deviation .DELTA.Yi with the allowable range (the allowable values Vde2a, Vde2b, Vde2c which are absolute values of the upper limit value and the lower limit value), and output a flag if the allowable range is exceeded. This flag is output as pulsed flag signals fs2a, fs2b, fs2c.
  • the flag counter unit 311 includes three digital operation circuits 32a, 32b and 32c according to the number of comparison operation circuits.
  • the digital calculation circuits 32a, 32b, 32c measure the number of flags generated, and generate interest level signals cs2a, cs2b, cs2c indicating excess of the threshold when exceeding the counter thresholds Nc2a, Nc2b, Nc2c.
  • the digital arithmetic circuits 32a, 32b and 32c output the number of generated flags as count value signals cn2a, cn2b and cn2c.
  • the signal generation circuit 36 outputs the amount-of-interest level signal cs2c to the interlock system 200 as the irradiation interruption signal sige2b.
  • the absolute value calculator 37 in the comparison operation circuits 31a, 31b, 31c calculates the absolute value
  • the comparison operation circuit 31a shown in FIG. 5 outputs one pulse as the flag signal fs2a when the absolute value
  • the comparison operation circuit 31b shown in FIG. 5 outputs one pulse as the flag signal fs2b.
  • the comparison operation circuit 31c shown in FIG. 5 outputs one pulse as the flag signal fs2c when the absolute value
  • the flag generation condition of the amount-of-interest monitoring unit 330 b is that equation (5) is established.
  • the tolerance value Vde2 is a comprehensive expression of the tolerance values Vde2a, Vde2b, and Vde2c input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the allowable range of the positional deviation ⁇ Yi is in the range of ⁇ Vde2 to + Vde2.
  • the interlock system 200 includes an interlock determination device 201, an interlock state display device 202, and an irradiation interruption signal generation circuit 203.
  • the interlock determination device 201 includes comparison operation circuits 41a and 41b.
  • the comparison operation circuit 41a and the comparison operation circuit 41b have the same circuit configuration.
  • Each of the comparison operation circuits 41 a and 41 b includes an absolute value calculator 37 and a comparator 43.
  • the absolute value calculator 37 calculates the absolute value
  • the interruption signal sige1a is output.
  • the comparator 43 of the comparison operation circuit 41a outputs the irradiation interruption signal sige1a that does not indicate the irradiation interruption when the absolute value
  • the absolute value calculator 37 calculates the absolute value
  • the interruption signal sige 1 b is output.
  • the comparator 43 of the comparison operation circuit 41b outputs an irradiation interruption signal sige1b that does not indicate the irradiation interruption when the absolute value
  • the signal level at which the irradiation interruption signals sige1a and sige1b indicate that irradiation is interrupted is the high level (signal value 1).
  • the signal level at which the irradiation interruption signals sige1a and sige1b do not indicate the irradiation interruption is a low level (signal value 0).
  • the allowable value Vdel1a input to the interlock determination device 201 is set to a value larger than the allowable values Vde1a, Vde1b, and Vde1c input to the amount-of-interest monitoring unit 330a.
  • the tolerance value Vdel1a is 2 mm
  • the tolerance values Vde1a, Vde1b, and Vde1c are 0.5 mm, 0.75 mm, and 1 mm, respectively.
  • the allowable value Vdel1b input to the interlock determination device 201 is set to a value larger than the allowable values Vde2a, Vde2b, and Vde2c input to the amount-of-interest monitoring unit 330b.
  • the tolerance value Vdel1b is 2 mm
  • the tolerance values Vde2a, Vde2b, and Vde2c are 0.5 mm, 0.75 mm, and 1 mm, respectively.
  • the interlock state display device 202 displays an alarm display indicating that the positional deviations ⁇ Xi and ⁇ Yi have exceeded the allowable value when the irradiation interruption signals sige1a and sige1b indicate irradiation interruption.
  • the irradiation discontinuation signal generation circuit 203 receives the irradiation discontinuation signals sige1a and sige1b generated by the interlock determination device 201 and the irradiation cessation signals sige2a and sige2b generated by the safety analysis and monitoring device 300.
  • the irradiation interruption signal generation circuit 203 is, for example, a 4-input OR circuit (OR circuit), and when any one of the irradiation interruption signals sige1a, sige1b, sige2a, and sige2b indicates irradiation interruption, the irradiation interruption signal sige3 indicating irradiation interruption.
  • OR circuit 4-input OR circuit
  • the irradiation interruption signal generation circuit 203 outputs the irradiation interruption signal sige3 which does not indicate the irradiation interruption when all of the irradiation interruption signals sige1a, sige1b, sige2a, and sige2b do not indicate the irradiation interruption.
  • sige1 is used in a general manner, and in the case of being distinguished and described, sige1a and sige1b are used.
  • sige2 is generally used, and sige2a and sige2b are used in the case of describing separately.
  • Information such as an ideal position Pmi, a measurement position Pmmi, and a position deviation ⁇ Pm are transmitted to the safety analysis and monitoring apparatus 300 in real time from the position monitor signal processing apparatus 119. What is obtained by calculating these quantities in the safety analysis and monitoring apparatus 300 may not be transmitted from the outside. Further, as in the case of the plan information data 4, it may be transmitted in advance to the safety analysis and monitoring apparatus 300 and stored in the data storage unit 301 as long as it is an amount obtained before the start of irradiation.
  • the safety analysis / monitoring apparatus 300 determines in real time that the irradiation system is operating within the normal range of the positional deviation ⁇ Pm, which is an example of the amount of interest, based on the information.
  • the interlock system 200 installed in parallel with the safety analysis and monitoring apparatus 300 includes the interlock determination apparatus 201, and the interlock determination apparatus 201 operates in a single event based on the equation (1) The same operation as "system" is performed. That is, the interlock determination device 201 generates the irradiation suspension signal sige1 indicating the irradiation suspension at the first allowable value exceeding where any of the conditions of the equation (1) is not satisfied, and the irradiation suspension signal generation circuit 203 interrupts the irradiation. An irradiation interruption signal sige3 indicating the signal is output to the accelerator 120.
  • the interlock When the accelerator 120 receives the irradiation interruption signal sige 3 indicating the irradiation interruption, the interlock operates to interrupt the irradiation of the particle beam 11.
  • the allowable values Vdel1a and Vdel1b of the interlock determination device 201 are, for example, 2 mm.
  • the allowable range of deviation abnormality that is, the allowable values Vde1a, Vde1b, Vde1c, Vde2a, Vde2b, and Vde2c are set in a range narrower than the conventional “interlock system by single event”. Make a more accurate anomaly judgment.
  • events outside the allowable range increase. For this reason, in order to prevent unnecessary interruption of particle beam irradiation by interlock operation, there is a flag count without automatically interrupting irradiation of particle beam 11 in a single event in which the flag is generated only once.
  • the irradiation interruption signal sige2 is generated so as to automatically interrupt the irradiation of the particle beam 11 only when the value is reached.
  • the safety analysis and monitoring device 300 sets the threshold value of the tolerance range more strictly than the conventional “single event interlock system”, but increments the three counters 40 of the flag counter unit 311 each time a flag is generated.
  • an irradiation interruption signal sige2 indicating a command to automatically interrupt the irradiation of the particle beam 11 is output to the interlock system 200.
  • the irradiation interruption signal generation circuit 203 When the interlock system 200 receives the irradiation interruption signal sige 2 indicating the irradiation interruption, the irradiation interruption signal generation circuit 203 outputs the irradiation interruption signal sige 3 indicating the irradiation interruption to the accelerator 120. Therefore, the safety analysis and monitoring apparatus 300 determines the tolerance within a tighter range than the conventional “single event interlock system” and determines the number of occurrences of multiple events, thereby improving the irradiation accuracy of particle beam therapy, Unnecessary radiation interruption can be prevented.
  • the threshold value for the number of occurrences of the event determined by the safety analysis monitoring device 300 that is, the counter threshold values Nc1a, Nc1b, Nc1c, Nc2a, Nc2b, and Nc2c are set in advance and can be set for each irradiation session, but one During the irradiation of the fixed value.
  • the counter thresholds Nc1a and Nc2a are 20, the counter thresholds Nc1b and Nc2b are 10, and the counter thresholds Nc1c and Nc2c are 5.
  • the safety analysis and monitoring apparatus 300 displays the corresponding alarm level on the display unit 304 and presents the alarm level to the operator.
  • the irradiation indicating that the irradiation is interrupted only when an alarm higher than or equal to this level is generated
  • the interruption signal sige2 can be generated to automatically interrupt the irradiation of the particle beam 11 through the interlock system 200.
  • the cumulative number of occurrence of deviation error from the start of irradiation may also be displayed on the display unit 304 as the numerical displays 34a, 34b, and 34c.
  • FIG. 3 shows an example in which the safety analysis and monitoring apparatus 300 displays three alarm levels on the display unit 304 using three allowable ranges and three counter thresholds for each of the position deviations ⁇ Xi and ⁇ Yi.
  • the alarm display 33a indicating the alarm level 1 is displayed.
  • the count value signal cn1a indicating the count value is output from the digital arithmetic circuit 32a of the flag counter unit 311, and the count value indicated by the count value signal cn1a is displayed on the numerical value display 34a.
  • an alarm display 33b indicating alarm level 2 is displayed.
  • the count value signal cn1b indicating the count value is output from the digital arithmetic circuit 32b of the flag counter unit 311, and the count value indicated by the count value signal cn1b is displayed on the numerical value display 34b.
  • an alarm display 33c indicating alarm level 3 is displayed.
  • a count value signal cn1c indicating a count value is output from the digital arithmetic circuit 32c of the flag counter unit 311, and the count value indicated by the count value signal cn1c is displayed on the numerical value display 34c.
  • the allowable value Vdel1a of the interlock judgment device 201 is 2 mm, and the allowable values Vde1a, Vde1b, Vde1c of the amount of interest monitoring unit 330a are 0.5 mm, 0.75 mm, 1 mm, respectively, and the counter of the amount of interest monitoring unit 330a
  • the operation of the safety analysis and monitoring apparatus 300 will be described using an example in which the thresholds Nc1a, Nc1b, and Nc1c are 20, 10, and 5, respectively.
  • the magnitude relationship between the allowable values is Vdel1a> Vde1c> Vde1b> Vde1a.
  • the magnitude relationship of each counter threshold is Nc1a> Nc1b> Nc1c.
  • the interlock judgment device 201 When the absolute value
  • the accelerator 120 immediately shuts off the particle beam 11 and interrupts the irradiation of the particle beam 11 in response to the irradiation interrupt signal sige 3 indicating the irradiation suspension.
  • the comparison operation circuit 31a of the amount of interest monitoring unit 330a When the absolute value
  • the comparison operation circuit 31c of the amount of interest monitoring unit 330a When the absolute value
  • the amount-of-interest level signal cs1c indicating threshold excess is output by the signal generation circuit 36 of the amount-of-interest monitoring unit 330a to the interlock system 200 as an irradiation interruption signal sige2a indicating irradiation interruption.
  • the interlock system 200 receives (receives) the irradiation interruption signal sige 2 a indicating the irradiation interruption, it outputs the irradiation interruption signal sige 3 indicating the irradiation interruption to the accelerator 120 via the irradiation interruption signal generation circuit 203.
  • the accelerator 120 immediately shuts off the particle beam 11 and interrupts the irradiation of the particle beam 11 in response to the irradiation interrupt signal sige 3 indicating the irradiation suspension.
  • the operation of the amount of interest monitoring unit 330b that monitors the position deviation ⁇ Yi that is the amount of interest is the same as the amount of interest monitoring unit 330a that monitors the position deviation ⁇ Xi that is the amount of interest.
  • the allowable value Vdel1b of the interlock judgment device 201 is 2 mm, and the allowable values Vde2a, Vde2b, Vde2c of the interest amount monitoring unit 330b are 0.5 mm, 0.75 mm, 1 mm, respectively.
  • the operation of the safety analysis and monitoring apparatus 300 will be described using an example in which the thresholds Nc2a, Nc2b, and Nc2c are 20, 10, and 5, respectively.
  • the magnitude relationship between the allowable values is Vdel1b> Vde2c> Vde2b> Vde2a.
  • the magnitude relationship of each counter threshold is Nc2a> Nc2b> Nc2c.
  • the interlock determination device 201 When the absolute value
  • the accelerator 120 immediately shuts off the particle beam 11 and interrupts the irradiation of the particle beam 11 in response to the irradiation interrupt signal sige 3 indicating the irradiation suspension.
  • the comparison operation circuit 31a of the amount of interest monitoring unit 330b When the absolute value
  • the flag signal including the pulse-like flag of the comparison operation circuit 31b of the amount of interest monitoring unit 330b. fs2b is generated, and when the count value Ncnt, which is the number of flags measured by the digital operation circuit 32b, exceeds the counter threshold value Nc2b (10), the digital operation circuit 32b generates the amount of interest level signal cs2b indicating the threshold value excess Do.
  • the comparison operation circuit 31c of the amount of interest monitoring unit 330b When the absolute value
  • the amount-of-interest level signal cs2c indicating the exceeding of the threshold is output to the interlock system 200 by the signal generation circuit 36 of the amount-of-interest monitoring unit 330b as an irradiation interruption signal sige2b indicating irradiation interruption.
  • the interlock system 200 receives (receives) the irradiation suspension signal sige 2 b indicating the irradiation suspension, it outputs the irradiation suspension signal sige 3 indicating the irradiation suspension to the accelerator 120 via the irradiation suspension signal generation circuit 203.
  • the accelerator 120 immediately shuts off the particle beam 11 and interrupts the irradiation of the particle beam 11 in response to the irradiation interrupt signal sige 3 indicating the irradiation suspension.
  • the safety analysis and monitoring apparatus 300 changes the interlock width of the conventional “single-event interlock system” with respect to the amount of interest such as position deviations ⁇ Xi and ⁇ Yi to be monitored.
  • the tolerance within the width of the interlock and monitoring the number of events exceeding the tolerance, while improving the irradiation accuracy of the particle beam therapy, that is, the safety of the particle beam 11 irradiation It is possible to avoid unnecessary interruption of irradiation while securing the sex.
  • the interlock width is the upper limit value and the lower limit value (permissible value Vdel1a, Vdel1b) of the absolute value of the amount of interest, and the judgment width (permissible range) for judging the event occurrence in the safety analysis and monitoring device 300 is of interest.
  • the upper limit value and the lower limit value (absolute value Vde1a, Vde1b, Vde1c, Vde2a, Vde2b, Vde2c) of the absolute value of the amount have been described.
  • the upper limit value and the lower limit value of the interlock width and the determination width for determining the occurrence of an event may be different without being limited to the same absolute value.
  • the particle beam therapy system 100 includes an interlock system 200 including an interlock determination apparatus 201 that operates in the same manner as a conventional "single-event interlock system", and a safety analysis and monitoring apparatus 300.
  • the particle beam therapeutic apparatus 100 according to the first embodiment operates in the same manner as the conventional “single-event interlock system” in the interlock width of the interlock determination apparatus 201 (allowable values Vdel1a and Vdel1b).
  • the tolerance range (tolerance values Vde1a, Vde1b, Vde1c, Vde2a, Vde2b, Vde2c) smaller than the width (tolerance values Vdel1a, Vdel1b) of the interlock can be maintained.
  • the particle beam therapy system 100 according to the first embodiment has an error (difference from the tolerance) smaller than the width of the interlock (Vdel1a, Vdel1b).
  • the safety analysis and monitoring apparatus 300 if large positional deviations ⁇ Xi and ⁇ Yi occur even once, there is a high possibility that the particle beam irradiation device 101, the accelerator control system 104, and the accelerator 120 do not move properly. It may be detected by the interlock judgment device 201 which operates in the same manner as “a single event interlock system”, and the irradiation of the particle beam 11 may be interrupted. If the positional deviations ⁇ Xi and ⁇ Yi are smaller than the allowable values Vdel1a and Vdel1b of the interlock judgment device 201, the instantaneous interruption of the irradiation of the particle beam 11 is unnecessary because several times can be tolerated. In addition, although reset of the counter 40 of the flag counter unit 311 is performed for each layer depending on operation, or for each gate, for each session, etc., for rare events, it is an integrated value in units of 1 day or 1 week. It is also good.
  • the first information is information indicating which level of alarm has occurred, that is, alarm level information.
  • alarm level information for example, as shown in FIG. 3, alarm level 1, alarm level 2 and alarm level 3 are displayed on the display unit 304.
  • the second information is the spot number, the spot position, and the planned dose when the alarm occurs. This second information is displayed on the display unit 304 as the information display 35 shown in FIG. 3, for example.
  • the third information is the number of occurrences of events corresponding to each alarm level (the cumulative number in the irradiation period). As the third information, for example, as shown in FIG. 3, numerical displays 34 a, 34 b, 34 c are displayed on the display unit 304.
  • the safety analysis and monitoring apparatus 300 manages the first information, the second information, and the third information with the safety analysis and monitoring apparatus 300 to prevent the occurrence of an interlock, that is, particle beam irradiation. Understand the safety level of the system during irradiation of particle beam 11 while avoiding unnecessary interruptions, and whether the safety of particle beam therapy system 100 has a normal margin or fluctuates from normal It becomes possible to monitor.
  • the safety analysis and monitoring apparatus 300 may generate the irradiation interruption signal sige2 (sige2a, sige2b) by providing one tolerance value and counter threshold value for the positional deviations ⁇ Xi and ⁇ Yi. Even in this case, the safety analysis and monitoring apparatus 300 according to the first embodiment eliminates unnecessary interruption of particle beam irradiation due to the interlock operation and enhances the efficiency of particle beam therapy without compromising the safety of particle beam irradiation. Can.
  • the safety analysis and monitoring apparatus 300 of the first embodiment scans the irradiation state of the particle beam 11 in the particle beam therapy apparatus 100 which scans the particle beam 11 accelerated by the accelerator 120 and irradiates the patient 14 with it. It is a safety analysis and monitoring apparatus that determines the amount of interest Pi to be determined based on data (accelerator operation information data1, amount of interest information data2) output from the device of the particle beam therapy apparatus 100, and the amount of interest Pi is An amount-of-interest determination circuit unit 307 is provided that generates an interruption command (irradiation interruption signal sige2) for instructing the irradiation interruption of the particle beam 11 when the predetermined interruption conditions are met.
  • an interruption command irradiation interruption signal sige2
  • the amount-of-interest determination circuit unit 307 of the safety analysis and monitoring device 300 according to the first embodiment is concerned with at least one allowable range (the allowable value Vde1 which is the absolute value of the upper limit value and the lower limit value) set for the amount of interest Pi. It is characterized in that an interruption command (irradiation interruption signal sige2) is generated when an event in which the amount Pi exceeds is detected and the number of times of detection reaches a predetermined number of times (counter threshold Nc1c) more than twice. Due to this feature, the safety analysis and monitoring apparatus 300 according to the first embodiment detects an event in which the amount of interest Pi exceeds the allowable range, and the interruption command (irradiation is performed when the number of times of detection reaches a predetermined number of times or more. Since the interruption signal sige 2) is generated, the unnecessary interruption of the particle beam irradiation by the interlock operation can be eliminated without impairing the safety of the particle beam irradiation, and the efficiency of the particle beam therapy can be enhanced.
  • an interruption command
  • the particle beam therapy system 100 accelerates charged particles to necessary energy and generates an accelerated charged particle as a particle beam 11, an particle beam irradiation device 101, and a patient
  • the beam transport system 121 for transporting to the irradiation position 14 (irradiation point 13), the particle beam irradiation apparatus 101 for scanning the transported particle beam 11 to irradiate the patient 14, and the safety for determining the irradiation condition of the particle beam 11
  • an analysis and monitoring apparatus 300 Since the particle beam therapy system 100 according to the first embodiment includes the safety analysis and monitoring apparatus 300 according to the first embodiment, unnecessary interruption of particle beam irradiation due to the interlock operation is eliminated without impairing the safety of particle beam irradiation. Can improve the efficiency of particle beam therapy.
  • FIG. 8 is a block diagram of a safety analysis and monitoring apparatus according to a second embodiment of the present invention
  • FIG. 9 is a block diagram of an interlock system according to the second embodiment of the present invention
  • FIG. 10 is a detailed block diagram of the safety analysis and monitoring apparatus of FIG. 11 is a block diagram of the first interest amount determination circuit unit of FIG. 10, and
  • FIG. 12 is a block diagram of the second interest amount determination circuit unit of FIG.
  • FIG. 13 is a block diagram of the third interest amount determination circuit unit of FIG. 10
  • FIG. 14 is a block diagram of the fourth interest amount determination circuit unit of FIG.
  • the second embodiment is an example of monitoring based on the standard deviation of the amount of interest and the average value of the amount of interest.
  • the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) is described as an example of the amount of interest
  • the standard deviation ⁇ Psgm of the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) related to the position measured by the position monitor 109 also in the second embodiment.
  • An example of monitoring the position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) based on ( ⁇ Xsgm, ⁇ Ysgm) and the average value ⁇ Pave ( ⁇ Xave, ⁇ Yave) will be described.
  • the mean value and the standard deviation of the positional deviations ⁇ Pm simply use the average value ⁇ Pave ( ⁇ Xave, ⁇ Yave) of the deviation and the standard deviation ⁇ Psgm ( ⁇ Xsgm, ⁇ Ysgm) of the deviation.
  • ⁇ Xave is an average of deviations in the X direction
  • ⁇ Yave is an average of deviations in the Y direction
  • ⁇ Xsgm is the standard deviation of the deviation in the X direction
  • ⁇ Ysgm is the standard deviation of the deviation in the Y direction.
  • an average value ⁇ Xave of deviations in the X direction is referred to as an average value ⁇ Xave of deviations, and an average value ⁇ Yave of deviations in the Y direction as an average value ⁇ Yave of deviations.
  • the standard deviation ⁇ Xsgm of the deviation in the X direction is described as the standard deviation ⁇ Xsgm of the deviation, and the standard deviation ⁇ Ysgm of the deviation in the Y direction as the standard deviation ⁇ Ysgm of the deviation.
  • positional deviation of reading unit can be used as the amount of interest, but the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) of the second embodiment. Also, “positional deviation of reading unit”, “time-averaged positional deviation”, and “spot positional deviation” can be used.
  • the safety analysis and monitoring apparatus 300 includes an interest amount calculation unit 313 that calculates an average deviation value ⁇ Xave and ⁇ Yave and a standard deviation ⁇ Xsgm and ⁇ Ysgm of the deviation, and further calculates an average deviation value ⁇ Xave, ⁇ Yave and a deviation standard. It differs from the safety analysis and monitoring apparatus 300 of the first embodiment in that it includes four interest amount monitoring units 330a, 330b, 330c, and 330d that monitor the deviations ⁇ Xsgm and ⁇ Ysgm, respectively.
  • the interlock determination device 201 generates two irradiation interruption signals sige1a and sige1b corresponding to the positional deviations ⁇ Xi and ⁇ Yi, and the irradiation interruption signal generation circuit 203 generates these two irradiation interruption signals.
  • the interlock system 200 differs from the interlock system 200 according to the first embodiment in that the irradiation suspension signal sige3 is generated based on the sige 1a and the sige 1b and the four irradiation suspension signals sige2a, sige2b, sige2c, and sige2d generated by the safety analysis and monitoring apparatus 300.
  • sige2 is generally used, and in the case of being separately described, sige2a, sige2b, sige2c, and sige2d are used.
  • the average value of deviations ⁇ Xave, ⁇ Yave, and the standard deviation of deviations ⁇ Xsgm, ⁇ Ysgm are calculated by Equation (6), Equation (7), Equation (8), and Equation (9), respectively.
  • the amount-of-interest calculation unit 313 calculates the average value of deviations ⁇ Xave, ⁇ Yave, and the standard deviation of deviations ⁇ Xsgm, ⁇ Ysgm according to Expressions (6), (7), (8), and (9).
  • N is the total number of positional deviation data collected up to that time, and is the total number of data of positional deviations ⁇ Pm ( ⁇ Xi, ⁇ Yi) from the irradiation start time.
  • Equation (6) to (9) is a number from 1 to N; Further, when N is small, the values of Equations (6) to (9) may fluctuate suddenly, so when N is small, the values of Equations (6) to (9) are zeroed.
  • the amount-of-interest calculating unit 313 may be set to output as
  • the safety analysis and monitoring apparatus 300 according to the second embodiment will be described with reference to FIGS.
  • the safety analysis and monitoring apparatus 300 according to the second embodiment includes an interest amount calculation unit 313, an interest amount monitoring unit 330a monitoring an average value ⁇ Xave of deviations, an interest amount monitoring unit 330b monitoring an average value ⁇ Yave of deviations, Amount of interest monitoring unit 330c that monitors the standard deviation .DELTA.Xsgm, and an amount of interest monitoring unit 330d that monitors the standard deviation .DELTA.Ysgm of the deviation.
  • the circuit configuration is the same as the amount of interest monitoring unit 330 a that monitors ⁇ Xi and the amount of interest monitoring unit 330 b that monitors the position deviation ⁇ Yi.
  • the comparison operation circuits 31a, 31b, and 31c of FIG. 11 showing the configuration of the interest amount determination circuit unit 307 of the interest amount monitoring unit 330a flag one pulse as one flag when equation (10) holds. It outputs to the signals fs1a, fs1b and fs1c. That is, the comparison operation circuits 31a, 31b, and 31c generate flag signals fs1a, fs1b, and fs1c including pulsed flags when Expression (10) is satisfied.
  • the tolerance value Vde1 is a comprehensive expression of the tolerance values Vde1a, Vde1b, and Vde1c input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the allowable range of the deviation average value ⁇ Xave is in the range of ⁇ Vde1 to + Vde1.
  • the comparison operation circuits 31a, 31b, and 31c of FIG. 12 showing the configuration of the interest amount determination circuit unit 307 of the interest amount monitoring unit 330b, when equation (11) holds, one pulse
  • the flag signals fs2a, fs2b and fs2c are output as flags. That is, the comparison operation circuits 31a, 31b, and 31c generate flag signals fs2a, fs2b, and fs2c including pulse-like flags when the equation (11) is satisfied.
  • the tolerance value Vde2 is a comprehensive expression of the tolerance values Vde2a, Vde2b, and Vde2c input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the allowable range of the deviation average value ⁇ Yave is in the range of ⁇ Vde2 to + Vde2.
  • the magnitude relationship between the allowable values input to the comparison calculation circuits 31a, 31b, and 31c of FIG. 11 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330a is, for example, Vde1c as in the first embodiment. > Vde1b> Vde1a.
  • each counter threshold is set to 1 is that all the quantities defined by the equations (6) to (9) are statistical quantities, that is, a plurality of data are regarded as one set, and the whole set It is because it is a characteristic quantity calculated from and sudden change seen in a single event is leveled with nature. That is, using the amounts of equations (6) to (9) corresponds to the determination based on the information of a plurality of events. However, if it is desired to lower the sensitivity to a sudden change, Nc1a, Nc1b, Nc1c, Nc2a, Nc2b, and Nc2c may be set to 2 or more.
  • the amount-of-interest determination circuit unit 308 of the amount-of-interest monitor unit 330c that monitors the standard deviation ⁇ Xsgm of the deviation and the amount-of-interest determination circuit unit 308 of the amount of interest monitoring unit 330d that monitors the standard deviation ⁇ Ysgm of the deviation are illustrated in FIGS.
  • the input amounts input to the three comparison operation circuits 31a, 31b, and 31c that is, the standard deviations ⁇ Xsgm and ⁇ Ysgm of which the relationship amount based on the amount of interest is a positive value, only the comparator 38 is provided.
  • the comparison operation circuits 31a, 31b, and 31c of FIG. 14 showing the configuration of the interest amount determination circuit unit 308 of the interest amount monitoring unit 330d, when equation (13) holds, apply one pulse to one
  • the flag signals fs2a, fs2b and fs2c are output as flags. That is, when the equation (13) is satisfied, the comparison operation circuits 31a, 31b, and 31c generate flag signals fs2a, fs2b, and fs2c including pulsed flags.
  • the tolerance value Vde4 is a comprehensive expression of the tolerance values Vde4a, Vde4b, Vde4c input to the comparison operation circuits 31a, 31b, 31c of FIG.
  • the allowable range of the standard deviation ⁇ Ysgm of the deviation is in the range of 0 (zero) to + Vde4.
  • the magnitude relationship between the allowable values input to the comparison operation circuits 31a, 31b and 31c of FIG. 13 showing the configuration of the interest amount determination circuit unit 308 of the interest amount monitor 330c is determined by the amount of interest determination of the interest amount monitor 330a. It corresponds to the magnitude relation of the respective tolerance values inputted to the comparison operation circuits 31a, 31b and 31c of FIG. 11 showing the configuration of the circuit unit 307, and Vde3c> Vde3b> Vde3a.
  • the relative magnitudes of the allowable values input to the comparison operation circuits 31a, 31b and 31c of FIG. 14 showing the configuration of the interest amount determination circuit unit 308 of the interest amount monitoring unit 330d are the interest of the interest amount monitoring unit 330b.
  • the counter thresholds Nc3a, Nc3b, Nc3c, Nc4a, Nc4b, and Nc4c are set to 1, similarly to the counter thresholds Nc1a, Nc1b, Nc1c, Nc2a, Nc2b, and Nc2c. However, if it is desired to lower the sensitivity to a sudden change, Nc1a, Nc1b, Nc1c, Nc2a, Nc2b, and Nc2c may be set to 2 or more.
  • the flag counter unit 311 of the amount of interest monitoring unit 330a measures the number of generated flags of the flag signals fs1a, fs1b, and fs1c generated by the comparison operation circuits 31a, 31b, and 31c of the amount of interest monitoring unit 330a. , 32c.
  • the operations of the digital arithmetic circuits 32a, 32b and 32c of the amount-of-interest monitoring unit 330a are the same as in the first embodiment.
  • the signal generation circuit 36 of the amount-of-interest monitoring unit 330 a outputs the amount-of-interest level signal cs 1 c to the interlock system 200 as the irradiation interruption signal sige 2 a.
  • the flag counter unit 311 of the amount of interest monitoring unit 330b measures the number of generated flags of the flag signals fs2a, fs2b, and fs2c generated by the comparison operation circuits 31a, 31b, and 31c of the amount of interest monitoring unit 330b. , 32c.
  • the operations of the digital arithmetic circuits 32a, 32b and 32c of the amount-of-interest monitoring unit 330b are the same as in the first embodiment.
  • the signal generation circuit 36 of the amount-of-interest monitoring unit 330 b outputs the amount-of-interest level signal cs 2 c to the interlock system 200 as the irradiation interruption signal sige 2 b.
  • the flag counter unit 311 of the amount of interest monitoring unit 330c measures the number of generated flags of the flag signals fs1a, fs1b, and fs1c generated by the comparison operation circuits 31a, 31b, and 31c of the amount of interest monitoring unit 330c. , 32c.
  • the digital arithmetic circuits 32a, 32b, and 32c of the amount of interest monitoring unit 330c measure the number of generated flags as in the flag counter unit 311 of the amount of interest monitoring unit 330a of the first embodiment, and the counter thresholds Nc3a, Nc3b, and Nc3c. And generate an amount-of-interest level signal cs1a, cs1b, cs1c indicating that the threshold is exceeded.
  • the digital arithmetic circuits 32a, 32b and 32c of the amount-of-interest monitoring unit 330c output the counted number of generated flags as count value signals cn1a, cn1b and cn1c.
  • the signal generation circuit 36 of the amount-of-interest monitoring unit 330 c outputs the amount-of-interest level signal cs 1 c to the interlock system 200 as the irradiation interruption signal sige 2 c.
  • the flag counter unit 311 of the amount of interest monitoring unit 330 d measures digital arithmetic circuits 32 a and 32 b that measure the number of generated flags of the flag signals fs 2 a, fs 2 b, and fs 2 c generated by the comparison calculation circuits 31 a, 31 b, and 31 c of the interest amount monitoring unit 330 d. , 32c.
  • the digital arithmetic circuits 32a, 32b, and 32c of the amount of interest monitoring unit 330d measure the number of generated flags, as in the flag counter unit 311 of the amount of interest monitoring unit 330b of the first embodiment.
  • the digital arithmetic circuits 32a, 32b and 32c of the amount-of-interest monitoring unit 330d output the counted number of generated flags as count value signals cn2a, cn2b and cn2c.
  • the signal generation circuit 36 of the amount-of-interest monitoring unit 330 d outputs the amount-of-interest level signal cs 2 c to the interlock system 200 as the irradiation interruption signal sige 2 d.
  • the interlock system 200 includes an interlock determination device 201, an interlock state display device 202, and an irradiation interruption signal generation circuit 203.
  • the allowable value Vdel1a input to the interlock determination device 201 is set to a value larger than the allowable values Vde1a, Vde1b, and Vde1c input to the amount-of-interest monitoring unit 330a.
  • the tolerance value Vdel1a is 2 mm
  • the tolerance values Vde1a, Vde1b, and Vde1c are 0.5 mm, 0.75 mm, and 1 mm, respectively.
  • the magnitude relationship between the four tolerance values regarding the positional deviation ⁇ Xi and the average value ⁇ Xave of the deviations is Vdel1a> Vde1c> Vde1b> Vde1a.
  • the allowable value Vdel1b input to the interlock determination device 201 is set to a value larger than the allowable values Vde2a, Vde2b, and Vde2c input to the amount-of-interest monitoring unit 330b.
  • the tolerance value Vdel1b is 2 mm
  • the tolerance values Vde2a, Vde2b, and Vde2c are 0.5 mm, 0.75 mm, and 1 mm, respectively. Therefore, the magnitude relationship between the four tolerance values regarding the positional deviation ⁇ Yi and the average value ⁇ Yave of the deviation is Vdel1b> Vde2c> Vde2b> Vde2a.
  • the interlock state display device 202 displays an alarm display indicating that the positional deviations ⁇ Xi and ⁇ Yi have exceeded the allowable value when the irradiation interruption signals sige1a and sige1b indicate irradiation interruption.
  • the irradiation discontinuation signal generation circuit 203 receives the irradiation discontinuation signals sige1a and sige1b generated by the interlock determination device 201 and the irradiance cessation signals sige2a, sige2b, sige2c, and sige2d generated by the safety analysis monitoring device 300.
  • the irradiation interruption signal generation circuit 203 is, for example, a 6-input OR circuit (OR circuit), and the irradiation interruption signal indicating irradiation interruption when any of the irradiation interruption signals sige1a, sige1b, and sige2a to sige2d indicates irradiation interruption.
  • the irradiation interruption signal generation circuit 203 outputs an irradiation interruption signal sige3 which does not indicate the irradiation interruption when all of the irradiation interruption signals sige1, sige1 b, and sige 2a to sige 2 d do not indicate the irradiation interruption.
  • the amount-of-interest calculation unit 313 calculates the average value ⁇ Xave, ⁇ Yave of the deviation and the standard deviation ⁇ Xsgm, ⁇ Ysgm of the deviation in real time according to Equations (6), (7), (8), and (9).
  • the interest amount computation unit 313 is a circuit that is computed at the same speed as the determination logic unit 302, that is, an interest amount computation circuit. Although the specific circuit configuration of the amount-of-interest calculation circuit which is the amount-of-interest calculation unit 313 is not shown, the amount-of-interest calculation circuit is shown in, for example, equation (6), equation (7), equation (8), and equation (9) It has a configuration in which arithmetic units that perform addition, subtraction, multiplication, and division are combined.
  • the safety analysis and monitoring apparatus 300 of the second embodiment operates in the same manner as the safety analysis and monitoring apparatus 300 of the first embodiment.
  • the safety analysis and monitoring apparatus 300 according to the second embodiment sets the allowable range of the related amount based on the amount of interest, that is, the allowable values Vde1a to Vde1c and Vde2a to Vde2c to a range narrower than the conventional “interlock system by single event”. Leave it as it is and perform more accurate abnormality judgment.
  • the threshold value of the allowable range is set more strictly than the conventional “single event interlock system”, it is defined by the equations (6) to (9) as the relationship amount based on the amount of interest.
  • an irradiation interruption signal sige2 indicating a command to automatically interrupt the irradiation of the particle beam 11 when the related amount based on the amount of interest exceeds a threshold is output to the interlock system 200.
  • the interlock system 200 receives the irradiation interruption signal sige 2 indicating the irradiation interruption, the irradiation interruption signal generation circuit 203 outputs the irradiation interruption signal sige 3 indicating the irradiation interruption to the accelerator 120.
  • the safety analysis and monitoring apparatus 300 determines the radiation accuracy of the particle beam therapy because the safety analysis and monitoring device 300 determines the tolerance within a stricter tolerance range than the conventional “single event interlock system” and statistically determines based on the information of multiple events. It is possible to prevent unnecessary interruption of irradiation while enhancing it.
  • the tolerance values Vdel1a, Vdel1b, tolerance values Vde1, Vde2, Vde3, Vde4, counter thresholds Nc1a to Nc1c, Nc2a to Nc2c, Nc3a to Nc3c, Nc4a to Nc4c are preset values.
  • the tolerance values Vde1, Vde2, Vde3, Vde4, counter threshold values Nc1a to Nc1c, Nc2a to Nc2c, Nc3a to Nc3c, Nc4a to Nc4c are set as in the first embodiment.
  • a plurality of tolerance values and counter threshold values are provided for the mean value of deviation ⁇ Xave, ⁇ Yave, standard deviation of deviation ⁇ Xsgm, ⁇ Ysgm, and alarm is issued stepwise to achieve higher levels.
  • the safety analysis and monitoring apparatus 300 provides the irradiation suspension signal sige2 (sige2a, sige2b, sige2c, sige2d) by providing one tolerance value and a counter threshold value with respect to the average deviation value ⁇ Xave, ⁇ Yave, and the standard deviation of deviation ⁇ Xsgm, ⁇ Ysgm. May be generated.
  • the safety analysis and monitoring apparatus 300 according to the second embodiment eliminates unnecessary interruption of particle beam irradiation due to the interlock operation and enhances the efficiency of particle beam therapy without compromising the safety of particle beam irradiation. be able to.
  • the safety analysis and monitoring apparatus 300 displays the position deviations ⁇ Xi and ⁇ Yi, the average deviation ⁇ Xave and ⁇ Yave, and the standard deviations ⁇ Xsgm and ⁇ Ysgm of the deviation on the display unit 304 in substantially real time as a histogram. By doing this, the operator can visually grasp the status of the system (particle beam therapy system 100).
  • the reset of integration with respect to Expressions (6) to (9) and the reset of the flag counter unit 311 of the amount-of-interest monitoring units 330a, 330b, 330c, and 330d may be performed in the same manner as in the first embodiment.
  • the safety analysis and monitoring apparatus 300 of the second embodiment operates in the same manner as the safety analysis and monitoring apparatus 300 of the first embodiment, particle beam irradiation is performed in the same manner as the safety analysis and monitoring apparatus 300 of the first embodiment. It is possible to eliminate the unnecessary interruption of the particle beam irradiation by the interlock operation and to enhance the efficiency of the particle beam therapy without compromising the safety of the device. Further, since the particle beam therapy system 100 according to the second embodiment includes the safety analysis and monitoring apparatus 300 according to the second embodiment, unnecessary interruption of particle beam irradiation due to the interlock operation is performed without compromising the safety of particle beam irradiation. To enhance the efficiency of particle beam therapy.
  • FIG. 15 is a diagram showing the configuration of a safety analysis and monitoring apparatus according to a third embodiment of the present invention.
  • 16 is a block diagram of the first amount-of-interest determination circuit unit of FIG. 15
  • FIG. 17 is a block diagram of the second amount-of-interest determination circuit unit of FIG.
  • the flag generation condition of the amount of interest in the third embodiment is different from the information of the amount of interest and the amount of interest
  • An example using a combination condition combining information and information will be described.
  • the safety analysis and monitoring apparatus 300 according to the third embodiment is an example of using this combination condition to generate a flag to monitor the amount of interest.
  • the safety analysis and monitoring apparatus 300 of the third embodiment all the amounts obtained by adding together the measurement values of the respective channels measured by the position monitors 109 and output from the position monitor signal processing apparatus 119 by the amounts of interest monitoring units 330a and 330b.
  • This embodiment differs from the safety analysis and monitoring apparatus 300 of the first embodiment in that the irradiation interruption signal sige2 is generated based on the signal Qi and the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi).
  • the position monitor signal processor 119 outputs the position information of the position monitor 109 at a constant cycle, but also outputs an amount of all signals Qi each time.
  • the total signal Qi is an amount obtained by adding up the measurement values of each channel of the position monitor 109 in the i-th measurement, and the total signal Qi is proportional to the number (fluence) of charged particles in the particle beam 11. Although there is some beam energy dependence depending on the physical characteristics of the particle beam 11, the total signal Qi can be regarded as fluence at a specific energy. From the particle beam irradiation apparatus 101, the spot position in the spot unit and the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) and the total signal Qi of the spots are output.
  • position deviation information (information of position deviation ⁇ Pm) is calculated by the position monitor signal processing device 119 in short time units of, for example, about 20 microseconds
  • fluctuation by the accelerator 120 is not only fluctuation of the position deviation ⁇ Pm but There is fluctuation of the beam current of the particle beam 11.
  • the fluctuation of the beam current of the particle beam 11 may change about four digits earlier than in 1 second, and the positional deviation information output every 20 microseconds is the information obtained at the moment when the beam current is high, or the beam It is the information obtained at the moment when the current is low.
  • the position information (information of the measurement position Pmmi) when all the signals Qi are small is relatively unreliable because of the influence of noise.
  • the condition for all signals Qi is added to the flag generation condition with AND which is AND, and the case where all signals Qi are less than a threshold (allowable value) Is an example where the measurement is not used for the abnormality determination of the amount of interest as being unreliable.
  • the total signal Qi is a reliability amount indicating the reliability of the amount of interest.
  • the comparison operation circuits 31a, 31b, and 31c use one pulse as one flag when equation (14) holds.
  • the flag signals fs1a, fs1b, and fs1c are output. That is, when the equation (14) is satisfied, the comparison operation circuits 31a, 31b, and 31c generate flag signals fs1a, fs1b, and fs1c including pulsed flags.
  • the tolerance value Vde1 is a comprehensive expression of the tolerance values Vde1a, Vde1b, and Vde1c input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the tolerance value Vdeq is a general expression of the tolerance values Vdeqa, Vdeqb, and Vdeqc input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the allowable range of the positional deviation ⁇ Xi is in the range of ⁇ Vde1 to + Vde1.
  • the comparison operation circuits 31a, 31b, and 31c use one pulse as one flag when equation (15) holds.
  • the flag signals fs2a, fs2b, and fs2c are output. That is, the comparison operation circuits 31a, 31b, and 31c generate flag signals fs2a, fs2b, and fs2c including pulse-like flags when the equation (15) is satisfied.
  • the allowable value Vde2 generally represents the allowable values Vde2a, Vde2b, and Vde2c input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the tolerance value Vdeq is a general expression of the tolerance values Vdeqa, Vdeqb, and Vdeqc input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • the allowable range of the positional deviation ⁇ Yi is in the range of ⁇ Vde2 to + Vde2.
  • the comparison operation circuits 31a, 31b, and 31c in FIGS. 16 and 17 respectively include an absolute value calculator 37, a comparator 38, a comparator 43, and an AND calculator 44.
  • the absolute value calculator 37 calculates the absolute value
  • the AND operator 44 performs an AND operation and outputs one pulse as the flag signal fs1a.
  • One pulse in the flag signal fs1a is a flag.
  • the absolute value calculator 37 calculates the absolute value
  • the absolute value calculator 37 calculates the absolute value
  • the absolute value calculator 37 calculates the absolute value
  • the absolute value calculator 37 calculates the absolute value
  • the comparator 38 when the absolute value calculator 37 calculates the absolute value
  • each counter threshold input to the digital operation circuits 32a, 32b and 32c of FIG. 16 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330a is, for example, Nc1a as in the first embodiment. > Nc1b> Nc1c.
  • the numerical examples of the allowable values Vdel1a, Vde1c, Vde1b, and Vde1a, the numerical examples of the allowable values Vdeqc, Vdeqb, and Vdeqa, and the numerical examples of the counter thresholds Nc1a, Nc1b, and Nc1c are shown.
  • Numerical examples of the tolerance values Vdel1a, Vde1c, Vde1b, Vde1a are 2 mm, 1 mm, 0.75 mm, and 0.5 mm.
  • Numerical examples of the tolerance values Vdeqc, Vdeqb, and Vdeqa are 500 counts, 300 counts, and 300 counts. Note that all the signals Qi are quantified by counts, which are measurement values normalized by the reference charge.
  • Numerical examples of the counter thresholds Nc1a, Nc1b, and Nc1c are 20, 10, and 5, respectively.
  • each tolerance value input to the comparator 38 of the comparison operation circuit 31a, 31b, 31c of FIG. 17 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330b, and the interlock determination device 201
  • the magnitude relation of the allowable value Vdel1b (see FIG. 7) input to the input signal is, for example, Vdel1b> Vde2c> Vde2b> Vde2a as in the first embodiment.
  • Vdeqc > Vdeqb Vdeqa.
  • the magnitude relationship of each counter threshold input to the digital operation circuits 32a, 32b and 32c of FIG. 17 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330b is, for example, Nc2a as in the first embodiment. > Nc2b> Nc2c.
  • the numerical example of tolerance value Vdel1b, Vde2c, Vde2b, Vde2a, the numerical example of tolerance value Vdeqc, Vdeqb, Vdeqa, the numerical example of counter threshold value Nc2a, Nc2b, Nc2c are shown.
  • Numerical examples of the tolerance values Vdel1 b, Vde2c, Vde2b, Vde2a are 2 mm, 1 mm, 0.75 mm, and 0.5 mm.
  • Numerical examples of the tolerance values Vdeqc, Vdeqb, and Vdeqa are 500 counts, 300 counts, and 300 counts.
  • Numerical examples of the counter thresholds Nc2a, Nc2b, and Nc2c are 20, 10, and 5, respectively.
  • the flag determination unit 310 of the third embodiment adds the condition for all the signals Qi to the flag generation condition by AND as shown in equations (14) and (15), and all signals Qi
  • the threshold value permissible value
  • the amount-of-interest determination circuit unit 307 according to the third embodiment enhances the reliability of the amount of interest using additional information such as all signals Qi in addition to the information on the amount of interest Pi. If the generated flag 5 is detected once, it may be possible to generate the irradiation stop signal sige2.
  • the numerical values of the counter thresholds Nc1c and Nc2c are one. Also, other examples can be considered besides this example.
  • the abnormality determination of the positional deviation ⁇ Xi which is the amount of interest, may be performed with a value obtained by weighting the positional deviation ⁇ Xi by the total signal Qi as a determination target amount.
  • the irradiation interruption signal sige3 for interrupting the irradiation of the particle beam 11 can be generated without changing the configuration of the interlock judgment device 201.
  • a configuration example of the comparison operation circuits 31a, 31b and 31c of the flag determination unit 310 of the safety analysis and monitoring device 300 in this case will be described later.
  • a configuration example of the comparison operation circuits 31a, 31b, and 31c of the flag determination unit 310 of the safety analysis and monitoring apparatus 300 will be described.
  • the same circuit configuration can be applied to the other example described above and another example.
  • the flag determination unit 310 calculates Qi ⁇ ⁇ Xi and uses this as the determination target amount.
  • the comparison calculation circuits 31a, 31b, and 31c in the flag determination unit 310 of the amount-of-interest monitoring units 330a and 330b are changed.
  • Vde1a ⁇ Vdeqa is used as the allowable value input to the second input terminal (terminal with the symbol B) of the comparator 43.
  • Vde1b ⁇ Vdeqb and Vde1c ⁇ Vdeqc are used as the allowable values inputted to the second input terminal (terminal with the symbol B) of the comparator 43, respectively.
  • the modification of the comparison operation circuits 31a, 31b and 31c in the flag determination unit 310 of the amount of interest monitoring unit 330b is the same as the modification of the comparison operation circuits 31a, 31b and 31c in the flag determination unit 310 of the amount of interest monitoring unit 330a.
  • the comparator 38 and the AND operator 44 are eliminated, and a multiplier for multiplying the output of the absolute value operator 37 and the all signal Qi is added to the input terminal of the comparator 43 (terminal labeled A).
  • the input signal is changed from the total signal Qi to the output Qi ⁇
  • the comparator 43 outputs one pulse. It changes to the comparator of the type which outputs flag signal fs2a, fs2b, fs2c as a flag, ie, the comparator of a pulse output type.
  • Vde2a ⁇ Vdeqa is used as the allowable value input to the second input terminal (terminal with the symbol B) of the comparator 43.
  • Vde2b ⁇ Vdeqb and Vde2c ⁇ Vdeqc are used as the allowable values input to the second input terminal (terminal with the symbol B) of the comparator 43, respectively.
  • positional deviation of reading unit can be used as the amount of interest, but the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi of the third embodiment) Also, “positional deviation of readout unit”, “time-averaged positional deviation”, and “spot positional deviation” can be used.
  • the irradiation is interrupted based on the standard deviation .DELTA.Psgm (.DELTA.Xsgm, .DELTA.Ysgm) and the average value .DELTA.Pave (.DELTA.Xave, .DELTA.Yave) of the position deviation .DELTA.Pm (.DELTA.Xi, .DELTA.Yi) of the second embodiment and all signals Qi.
  • a signal sige2 may be generated.
  • the safety analysis and monitoring apparatus 300 of the third embodiment operates in the same manner as the safety analysis and monitoring apparatus 300 of the first embodiment although the determination conditions of the flag determination unit 310 are different. Therefore, the safety analysis and monitoring of the first embodiment As in the apparatus 300, without interrupting the safety of particle beam irradiation, unnecessary interruption of particle beam irradiation by the interlock operation can be eliminated, and the efficiency of particle beam therapy can be enhanced. In addition, the safety analysis and monitoring apparatus 300 according to the third embodiment determines the safety of particle beam irradiation by using a combination condition in which two pieces of information such as position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) and all signals Qi are combined. It can be done more efficiently.
  • the particle beam therapy system 100 according to the third embodiment includes the safety analysis and monitoring apparatus 300 according to the third embodiment, unnecessary interruption of particle beam irradiation due to the interlock operation is performed without compromising the safety of particle beam irradiation. To enhance the efficiency of particle beam therapy.
  • the particle beam therapy system 100 according to the third embodiment determines the safety of particle beam irradiation by using a combination condition in which two pieces of information such as position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) and all signals Qi are combined. It can be done more efficiently.
  • FIG. 18 is a diagram showing the configuration of the safety analysis and monitoring apparatus according to the fourth embodiment of the present invention
  • FIG. 19 is a diagram for explaining the mask signal of FIG.
  • FIG. 20 is a block diagram of the first interest amount determination circuit unit of FIG. 18, and
  • FIG. 21 is a block diagram of the second interest amount determination circuit unit of FIG.
  • FIG. 22 is a block diagram of another first interest amount determination circuit unit of FIG. 18, and
  • FIG. 23 is a block diagram of another second interest amount determination circuit unit of FIG.
  • timing information of the accelerator 120 is input to the safety analysis and monitoring apparatus 300 and utilized for determination of positional deviation abnormality.
  • the main causes of the beam position deviation are an error due to the accelerator 120 and an error due to the scanning electromagnet (the X scanning electromagnet 107 and the Y scanning electromagnet 106).
  • the synchrotron which is an example of the accelerator 120, is operated by repeating an operation cycle of incidence, acceleration, emission, and deceleration. This cycle is about 2 seconds to 10 seconds.
  • the beam which can be used for irradiation as the particle beam 11 is a beam corresponding to an emission period.
  • the beam corresponding to the emission period has a length of about 1 to 9 seconds in the cycle cycle of the operation cycle.
  • the beam position at the irradiation point 13 changes slowly, and it is a typical example that there is cycle-to-cycle reproducibility. That is, while the time of such a beam position change event is on the order of seconds and the irradiation time of one spot is on the order of milliseconds, the beam position change event is a slow phenomenon. Beam position variation events cause variations in beam position deviation. Since the variation of the beam position deviation is reproducible, the accelerator 120 is adjusted in advance so that the beam position at the irradiation point 13 does not change as part of the beam adjustment. However, due to various factors such as daily temperature fluctuation and seasonal fluctuation, some deviation (for example, about 1 to 2 mm) remains.
  • the errors due to the Y scanning electromagnet 106 and the X scanning electromagnet 107 mainly include an error included in the relationship between the excitation current and the swing angle and an error due to the effect of the hysteresis effect of the magnetic field.
  • the treatment irradiation field is about 20 cm to 40 cm at a maximum at one side.
  • the error included in the relationship between the excitation current and the swing angle and the error due to the hysteresis both change gradually from the center to the end of the irradiation field.
  • the moving distance to the next spot is about 2 mm to 5 mm.
  • both of these errors are events that change relatively slowly with respect to the spot travel time.
  • the particle beam irradiation apparatus 101 may have a function of beam position feedback control in order to correct this.
  • the position monitor 109 measures the positional deviation in the X and Y directions, and based on the amount, calculates and feeds back a correction current value in the upstream electromagnet (for example, the deflection electromagnet of the beam transport system 121).
  • the control method corrects the beam position so that the measurement position matches the ideal position.
  • the beam transport system 121 performs beam position feedback control by controlling a deflection electromagnet provided in the beam transport system 121 using the corrected correction current value.
  • both errors due to accelerator 120 and errors due to scanning electromagnets are relatively slow phenomena as described above, both errors can be simultaneously achieved by using beam position feedback. It can be corrected. If beam position feedback is operating normally, the spot position can be projected as planned within the accuracy range of the position monitor 109, typically at the 0.1 mm level.
  • Such beam position feedback control is another method different from the improvement of the “single event interlock system” as in Patent Documents 1 and 2, that is, another method for enhancing the safety and efficiency of particle beam therapy. is there.
  • a feedback control method measures the beam position, feeds back the difference between the measured value and the desired value to the irradiation apparatus, and controls the beam irradiation position at high speed.
  • a finite time delay inevitably occurs in such beam position feedback control, it can not be said that the beam position deviation is within the intended range in the range of the time delay immediately after the start of irradiation.
  • the feedback control method When the feedback control method is applied to a particle therapy system equipped with a conventional "single event interlock system", a large positional deviation is detected even in the "single event interlock system". If it functions as expected, highly accurate beam position control is realized, and desired irradiation can be realized. However, despite the high reliance on beam position feedback for the sound operation of the particle beam therapy system, the accuracy detected by the conventional “single-event interlock system” and the accuracy assigned to the beam position feedback There is a gap between the two, and the conventional “single event interlock system” can not sufficiently monitor the operation of beam position feedback. Furthermore, the operating condition of the particle beam therapy apparatus may fluctuate due to equipment failure, daily temperature fluctuation, or seasonal temperature fluctuation.
  • the beam position error can be reduced, but there is a finite time delay in position feedback. For this reason, there is a problem that the position feedback control can not obtain a desired accuracy in the first part where the beam is emitted, that is, in the start part of the emission period in each operation cycle of the synchrotron.
  • the settling time of position feedback depends on the constant setting of the feedback circuit, but is as short as several milliseconds or less.
  • the total emission period is on the order of seconds as described above.
  • the tolerance of the position deviation has to be set widely according to the emission start part, and the wide tolerance is applied to all irradiation times As a result, the overall irradiation accuracy may be reduced. Conversely, if the judgment range is narrowed for all the spots, the irradiation interruption of the particle beam 11 frequently occurs every time the emission start time.
  • the tolerance range may be set wide only for the period immediately after the start of emission using the safety analysis and monitoring apparatus 300, or the sensitivity to the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) may be lowered.
  • the sensitivity to the beam position error at the emission start time point by masking the flag of the position error abnormality in the emission gate signal sigg output from the accelerator timing system 105 only for a certain period immediately after the emission start. You can lower the Thus, the masked amount of interest is a reduced amount of interest with reduced sensitivity to the amount of interest.
  • This fixed period is a settling time of position feedback described later.
  • the configuration of the safety analysis and monitoring apparatus 300 for applying a mask to the position error abnormality flag will be described.
  • the safety analysis and monitoring apparatus 300 includes a mask signal generation circuit 314 that generates a mask signal sigm for masking the flag of positional error abnormality from the emission gate signal sigg, and the amount of interest monitoring units 330a and 330b
  • This embodiment differs from the safety analysis and monitoring apparatus 300 of the first embodiment in that the irradiation interruption signal sige2 is generated based on the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) and the mask signal sigm.
  • the emission gate signal sigg for the accelerator 120 to emit a beam is high level (signal value 1) when the right side (sigbr (on) AND sigbe (on)) of equation (16) holds as shown in equation (16).
  • the low level (signal value 0) is obtained.
  • sigg (on) sigbr (on) AND sigbe (on) ...
  • sigbr is a beam request signal
  • sigbe is an emission enable signal.
  • the beam request signal sigbr is a control signal for the irradiation system (particle beam irradiation apparatus 101) to request a beam output from the synchrotron (accelerator 120).
  • the emission enable signal sigbe represents a state in which the synchrotron (accelerator 120) has finished the incidence and acceleration and is ready for extraction.
  • the beam request signal sigbr and the emission enable signal sigbe are both control signals conventionally used in the accelerator timing system 105.
  • Sigg (ON) indicates a state in which the synchrotron (accelerator 120) is permitted to emit the particle beam 11, and, for example, indicates that the emission gate signal sigg is at a high level (signal value 1).
  • Sigbr (ON) indicates a state in which the emission of the particle beam 11 is requested, and indicates, for example, that the beam request signal sigbr is at a high level (signal value 1).
  • the sigbe (on) indicates that the synchrotron is ready for radiation, and indicates, for example, a high level (signal value 1).
  • the period during which the mask is applied may be determined with respect to the timing at which the outgoing gate signal sigg of equation (16) transitions from off (OFF) to on (ON).
  • FIG. 19 An example of the timing of the emission gate signal sigg and the mask signal sigm is shown in FIG.
  • the horizontal axis of FIG. 19 is time, and the vertical axis is the signal level of each signal.
  • the signal levels are high level (H level) and low level (L level).
  • the anti-mask signal sigmn is an inverted signal of the mask signal sigm.
  • the delay of the circuit operation is somewhat from the transition of the beam request signal sigbr and the output enable signal sigbe, the output gate signal sigg is described without adding the circuit operation delay.
  • the mask signal sigm and the anti-mask signal sigmn have some delay from the transition of the outgoing gate signal sigg to the circuit operation, but the circuit operation delay is not added.
  • the mask signal sigm turns from off (L level) to on (H level) and the anti-mask signal sigmn turns on (H level) It becomes off (L level).
  • the mask signal sigm changes from on (H level) to off (L level)
  • the anti-mask signal sigmn changes from off (L level) to on (H level).
  • the time from time t1 to time t2 is the settling time of the position feedback described above, and is, for example, 1 ms.
  • the time from time t4 to time t5 is also the same as the time from time t1 to time t2.
  • the exit gate signal sigg changes from on (H level) to off (L level).
  • the exit gate signal sigg turns from off (L level) to on (H level).
  • the emission gate signal sigg turns from off (L level) to on (H level) at time t4
  • the mask signal sigm turns from off (L level) to on (H level) and the anti-mask signal sigmn turns on (H level) It becomes off (L level).
  • the mask signal sigm changes from on (H level) to off (L level), and the anti-mask signal sigmn changes from off (L level) to on (H level).
  • the exit gate signal sigg changes from on (H level) to off (L level).
  • the amount of interest Pi in the time range in which the mask signal sym is off and in the time range in which the anti-mask signal sigmn is on is a reduced amount of interest.
  • the on and off of the emission gate signal sigg may also follow the state of the emission enable signal sigbe.
  • the comparison operation circuits 31a, 31b, and 31c use one pulse as one flag when equation (17) holds.
  • the flag signals fs1a, fs1b, and fs1c are output. That is, the comparison operation circuits 31a, 31b, and 31c generate flag signals fs1a, fs1b, and fs1c including pulse-like flags when Expression (17) is satisfied. (
  • the allowable value Vde1 is a comprehensive expression of the allowable values Vde1a, Vde1b, and Vde1c input to the comparison operation circuits 31a, 31b, and 31c of FIG.
  • Expression (17) holds, this corresponds to the case where the amount of reduced interest exceeds the allowable range set for the amount of reduced interest.
  • the allowable range of the positional deviation ⁇ Xi is in the range of ⁇ Vde1 to + Vde1.
  • the comparison operation circuits 31a, 31b, and 31c use one pulse as one flag when equation (18) holds.
  • the flag signals fs2a, fs2b, and fs2c are output. That is, the comparison operation circuits 31a, 31b, and 31c generate flag signals fs2a, fs2b, and fs2c including pulse-like flags when Expression (18) is satisfied. (
  • the allowable value Vde2 is a general expression of the allowable values Vde2a, Vde2b, and Vde2c input to the comparison operation circuits 31a, 31b, and 31c of FIG. If equation (18) holds, this corresponds to the case where the amount of reduced interest exceeds the allowable range set for the reduced amount of interest.
  • the allowable range of the positional deviation ⁇ Yi is in the range of ⁇ Vde2 to + Vde2.
  • the comparison operation circuits 31a, 31b and 31c in FIGS. 20 and 21 respectively include an absolute value calculator 37, a comparator 38, an inversion calculator 45, and an AND calculator 44.
  • the absolute value calculator 37 calculates the absolute value
  • the comparison operation circuit 31a of FIG. 20 generates an anti-mask signal sigmn obtained by inverting the mask signal sigm by the inversion operator 45.
  • the AND operator 44 outputs one pulse as the flag signal fs1a.
  • One pulse in the flag signal fs1a is a flag.
  • the absolute value calculator 37 calculates the absolute value
  • the absolute value calculator 37 calculates the absolute value
  • the comparison operation circuit 31 c of FIG. 20 generates an anti-mask signal sigmn obtained by inverting the mask signal sigm by the inversion operator 45.
  • the AND operator 44 outputs one pulse as the flag signal fs1c.
  • the absolute value calculator 37 calculates the absolute value
  • the absolute value calculator 37 calculates the absolute value
  • the absolute value calculator 37 calculates the absolute value
  • the comparison operation circuit 31 c of FIG. 21 generates an anti-mask signal sigmn obtained by inverting the mask signal sigm by the inversion operator 45.
  • the AND operator 44 outputs one pulse as the flag signal fs2c.
  • the tolerance values input to the comparators 38 of the comparison operation circuits 31a, 31b and 31c of FIG. 20 showing the configuration of the amount-of-interest determination circuit unit 307 of the amount-of-interest monitoring unit 330a The magnitude relationship of the allowable value Vdel1a (see FIG. 7) is, for example, Vdel1a> Vde1c> Vde1b> Vde1a as in the first embodiment.
  • the magnitude relationship of each counter threshold input to the digital operation circuits 32a, 32b and 32c of FIG. 20 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330a is, for example, Nc1a as in the first embodiment. > Nc1b> Nc1c.
  • tolerance value Vdel1a, Vde1c, Vde1b, Vde1a, and the numerical example of counter threshold value Nc1a, Nc1b, Nc1c are shown.
  • Numerical examples of the tolerance values Vdel1a, Vde1c, Vde1b, Vde1a are 2 mm, 1 mm, 0.75 mm, and 0.5 mm.
  • Numerical examples of the counter thresholds Nc1a, Nc1b, and Nc1c are 20, 10, and 5, respectively.
  • each tolerance value input to the comparator 38 of the comparison operation circuits 31a, 31b and 31c of FIG. 21 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330b, and the interlock determination device 201 The magnitude relation of the allowable value Vdel1b (see FIG. 7) input to the input signal is, for example, Vdel1b> Vde2c> Vde2b> Vde2a as in the first embodiment.
  • the magnitude relationship of each counter threshold input to the digital operation circuits 32a, 32b and 32c of FIG. 21 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330b is, for example, Nc2a as in the first embodiment. > Nc2b> Nc2c.
  • tolerance value Vdel1b, Vde2c, Vde2b, Vde2a, and the numerical example of counter threshold value Nc2a, Nc2b, Nc2c are shown.
  • Numerical examples of the tolerance values Vdel1 b, Vde2c, Vde2b, Vde2a are 2 mm, 1 mm, 0.75 mm, and 0.5 mm.
  • Numerical examples of the counter thresholds Nc2a, Nc2b, and Nc2c are 20, 10, and 5, respectively.
  • all the comparison operation circuits 31a, 31b, and 31c mask the mask signal sigm to generate flag signals fs1a, fs1b, fs1c, fs2a, fs2b, and fs2c including pulsed flags.
  • An example has been described.
  • the irradiation accuracy does not decrease even if the sensitivity of the deviation determination is lowered in this way in a limited manner, and the operation of the conventional “single event interlock system” is not affected.
  • the irradiation interruption signal sige2 is generated even if the flag 5 generated by exceeding the reduced amount of interest is detected once. Sometimes it's good.
  • the numerical values of the counter thresholds Nc1c and Nc2c are one.
  • variations can be considered as to specific measures. For example, large tolerances may not be masked. Among a plurality of counters (counters 40 of the flag counter unit 311), those with a narrow tolerance may be masked, and those with a wide tolerance may not be masked. Also in this case, in the safety analysis and monitoring apparatus 300, the irradiation accuracy does not decrease even if the sensitivity of the deviation determination is lowered in this manner in a limited manner, and the operation of the conventional "single event interlock system" is affected. Absent. FIG. 22 shows an example in which the comparison operation circuit 31c for comparing the positional deviation ⁇ Xi with the allowable value Vde1c does not mask the mask signal sigm. Similarly, FIG. 23 shows an example in which the comparison operation circuit 31c that compares the position deviation ⁇ Yi with the allowable value Vde2c does not mask the mask signal sigm.
  • the comparison operation circuits 31a and 31b of FIG. 22 have the same operation as the comparison operation circuits 31a and 31b of FIG.
  • the comparison operation circuits 31a and 31b of FIG. 23 have the same operation as the comparison operation circuits 31a and 31b of FIG.
  • the comparison operation circuit 31c of FIG. 22 outputs one pulse as one flag to the flag signal fs1c when the equation (4) described in the first embodiment is established. That is, the comparison operation circuit 31c of FIG. 22 generates a flag signal fs1c including a pulse-like flag when the equation (4) is established. In this case, the allowable value Vde1 of the equation (4) is the allowable value Vde1c.
  • the comparison operation circuit 31c of FIG. 23 generates a flag signal fs2c including a pulse-like flag when Expression (5) is satisfied.
  • the allowable value Vde2 of the equation (5) is the allowable value Vde2c.
  • a method of generating the emission gate signal sigg can be considered other than the equation (16).
  • some equivalent methods are considered, such as using a signal delayed for a predetermined time from the timing of the "master” signal or "FT" signal ("flat top” signal).
  • the "master signal” is a timing signal that indicates the start of the operation cycle of the synchrotron
  • the "FT" (flat top) signal is a control signal that indicates that the acceleration of the synchrotron is ended and the energy is at the desired energy. It is. If it is "FT” and “ready for extraction”, it becomes “emission available", that is, a state of sigbe (on). Since the timing of synchrotron operation is determined in advance from incident and acceleration to emission enabled, the same operation is possible if the delay time is appropriately set with the appropriate combination regardless of which signal is used. is there.
  • safety of particle beam irradiation is achieved by using other parameters of time information from the accelerator 120 in combination in addition to the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi). Can be implemented more efficiently.
  • the safety analysis and monitoring system 300 uses the safety analysis and monitoring system 300 for the first information, the second information, and the third information described above. By managing, it becomes possible to monitor the condition that the safety of the beam position feedback can be normally spared or fluctuated from the usual.
  • the safety analysis and monitoring apparatus 300 of the fourth embodiment operates in the same manner as the safety analysis and monitoring apparatus 300 of the first embodiment although the determination conditions of the flag determination unit 310 are different. Therefore, the safety analysis and monitoring of the first embodiment As in the apparatus 300, without interrupting the safety of particle beam irradiation, unnecessary interruption of particle beam irradiation by the interlock operation can be eliminated, and the efficiency of particle beam therapy can be enhanced. In addition, safety analysis and monitoring apparatus 300 of the fourth embodiment uses particle beam irradiation safety by using not only position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) but also other parameters such as time information from accelerator 120 in combination. Can be implemented more efficiently.
  • the particle beam therapy system 100 according to the fourth embodiment includes the safety analysis and monitoring apparatus 300 according to the fourth embodiment, unnecessary interruption of particle beam irradiation due to the interlock operation is performed without compromising the safety of particle beam irradiation. To enhance the efficiency of particle beam therapy.
  • the particle beam therapy system 100 according to the fourth embodiment uses not only the positional deviation .DELTA.Pm (.DELTA.Xi, .DELTA.Yi) but also other parameters such as time information from the accelerator 120 in combination to ensure safety of particle beam irradiation. Can be implemented more efficiently.
  • the safety analysis and monitoring apparatus 300 uses the amount of interest Pi to be determined based on data (accelerator operation information data1, amount of interest information data2) output from the device of the particle beam therapy system 100.
  • an amount-of-interest determination circuit unit 307 is provided which generates an interruption command (irradiation interruption signal sige2) for instructing the irradiation interruption of the particle beam 11 when the amount of interest Pi matches a predetermined interruption condition.
  • the amount-of-interest determination circuit unit 307 of the safety analysis and monitoring device 300 of the fourth embodiment reduces the sensitivity of the amount of interest Pi in a specific time range (time range in which the anti-mask signal sigmn is off) in the operation cycle of the accelerator 120.
  • At least one tolerance range (the tolerance Vde1 which is the absolute value of the upper limit value and the lower limit value) set for the reduced amount of interest (the amount of interest Pi in the time range in which the anti mask signal sigmn is on) is reduced It is characterized in that an event which has exceeded is detected, and the interruption command (irradiation interruption signal sige2) is generated when the number of times of detection reaches a predetermined number (counter threshold Nc1c). Due to this feature, the safety analysis and monitoring device 300 of the fourth embodiment detects an event in which the amount of reduced interest (the amount of interest Pi in the time range in which the anti-mask signal sigmn is on) exceeds the allowable range, and the number of times of detection is predetermined. Since an interruption command (irradiation interruption signal sige2) is generated when the number of times is reached, unnecessary interruption of particle beam irradiation by interlock operation is eliminated without compromising the safety of particle beam irradiation, and particle beam therapy The efficiency of the tolerance Vde1 which is the absolute value of the
  • the particle beam therapy system 100 accelerates charged particles to necessary energy and generates an accelerated charged particle as the particle beam 11, an particle beam irradiation device 101, and a patient
  • the beam transport system 121 for transporting to the irradiation position 14 (irradiation point 13), the particle beam irradiation apparatus 101 for scanning the transported particle beam 11 to irradiate the patient 14, and the safety for determining the irradiation condition of the particle beam 11 And an analysis and monitoring apparatus 300.
  • the beam transport system 121 of the particle beam therapy system 100 of the fourth embodiment is a position on the position monitor 109 for detecting the position of the particle beam 11 at the planned position Ppi at which the particle beam 11 in the patient 14 planned for treatment planning is irradiated.
  • the safety analysis and monitoring apparatus 300 instructs the interruption of the irradiation of the particle beam 11 when the amount of interest Pi matches the predetermined interruption condition with respect to the amount of interest Pi which is the position deviation ⁇ Pm.
  • the interest amount determination circuit unit 307 includes the interest amount determination circuit unit 307 that generates the irradiation interruption signal sige 2), and the interest amount determination circuit unit 307 determines the amount of interest Pi in a specific time range (time range in which the anti mask signal sigmn is off) in the operation cycle of the accelerator 120.
  • At least one tolerance range (absolute value of the upper limit value and the lower limit value) which is set for the reduced interest amount (the interest amount Pi in the time range in which the anti-mask signal sigmn is on) whose sensitivity is reduced ) Detects an event that the amount of interest (the amount of interest Pi in the time range in which the anti-mask signal sigmn is on) has exceeded, and the number of times of detection is a predetermined number of times (cow And generating interrupt command (the irradiation interruption signal SiGe2) when it reaches the data threshold Nc1c).
  • the particle beam therapy system 100 detects an event in which the amount of reduced interest (the amount of interest Pi in the time range in which the anti-mask signal sigmn is on) exceeds the allowable range, and the number of times of detection is predetermined. Since an interruption command (irradiation interruption signal sige2) is generated when the number of times is reached, unnecessary interruption of particle beam irradiation by interlock operation is eliminated without compromising the safety of particle beam irradiation, and particle beam therapy The efficiency of the
  • FIG. 24 is a diagram showing the configuration of the safety analysis and monitoring apparatus according to the fifth embodiment of the present invention.
  • FIG. 25 is a block diagram of the first interest amount determination circuit unit of FIG. 24, and
  • FIG. 26 is a block diagram of the second interest amount determination circuit unit of FIG.
  • FIG. 27 is a diagram showing the counter reset signal of FIG.
  • FIG. 28 is a diagram for explaining an example of setting of the counter threshold in FIG. 25 and FIG.
  • the present invention makes the tolerance range narrower than the conventional "single event interlock system" for a certain amount of interest, and when the range is exceeded, the irradiation of the particle beam 11 occurs mainly when a plurality of flags are generated.
  • flag occurrence time information is used for abnormality determination in addition to information on the amount of interest Pi. More specifically, a method of monitoring the occurrence frequency of the flag and interrupting the irradiation of the particle beam 11 when the occurrence frequency becomes high will be described.
  • the safety analysis and monitoring apparatus 300 includes a reset signal generation device 312 that resets each counter 40 (see FIG. 6) of the flag counter unit 311 in the amount of interest monitoring parts 330a and 330b in a constant cycle.
  • This embodiment differs from the safety analysis and monitoring apparatus 300 of the first embodiment in that the occurrence frequency of flags is monitored by a plurality of counters 40 for one flag signal generated by the flag determination unit 310 of the monitoring units 330a and 330b.
  • FIGS. 24, 25 and 26 show an example in which the flag determination unit 310 of the amount-of-interest monitoring units 330a and 330b includes one comparison operation circuit 31a. Parts different from the safety analysis and monitoring apparatus 300 of the first embodiment will be described.
  • the counter reset signals sigr2a, sigr2b, sigr2c generated by the reset signal generator 312 are input to the digital operation circuits 32a, 32b, 32c of the flag counter unit 311 of the amount-of-interest monitoring units 330a, 330b.
  • the counter 40 of the digital arithmetic circuit 32a is reset in a cycle Tm1 by the counter reset signal sigr2a.
  • the counter 40 of the digital operation circuit 32b is reset in a cycle Tm2 by the counter reset signal sigr2b
  • the counter 40 of the digital operation circuit 32c is reset in a cycle Tm3 by the counter reset signal sigr2c.
  • the counter reset signals sigr 2 a, sigr 2 b and sigr 2 c will be described with reference to FIG.
  • the horizontal axis in FIG. 27 represents time, and the vertical axis represents signal levels (signal values) of the flag signal and the counter reset signal.
  • ten flags 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i, 5j are shown.
  • 5a to 5j are used in the case of distinction and explanation.
  • the counter reset signal sigr2a generates a pulse every cycle Tm1.
  • a pulse is generated in the counter reset signal sigr2b every cycle Tm2, and a pulse is generated in the cycle Tm3 for the counter reset signal sigr2c.
  • the magnitude relationship between the cycles Tm1, Tm2, and Tm3 is Tm1 ⁇ Tm2 ⁇ Tm3.
  • the reset signal generator 312 generates the counter reset signals sigr 2 a, sigr 2 b, and sigr 2 c shown in FIG.
  • FIG. 25 showing the configuration of the amount-of-interest determination circuit portion 307 of the amount-of-interest monitoring portion 330a, the allowable value Vde1a input to the comparator 38 of the comparison operation circuit 31a and the allowable value Vdel1a input to the interlock determination device 201.
  • the magnitude relation with is Vdel1a> Vde1a as in the first embodiment.
  • the magnitude relationship of each counter threshold input to the digital operation circuits 32a, 32b and 32c of FIG. 25 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330a is, for example, Nc1a ⁇ Nc1b ⁇ Nc1c. There is.
  • tolerance value Vdel1a, Vde1a, and the numerical example of counter threshold value Nc1a, Nc1b, Nc1c are shown.
  • Numerical examples of the tolerance values Vdel1a and Vde1a are 2 mm and 0.5 mm.
  • the numerical examples of the counter thresholds Nc1a, Nc1b, and Nc1c are 5, 8 and 11, respectively.
  • FIG. 26 showing the configuration of the amount-of-interest determination circuit portion 307 of the amount-of-interest monitoring portion 330b, the allowable value Vde2a input to the comparator 38 of the comparison operation circuit 31a and the allowable value Vdel1b input to the interlock determination device 201.
  • the magnitude relation with is Vdel1b> Vde2a as in the first embodiment.
  • the magnitude relationship of each counter threshold input to the digital operation circuits 32a, 32b and 32c of FIG. 26 showing the configuration of the amount of interest determination circuit unit 307 of the amount of interest monitoring unit 330b is, for example, Nc2a ⁇ Nc2b ⁇ Nc2c. There is.
  • tolerance value Vdel1b, Vde2a, and the numerical example of counter threshold value Nc2a, Nc2b, Nc2c are shown.
  • Numerical examples of the tolerance values Vdel1 b and Vde2 a are 2 mm and 0.5 mm.
  • the numerical examples of the counter thresholds Nc2a, Nc2b, and Nc2c are 5, 8, and 11, respectively.
  • the flags in the flag signals fs1a and fs2a output from the flag determination unit 310 of the safety analysis and monitoring system 300 The digital arithmetic circuits 32a, 32b and 32c of the counter unit 311 count each counter 40.
  • the amount-of-interest monitoring units 330a and 330b of the safety analysis and monitoring apparatus 300 both count the flags shown in FIG.
  • the counter 40 of the digital operation circuit 32a counts the three flags 5a, 5b and 5c in the first period of the cycle Tm1 in the counter reset signal sigr 2a.
  • the counter 40 of the digital arithmetic circuit 32a When receiving the reset pulse of the counter reset signal sigr 2a, the counter 40 of the digital arithmetic circuit 32a resets the count value 3 and counts two flags 5d and 5e in the second period of the cycle Tm1 after reset. Thereafter, when receiving the reset pulse of the counter reset signal sigr2a, the counter 40 of the digital operation circuit 32a resets the count value 2 and counts three flags 5f, 5g, 5h in the third period of the cycle Tm1 after reset. . After that, the flag is similarly counted.
  • the counter 40 of the digital operation circuit 32b counts four flags 5a, 5b, 5c and 5d during the first period of the cycle Tm2 in the counter reset signal sigr 2b.
  • the counter 40 of the digital arithmetic circuit 32b resets the count value 4 and counts four flags 5e, 5f, 5g, 5h in the second period of the cycle Tm2 after reset.
  • the counter 40 of the digital operation circuit 32 b resets the count value 4 and counts two flags 5 i and 5 j in the third period Tm2 after reset. After that, the flag is similarly counted.
  • the counter 40 of the digital operation circuit 32c counts five flags 5a, 5b, 5c, 5d and 5e in the first period of the cycle Tm3 in the counter reset signal sigr 2c.
  • the counter 40 of the digital arithmetic circuit 32c resets the count value 5 and counts four flags 5f, 5g, 5h, 5i in the second period of the cycle Tm3 after reset. . After that, the flag is similarly counted.
  • the counter threshold values Nc1a, Nc1b, and Nc1c are set to be sufficiently higher than Nexp with respect to the number of flags generated during the Tm period.
  • the values of the counter thresholds Nc2a, Nc2b, and Nc2c are also set in the same manner as the values of the counter thresholds Nc1a, Nc1b, and Nc1c.
  • the average number of times a flag is generated in one second is 10 and the measurement period Tm is 0.01 seconds, 0.05 seconds, and 0.1 seconds, respectively.
  • the expected values are respectively 0.1 times, 0.5 times and 1 time, and the value of the probability Pn is as shown by the probability calculation result 62 shown in FIG.
  • the counter threshold values Nc1a and Nc2a select 5 corresponding to 7.54E-08 (7.54 ⁇ 10 ⁇ 8 ) indicated by a broken line frame 63 a having a Tm of 0.01 seconds.
  • the counter threshold values Nc1 b and Nc2 b select 8 corresponding to 5.88E-08 (5.88 ⁇ 10 ⁇ 8 ) indicated by a broken line frame 63 b with a Tm of 0.05 seconds.
  • the counter threshold values Nc1 c and Nc2 c select 11 corresponding to 9.22E-09 (9.22 ⁇ 10 ⁇ 9 ) indicated by a dashed line frame 63 c having a Tm of 0.1 seconds.
  • the counter threshold for the probability Pn is 5 times (0.01 seconds), 8 times (0.05 seconds), and 11 times (0.1 seconds), respectively, at a probability Pn of 1 ⁇ 10 ⁇ 8 .
  • the setting is made to generate the same degree of flag generation in probability for any period. That is, since the expected value of the generation period of the flag is about the same, the flag of the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi), which is an example of the amount of interest, by observation for a shorter time even if the measurement period Tm is 0.1 seconds.
  • the safety analysis and monitoring apparatus 300 includes the flag counter unit 311 including the plurality of counters 40, and sets the counter threshold value corresponding to the counters 40 to obtain the position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi. Etc.) can be multiplexed.
  • the safety analysis and monitoring apparatus 300 according to the fifth embodiment is not only multiplexed monitoring of the amount of interest such as the position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) but also comparing the numerical values of the counters 40, as described above. It is possible to confirm whether there is an anomaly that breaks the statistical assumption.
  • the method described here may be implemented in combination with the method using timing information of the accelerator 120 described in the fourth embodiment, and the flag may be invalidated in the period immediately after the start of emission.
  • the safety analysis and monitoring apparatus 300 according to the fifth embodiment is the same as the safety analysis and monitoring apparatus 300 according to the first embodiment in the conventional “single” for the amount of interest such as position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) to be monitored. It is judged within the tolerance range smaller than the width of this interlock without changing the interlock width of the “interlock by event system”, and the number of events exceeding the tolerance is different in the measurement period Tm, that is, a plurality of cycles Measure and monitor with Tm1, Tm2 and Tm3.
  • the safety analysis and monitoring apparatus 300 of the fifth embodiment eliminates unnecessary interruption of particle beam irradiation by the interlock operation without impairing the safety of the particle beam irradiation, thereby improving the efficiency of particle beam therapy. It can be enhanced. Further, since the particle beam therapy system 100 according to the fifth embodiment includes the safety analysis and monitoring apparatus 300 according to the fifth embodiment, unnecessary interruption of particle beam irradiation due to the interlock operation is performed without compromising the safety of particle beam irradiation. To enhance the efficiency of particle beam therapy.
  • the periods Tm1, Tm2, and Tm3 input to the digital arithmetic circuits 32a, 32b, and 32c correspond to measurement periods in which the digital arithmetic circuits 32a, 32b, and 32c measure flags, and accordingly, the measurement periods Tm1, Tm2, We will also use Tm3.
  • FIG. 29 is a diagram showing the configuration of a safety analysis and monitoring apparatus according to a sixth embodiment of the present invention.
  • 30 is a block diagram of the first amount-of-interest determination circuit unit of FIG. 29, and
  • FIG. 31 is a block diagram of the second amount-of-interest determination circuit unit of FIG. 32 is a block diagram of the digital operation circuit of FIGS. 30 and 31,
  • FIG. 33 is a diagram for explaining the integration period of the running counter of FIG. 32, and
  • FIG. 34 is a measurement example of the flag counter portion of FIGS. FIG.
  • the sixth embodiment another example of the method of monitoring the occurrence frequency of the flag as in the fifth embodiment will be described.
  • the fifth embodiment shows an example in which the flag counter unit 311 is reset at a constant cycle, but in the sixth embodiment, an example in which a running counter is not reset at a constant cycle is provided to monitor the number of flags.
  • the running counter is a counter that counts the number of flags generated retroactively to a past fixed period (measurement period Tm) as shown in FIG.
  • the safety analysis and monitoring apparatus 300 generates the counter reset signal sigr3 when the reset signal generation device 312 does not have a fixed cycle but a predetermined condition is satisfied, and the flag counter unit 311 generates the running counter 51.
  • This embodiment differs from the safety analysis and monitoring apparatus 300 of the fifth embodiment in that it has digital operation circuits 46a, 46b and 46c. Parts different from the safety analysis and monitoring apparatus 300 of the fifth embodiment will be described.
  • the flag counter unit 311 of the amount-of-interest monitoring units 330a and 330b includes three digital arithmetic circuits 46a, 46b and 46c, respectively.
  • the digital arithmetic circuits 46a, 46b, and 46c have the same configuration, and each include a running counter 51 and a comparator 43, as shown in FIG.
  • the code of this digital operation circuit generally uses 46, and 46a, 46b and 46c are used for discrimination.
  • the running counter 51 shown in FIG. 32 is an example, and includes a delay adder 49, two counters 47 and 48, and a difference calculator 50.
  • the flag input signal Fin is input to the counter 47 and the delay adder 49.
  • the delay adder 49 generates a delay flag input signal Find delayed by the measurement period Tm, that is, delayed by the measurement period Tm, to the flag input signal Fin.
  • the counter 48 counts the number of pulses appearing in the delay flag input signal Find output from the delay adder 49 and outputs a count value Ncnt2.
  • the counter 47 counts the number of pulses appearing in the flag input signal Fin and outputs a count value Ncnt1.
  • the difference computing unit 50 subtracts the count value Ncnt2 from the count value Ncnt1, and outputs the difference count value ⁇ Ncnt obtained by the subtraction.
  • the reset signal Rst is input, the counters 47 and 48 reset the count value Ncnt.
  • the digital arithmetic circuit 46 compares the difference count value ⁇ Ncnt with the threshold Nref, and outputs a level determination signal Flout indicating that the threshold is exceeded when the difference count ⁇ Ncnt is larger than the threshold Nref. Further, in the digital operation circuit 46, the comparator 43 outputs the level determination signal Flout which does not indicate exceeding the threshold when the difference count value ⁇ Ncnt is equal to or less than the threshold Nref. For example, the signal level at which the level determination signal Flout indicates that the threshold is exceeded is at a high level (signal value 1), and the signal level at which the level determination signal Flout does not indicate that the threshold is above is at a low level (signal value 0).
  • the digital operation circuits 46a, 46b and 46c in FIGS. 30 and 31 are described by circuit symbols.
  • f, n and r respectively represent input terminals for inputting the flag input signal Fin, the threshold value Nref and the reset signal Rst shown in FIG.
  • c and o respectively represent output terminals for outputting the difference count value ⁇ Ncnt and the level determination signal Flout shown in FIG.
  • the operation of the running counter 51 will be described with reference to FIG.
  • the count values Ncnt1 and Ncnt2 of the counters 47 and 48 are updated at each reading cycle Tr of the positional deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) which is the amount of interest. Therefore, the difference count value ⁇ Ncnt output from the running counter 51 is also updated at each reading cycle Tr of the position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi).
  • the reading period Tr is 0.1 ms
  • the integration period of the flag number that is, the measurement period Tm is 100 ms.
  • the horizontal axis in FIG. 33 is time. In FIG. 33, a flag and four integration periods are shown.
  • the integration period 61a which is the integration period 1 is a measurement period Tm from time tb1 to time tc1.
  • the integration period 61b which is the integration period 2 is a measurement period Tm from time tb2 to time tc2.
  • the integration period 61c which is the integration period 3 is a measurement period Tm from time tb3 to time tc3.
  • the integration period 61d which is the integration period 4 is a measurement period Tm from time tb4 to time tc4, respectively.
  • the integration period 61b is shifted from the integration period 61a by the reading period Tr.
  • the integration period 61c is shifted from the integration period 61b by the reading cycle Tr
  • the integration period 61d is shifted from the integration period 61c by the reading cycle Tr.
  • the integration period 61a four flags 5a, 5b, 5c and 5d are measured, and the difference count value ⁇ Ncnt of the running counter 51 is four.
  • the integration period 61b three flags 5b, 5c, 5d are measured, and the difference count value ⁇ Ncnt of the running counter 51 is 3.
  • the integration period 61c four flags 5b, 5c, 5d and 5e are measured, and the difference count value ⁇ Ncnt of the running counter 51 is four.
  • four flags 5b, 5c, 5d and 5e are measured, and the difference count value ⁇ Ncnt of the running counter 51 becomes four.
  • the counters 47 and 48 are reset every operation period of the synchrotron or every change of energy.
  • the reset signal Rst of FIG. 32 that is, the counter reset signal sigr3 input to the flag counter unit 311, for example, a pulse indicating reset is generated for each operation cycle of the synchrotron or for each change of energy.
  • the safety analysis and monitoring apparatus 300 includes a plurality of digital operation circuits 46 in the flag counter unit 311 of the amount-of-interest monitoring units 330a and 330b.
  • the integration period of the running counters 51 of each digital operation circuit 46 that is, the measurement period Tm
  • the occurrence frequency of the flag can be monitored.
  • 29, 30, and 31 show an example in which the flag counter unit 311 is provided with three digital arithmetic circuits 46a, 46b and 46c, as in the fifth embodiment.
  • the measurement periods of the digital arithmetic circuits 46a, 46b, and 46c are set as measurement periods Tm1, Tm2, and Tm3.
  • the magnitude relationship between measurement periods Tm1, Tm2, and Tm3 is Tm1 ⁇ Tm2 ⁇ Tm3.
  • FIG. 30 showing the configuration of the amount-of-interest determination circuit unit 307 of the amount-of-interest monitoring unit 330a, the allowable value Vde1a input to the comparator 38 of the comparison operation circuit 31a and the allowable value Vdel1a input to the interlock determination device 201.
  • the magnitude relation with is Vdel1a> Vde1a as in the first embodiment.
  • the magnitude relationship of each counter threshold input to the digital operation circuits 46a, 46b and 46c in FIG. 30 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330a is, for example, Nc1a ⁇ Nc1b ⁇ Nc1c. There is.
  • tolerance value Vdel1a, Vde1a, and the numerical example of counter threshold value Nc1a, Nc1b, Nc1c are shown.
  • Numerical examples of the tolerance values Vdel1a and Vde1a are 2 mm and 0.5 mm.
  • the numerical examples of the counter thresholds Nc1a, Nc1b, and Nc1c are 5, 8 and 11, respectively.
  • FIG. 31 showing the configuration of the amount-of-interest determination circuit portion 307 of the amount-of-interest monitoring portion 330b, the tolerance value Vde2a input to the comparator 38 of the comparison operation circuit 31a and the tolerance value Vdel1b input to the interlock determination device 201.
  • the magnitude relationship with is Vde1b> Vde2a as in the first embodiment.
  • the magnitude relationship of each counter threshold input to the digital operation circuits 46a, 46b and 46c of FIG. 31 showing the configuration of the interest amount determination circuit unit 307 of the amount of interest monitoring unit 330b is, for example, Nc2a ⁇ Nc2b ⁇ Nc2c. There is.
  • tolerance value Vdel1b, Vde2a, and the numerical example of counter threshold value Nc2a, Nc2b, Nc2c are shown.
  • Numerical examples of the tolerance values Vdel1 b and Vde2 a are 2 mm and 0.5 mm.
  • the numerical examples of the counter thresholds Nc2a, Nc2b, and Nc2c are 5, 8, and 11, respectively.
  • the flags in the flag signals fs1a and fs2a output from the flag determination unit 310 of the safety analysis and monitoring apparatus 300 are compared with the digital operation circuits 46a and 46b of the flag counter 311. Each running counter 51 of 46 c counts.
  • the amount-of-interest monitoring units 330a and 330b of the safety analysis and monitoring apparatus 300 both count the flags shown in FIG. FIG. 34 shows ten flags 5a to 5j.
  • the time from time t0 to time t1 is a read cycle Tr.
  • the time from time t1 to time t2, the time from time t2 to time t3, the time from time t3 to time t4, the time from time t4 to time t5, and the time from time t5 to time t6 are respectively It is a reading cycle Tr.
  • the time from time t7 to time t8 and the time from time t8 to time t9 are the reading cycle Tr.
  • the sections 52a, 52b, 52c are sections of the measurement period Tm1 in which the digital arithmetic circuit 46a measures a flag.
  • Sections 53a, 53b, and 53c are sections of a measurement period Tm2 in which the digital arithmetic circuit 46b measures a flag.
  • Sections 53a, 53b, and 53c are sections of a measurement period Tm3 in which the digital arithmetic circuit 46c measures a flag.
  • the count value measured in each section is shown on the right side of the code of each section.
  • the running counter 51 of the digital arithmetic circuit 46a measures the three flags 5e, 5f, and 5g, and outputs the count value 3 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital arithmetic circuit 46b measures three flags 5e, 5f, and 5g, and outputs the count value 3 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital arithmetic circuit 46c measures five flags 5c, 5d, 5e, 5f, 5g, and outputs the count value 5 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital arithmetic circuit 46a measures the three flags 5f, 5g, and 5h, and outputs the count value 3 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital arithmetic circuit 46b measures four flags 5e, 5f, 5g, and 5h, and outputs the count value 4 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital operation circuit 46c measures five flags 5d, 5e, 5f, 5g, and 5h, and outputs the count value 5 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital arithmetic circuit 46a measures the three flags 5f, 5g, and 5h, and outputs the count value 3 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital arithmetic circuit 46b measures four flags 5e, 5f, 5g and 5h, and outputs the count value 4 as the difference count value ⁇ Ncnt.
  • the running counter 51 of the digital operation circuit 46c measures four flags 5e, 5f, 5g, and 5h, and outputs the count value 4 as the difference count value ⁇ Ncnt. After that, the flag is similarly counted.
  • the counter threshold value sufficiently higher than Nexp with respect to the number of flags generated during the measurement period Tm, that is, appropriately setting an abnormality of the amount of interest. It can be determined.
  • the setting example of the counter threshold Nc1a and Nc2a for the measurement period Tm1 the setting example of the counter threshold Nc1b and Nc2b for the measurement period Tm2, and the setting example of the counter threshold Nc1c and Nc2c for the measurement period Tm3 are set by the method described in the fifth embodiment. it can.
  • the values of the counter threshold values Nc1a, Nc1b, and Nc1c are each five times (0.01 seconds) so that the probability Pn is approximately the same for any measurement period Tm1, Tm2, and Tm3 at a level of 1 ⁇ 10 -8. , 8 times (0.05 seconds), 11 times (0.1 seconds).
  • the values of the counter thresholds Nc2a, Nc2b, and Nc2c are set to five times (0.01 seconds), eight times (0.05 seconds), and 11 times (0.1 seconds), respectively.
  • the safety analysis and monitoring apparatus 300 includes the flag counter unit 311 including the plurality of running counters 51, and sets the counter threshold value corresponding to the running counters 51 to obtain the position deviation ⁇ Pm ( ⁇ Xi. , .DELTA.Yi) etc. can be multiplexed.
  • the safety analysis and monitoring apparatus 300 is not only multiplexed in monitoring the amount of interest such as the position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) but also comparing the numerical values of the running counters 51, as described above. It is possible to confirm that there are no abnormalities that would undermine the statistical assumptions made.
  • the method described here may be implemented in combination with the method using timing information of the accelerator 120 described in the fourth embodiment, and the flag may be invalidated in the period immediately after the start of emission.
  • the safety analysis and monitoring apparatus 300 according to the sixth embodiment is similar to the safety analysis and monitoring apparatus 300 according to the first embodiment in the conventional "single" for the amount of interest such as position deviation ⁇ Pm ( ⁇ Xi, ⁇ Yi) to be monitored.
  • "Interlock by event” It is judged within the tolerance which is smaller than the width of this interlock without changing the width of the interlock, and the number of events exceeding the tolerance is different in the measurement period Tm, that is, multiple measurements It measures and monitors by period Tm1, Tm2, and Tm3.
  • the safety analysis and monitoring apparatus 300 according to the sixth embodiment eliminates unnecessary interruptions of particle beam irradiation by interlocking operation without impairing the safety of particle beam irradiation by such operation, and improves the efficiency of particle beam therapy.
  • the particle beam therapy system 100 according to the sixth embodiment includes the safety analysis and monitoring apparatus 300 according to the sixth embodiment, unnecessary interruption of particle beam irradiation due to the interlock operation is performed without compromising the safety of particle beam irradiation. To enhance the efficiency of particle beam therapy.
  • FIG. 35 is a diagram showing an example of a hardware configuration for realizing the functional blocks of the safety analysis and monitoring apparatus.
  • the determination logic unit 302, the display calculation unit 303, the user interface unit 305, and the amount-of-interest calculation unit 313 are realized by the processor 98 executing a program stored in the memory 99.
  • the plurality of processors 98 and the plurality of memories 99 may cooperate to execute each function.
  • the safety analysis and monitoring apparatus 300 may include both a high-speed processor such as an FPGA and a processor that executes a program.
  • 11 particle beam
  • 13 irradiation point (irradiation position)
  • 14 patient
  • 33a, 33b, 33c alarm display
  • 34a, 34b, 34c numerical display
  • 100 particle beam treatment apparatus
  • 101 particle beam irradiation apparatus
  • 109 position monitor
  • 120 accelerator
  • 121 beam transport system
  • 300 safety analysis and monitoring device
  • 307 amount of interest determination circuit unit
  • Ppi planned position
  • Pmi ideal position
  • Pi determination target parameter (amount of interest)
  • ⁇ Pm positional deviation
  • ⁇ Pave average value of deviation
  • ⁇ Psgm standard deviation of deviation
  • Qi total signal (reliability amount)
  • sige2, sige2a, sige2b, sige2c, sige2d irradiation interruption signal, sige3 ...

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

粒子線照射の安全性を損なうことなく、インターロック動作による照射の不要な中断を排し、粒子線治療の効率を高めることを目的とする。 本発明の安全解析監視装置(300)は、粒子線治療装置(100)の機器から出力されたデータに基づく判定対象である関心量(Pi(ΔXi、ΔYi)) に対し、関心量(Pi)が予め定められた中断条件に合致する場合に粒子線(11)の照射中断を指令する中断指令(sige2)を生成する関心量判定回路部(307)を備えている。安全解析監視装置(300)の関心量判定回路部(307)は、複数の情報に基づいて中断指令(sige2)を生成する。複数の情報とは、関心量(Pi)に対して設定された少なくとも1つの許容範囲を関心量(Pi)が超えた事象を検出し、その検出回数が所定の回数(Nc1c)に到達した情報、あるいは関心量(Pi)が許容範囲を超えた事象に対して関心量の情報以外の追加情報を加味した情報である。

Description

安全解析監視装置及び粒子線治療装置
 本発明は、粒子線を腫瘍など患部に照射して治療を行う粒子線治療装置、及び粒子線照射の安全性を担保するためのパラメータを監視する安全解析監視装置に関する発明である。
 近年、がん治療を目的とした放射線治療装置では、陽子や重イオン等の粒子線を用いたがん治療装置(特に、粒子線治療装置と呼ばれる)の開発や建設が進められている。粒子線治療は、加速器等の機器を用いて陽子または炭素イオンなどの荷電粒子を数百メガ電子ボルト程度まで加速し、ビーム状の荷電粒子(粒子線)を患者に照射することで体内の腫瘍に線量を付与し、がんを治療する方法である。一般的に、加速器で加速された粒子線を物体(人体含む)に照射した場合、物体内での三次元線量分布はある一点で線量最大ピークを持つという特性がある。この線量最大ピークをブラッグピーク(Bragg Peak)と呼ぶ。粒子線が照射される照射野は、ブラッグピークの位置を制御して粒子線が照射することで形成される。周知のとおり、粒子線を用いた粒子線治療はX線、ガンマ線等の従来の放射線治療に比べて、がん患部に集中的に照射することができ、すなわち、患部の形状に合わせてピンポイントで粒子線を照射することができ、正常細胞に影響を与えずに治療することが可能である。
 従来の粒子線治療装置では、粒子線のビーム位置をビーム位置モニタで監視し、ビーム位置が許容範囲から逸脱した場合に、即座に粒子線を遮断する(ビームオフする)安全装置、すなわちインターロック装置を備えている(例えば、特許文献1、特許文献2参照)。このインターロック装置では、粒子線照射の安全性を担保するために照射する粒子線のビーム位置等のパラメータを個別に監視し、それぞれの測定値と所望の値(設定値)との差異が測定項目ごとに設けられた閾値を超えた場合に照射ビームを自動的に停止させている。例えば、インターロック装置に入力されたN個のパラメータ(判定対象パラメータ)Piがインターロックの対象であった場合には、式(1)で表された関係が要求され、そのうち一つでも満たされない事象(異常判定事象)が最初に発生した時点でインターロックが作動し、粒子線の照射が停止される。
 Pimin≦Pi≦Pimax   ・・・(1)
ここでiは1~N個の監視するパラメータを識別する添え字である。ここでは、異常判定に用いる各判定対象パラメータPiを、関心量と呼ぶことにする。
 一般的に、より高精度な照射を行うには、この閾値を狭く設定することが望ましいが、そうすることによって粒子線照射が不要に中断される回数が増加し、粒子線照射の速やかな完了に支障をきたすという問題があった。粒子線の治療照射時間が長くなることは、治療のスループットが低下するだけでなく、粒子線の治療照射中に患者が動いてしまう確率が高まり、かえって粒子線の照射精度の低下につながる問題が生じる。従来の粒子線治療装置では、このように安全性を担保しながら粒子線の照射時間を短くすることが課題であった。
 関心量の例としてビーム位置の誤差で言えば、インターロックで設定された閾値を常に満たすことが現実的でなかったり、所望の線量分布精度に対して過剰な精度要求になったりしていた。例えばビーム位置のモニタ値と設定値の差分(偏差)がランダムでガウス分布していると仮定した場合、その標準偏差が0.25mmで、偏差の閾値を±0.5mm、すなわち上限閾値を+0.5mm、下限閾値を-0.5mmに設定したとすると閾値超過となる確率は4.55%であり、1回の治療照射で1万スポットを照射した場合には455スポットが範囲外になってしまう。一日で100回の治療照射を行った場合にはインターロックが45,500回作動することになる。このインターロック動作回数は一つのパラメータについてであり、監視対象のパラメータが増えるとインターロック動作の発生頻度は更に増加し、粒子線照射の遂行にとって有意な妨げとなる。また、インターロックは異常状態を示すものであり、そういう状態が頻発するとオペレータが「異常状態」に慣れてしまって、運用上望ましくない。インターロックの許容幅を6σ(標準偏差σの6倍)に広げると100回の治療照射に対して照射停止の回数は0.2回まで下げることができるが、位置偏差の許容範囲は1.5mmと広くとる必要がある。すなわち、高精度な粒子線の照射ができなくなってしまう。
 このような課題を改善する方法として、特許文献1の粒子線治療システムや特許文献2のビーム位置監視装置及び荷電粒子ビーム照射システムなどが報告されている。
特開2011-206495号公報(0030段~0036段、図9、図10) 特開2015-157003号公報(0019段~0041段、0072段~0077段、図3、図10)
 特許文献1及び特許文献2で開示されているビーム位置の許容範囲の設定方法は、いずれも式(1)を前提としている。特許文献1におけるビーム位置の許容範囲の設定方法は、各照射スポットの目標ビーム照射量に応じてPiminとPimaxを設定することによって、照射線量の少ない照射スポットに対してはインターロックの幅を広げる方法である。特許文献2におけるビーム位置の許容範囲の設定方法は、照射スポットごとの照射位置偏差を、照射スポットの実際の照射位置の平均位置Pmからのずれを発生させるランダム誤差と、照射スポットの目標位置から平均位置Pmの位置ずれを発生させるシステマチック誤差とに分けて許容範囲を設定することによって、それぞれの範囲を狭める方法である。
 しかし、いずれの特許文献でも照射スポットごとの位置判定は式(1)の考えに基づくことに変わりなく、各判定対象パラメータPiを監視し、判定対象パラメータPiの一つでも式(1)の範囲外となった時点で粒子線照射の中断を即指示するという思想で安全系が構築されていた。このように一回の観測に基づいて即中断を促す安全系を「シングルイベントによるインターロック系」と呼ぶことにする。特許文献1、特許文献2の「シングルイベントによるインターロック系」では、許容範囲を以前よりも小さく設定できるものの、判定対象パラメータPiの一つが許容範囲を超えるとインターロックが動作するので、許容範囲に大きなマージンを設けておく必要がある。小さな許容範囲を超える想定内の事象は、許容範囲の大きさに応じた回数まで発生しても許容できるので、許容範囲を小さくできれば、更なる高精度な粒子線照射が実現できる。しかしながら、特許文献1、特許文献2の「シングルイベントによるインターロック系」は、許容範囲を更に小さくして更なる高精度な粒子線照射の実現と、インターロック動作による粒子線照射の不要な中断の削減との両立には限界があった。
 本発明は上記課題を解決するものであり、粒子線照射の安全性を損なうことなく、インターロック動作による照射の不要な中断を排し、粒子線治療の効率を高めることができる安全解析監視装置を提供することを目的とする。
 本発明の安全解析監視装置は、加速器にて加速された粒子線を走査して患者に照射する粒子線治療装置における、粒子線の照射状態を判定する安全解析監視装置である。本発明の安全解析監視装置は、粒子線治療装置の機器から出力されたデータに基づく判定対象である関心量に対し、関心量が予め定められた中断条件に合致する場合に粒子線の照射中断を指令する中断指令を生成する関心量判定回路部を備えている。関心量判定回路部は、複数の情報に基づいて中断指令を生成する。複数の情報とは、関心量に対して設定された少なくとも1つの許容範囲を関心量が超えた事象を検出し、その検出回数が所定の回数に到達した情報あるいは関心量が許容範囲を超えた事象に対して関心量の情報以外の追加情報を加味した情報である。
 本発明の安全解析監視装置は、関心量が許容範囲を超えた事象を検出し、その検出回数が所定の回数に到達した情報あるいは関心量が許容範囲を超えた事象に対して関心量の情報以外の追加情報を加味した情報に基づいて中断指令が生成されるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
本発明の実施の形態1による粒子線治療装置の構成図である。 本発明の実施の形態1による安全解析監視装置の構成図である。 図2の安全解析監視装置及びインターロック系の詳細な構成図である。 図3の第一の関心量判定回路部の構成図である。 図3の第二の関心量判定回路部の構成図である。 図4、図5のデジタル演算回路の構成図である。 図3のインターロック判定装置の構成図である。 本発明の実施の形態2による安全解析監視装置の構成図である。 本発明の実施の形態2によるインターロック系の構成図である。 図8の安全解析監視装置の詳細な構成図である。 図10の第一の関心量判定回路部の構成図である。 図10の第二の関心量判定回路部の構成図である。 図10の第三の関心量判定回路部の構成図である。 図10の第四の関心量判定回路部の構成図である。 本発明の実施の形態3による安全解析監視装置の構成を示す図である。 図15の第一の関心量判定回路部の構成図である。 図15の第二の関心量判定回路部の構成図である。 本発明の実施の形態4による安全解析監視装置の構成を示す図である。 図18のマスク信号を説明する図である。 図18の第一の関心量判定回路部の構成図である。 図18の第二の関心量判定回路部の構成図である。 図18の他の第一の関心量判定回路部の構成図である。 図18の他の第二の関心量判定回路部の構成図である。 本発明の実施の形態5による安全解析監視装置の構成を示す図である。 図24の第一の関心量判定回路部の構成図である。 図24の第二の関心量判定回路部の構成図である。 図24のカウンタリセット信号を示す図である。 図25、図26のカウンタ閾値の設定例を説明する図である。 本発明の実施の形態6による安全解析監視装置の構成を示す図である。 図29の第一の関心量判定回路部の構成図である。 図29の第二の関心量判定回路部の構成図である。 図30、図31のデジタル演算回路の構成図である。 図32のランニングカウンタの積算期間を説明する図である。 図30、32のフラッグカウンタ部の計測例を説明する図である。 安全解析監視装置の機能ブロックを実現するハードウェア構成例を示す図である。
実施の形態1.
 図1は、本発明の実施の形態1による粒子線治療装置の構成図である。図2は本発明の実施の形態1による安全解析監視装置の構成図であり、図3は図2の安全解析監視装置の詳細な構成図である。図4は図3の第一の関心量判定回路部の構成図であり、図5は図3の第二の関心量判定回路部の構成図である。図6は図4、図5のデジタル演算回路の構成図であり、図7は図3のインターロック判定装置の構成図である。粒子線治療装置100の構成について図1を用いて説明する。粒子線治療装置100は、荷電粒子を必要なエネルギーまで加速して、加速された荷電粒子を粒子線11として発生させる加速器120と、粒子線11を粒子線照射装置101及び患者14の患部(照射対象12)における照射点13まで輸送するビーム輸送系121と、輸送された粒子線11を患者14の患部(照射対象12)に照射する粒子線照射装置101と、加速器120を制御する加速器制御系104と、加速器制御系104及び粒子線照射装置101を制御する照射制御系103と、粒子線照射の安全性を担保する安全解析監視装置300及びインターロック系200などを備える。ここで、関心量Piは、安全解析監視装置300及びインターロック系200が監視するパラメータ(判定対象パラメータ)である。iは1~N個の監視するパラメータを識別する添え字である。
 インターロック系200は、粒子線照射の安全性を確認及び担保するためのシステムであり、インターロック系200の異常判定及び安全解析監視装置300の異常判定に基づいて生成された、照射中断を示す照射中断信号sige3に応じて粒子線11を加速器120が直ちに遮断し、粒子線照射を中断するように制御する装置である。安全解析監視装置300は、従来の「シングルイベントによるインターロック系」と異なり、入力された各判定対象パラメータPiにおける複数イベントでシステム状態を判定し、すなわち異常の有無を判定し、複数イベントの発生回数が閾値を超えた場合に粒子線11の照射を自動的に中断する装置である。より具体的には、安全解析監視装置300は、複数イベントの発生回数が閾値を超えた場合に粒子線11の照射を中断する指令(中断指令)を示す、すなわち照射中断を示す照射中断信号sige2を生成し、インターロック系200に照射中断を示す照射中断信号sige2を出力する。関心量に関する複数イベントの発生回数が閾値を超えたか否かは、粒子線11の照射を中断する中断条件である。
 インターロック系200は、従来の「シングルイベントによるインターロック系」と同様に入力された各判定対象パラメータPiのシングルイベントでシステム状態を判定し、各判定対象パラメータPiが許容値を超えた場合に粒子線11の照射を中断する指令(中断指令)を示す照射中断信号sige1(図3参照)を生成する。インターロック系200は、照射中断を示す照射中断信号sige1、照射中断を示す照射中断信号sige2の少なくとも1つが生成された場合に、照射中断を示す照射中断信号sige3を生成し、この照射中断を示す照射中断信号sige3を加速器120に出力する。加速器制御系104は、加速器120における荷電粒子の入射、加速、出射のタイミングを制御する加速器タイミング系105を備えている。照射中断を示す照射中断信号sige3は、粒子線11の照射を中断する指令(中断指令)である。ここで、例えば、照射中断信号sige1、照射中断信号sige2、照射中断信号sige3が照射中断を示す信号レベルは、高レベル(信号値1)である。照射中断信号sige1、照射中断信号sige2、照射中断信号sige3が照射中断を示さない信号レベルは、低レベル(信号値0)である。
 粒子線照射装置101は、照射点13において粒子線11をビーム進行方向(-Z方向)に垂直な方向(X方向、Y方向)に走査するためのX走査電磁石107、Y走査電磁石106と、X走査電磁石107、Y走査電磁石106のそれぞれに励磁電流を出力するX走査電磁石電源117、Y走査電磁石電源116と、粒子線11の照射線量を検出する線量モニタ108と、照射位置を検出する位置モニタ109と、線量モニタ108、位置モニタ109に関係する信号を生成する信号処理装置118と、位置モニタ信号処理装置119などから構成される。
 位置モニタ109としてはマルチワイヤチェンバ、マルチストリップチェンバあるいは蛍光板モニタなど既知のものがある。いずれもX方向とY方向のビーム中心位置をリアルタイムに計測するためのものである。位置モニタ109は、X走査電磁石107及びY走査電磁石106で走査された粒子線11が通過する通過位置(ビーム中心位置)やサイズを演算するためのビーム情報を検出する。位置モニタ信号処理装置119は、位置モニタ109が検出したアナログ信号からなるビーム情報に基づいて粒子線11の通過位置(ビーム中心位置)やサイズを演算する。
 加速器制御系104、Y走査電磁石電源116、X走査電磁石電源117、信号処理装置118、位置モニタ信号処理装置119と照射制御系103とは、照射制御系配線21により接続されている。インターロック系200は、Y走査電磁石電源116、X走査電磁石電源117、信号処理装置118、位置モニタ信号処理装置119、加速器120にインターロック系配線22により接続されている。安全解析監視装置300は、照射制御系103、Y走査電磁石電源116、X走査電磁石電源117、信号処理装置118、位置モニタ信号処理装置119、加速器120に安全監視系配線23により接続されている。
 粒子線11の治療照射にあって医療スタッフは事前に治療計画装置102を用いて治療計画を立案する。治療計画では、想定される照射方向において体内の治療体積をビーム進行方向(-Z方向)に各層に分割し、Z方向に垂直な各層の面内ではX方向、Y方向の格子の交点にスポット(照射点13)を配置し、各スポットに照射する線量を計算する。治療計画で決められた照射パラメータは事前に粒子線治療装置100のパラメータ(計画情報data4)に展開され、粒子線11の照射の際には粒子線治療装置100はそれに従って治療照射を行う。照射するスポットの位置はX走査電磁石107、Y走査電磁石106によって粒子線11をX方向、Y方向に偏向することで制御する。なお、Z方向の位置は粒子線11のビームエネルギーと体内の組成で決まる。粒子線治療装置100は、位置モニタ109によりビーム照射位置であるX位置とY位置の測定値が治療計画どおりであることを確認し、線量モニタ108で線量を計測しながら治療計画どおりの線量が各スポットに付与されたことを確認し、照射していく。深さ方向については、粒子線11のエネルギーで決まる層ごとに照射する。
 治療計画で決められたi番目に照射するスポット位置を計画位置Ppi(Xpi、Ypi、Zpi)とする。適宜、X方向の計画位置Ppiを計画位置Xpi、Y方向の計画位置Ppiを計画位置Ypi、Z方向の計画位置Ppiを計画位置Zpiと記載する。一つのスポットを照射するとき、スポット位置は一定とするために、X走査電磁石107、Y走査電磁石106の励磁電流を一定に保つ。線量モニタ108で計測されたスポットの照射線量が治療計画で決められた値に到達したことを照射制御系103が確認すると、X走査電磁石電源117、Y走査電磁石電源116はそれぞれX走査電磁石107、Y走査電磁石106の励磁電流を変えてスポット位置を次のスポット位置に移動させる。移動する際に照射ビームを停止する場合もあるが、停止せずに高速に次のスポットに移動する照射法もある。
 粒子線治療装置100は、このように一つの層における全てのスポットを治療計画に従って粒子線11を照射したのち、粒子線11のエネルギーを変更して次の層を粒子線11で照射する。そして粒子線治療装置100は、全ての層を粒子線11で照射したのち粒子線11の照射はいったん停止する。この一連の照射を1門の照射という。複数の門数が治療計画により指定されている場合には、更に複数の門数を治療計画が指定した照射角度から照射したのちに患者はその日の治療を終了し、いったん退室する。このように患者が照射室に入室してから退室までを1セッションという。
 次に安全解析監視装置300での判定対象となる関心量として位置偏差ΔPm(ΔXi、ΔYi)について説明する。ΔXiはX方向の位置偏差であり、ΔYiはY方向の位置偏差である。適宜、X方向の位置偏差ΔXiを位置偏差ΔXi、Y方向の位置偏差ΔYiを位置偏差ΔYiと記載する。
 粒子線照射装置101で走査された粒子線11は、X走査電磁石107、Y走査電磁石106の近辺に設定された仮想焦点を起点として患者の照射位置(照射点13)に向かって輸送される。治療計画で決められた各層内(計画位置Zpiの層内)の計画位置Xpi、Ypiは患者14の位置におけるものであって、粒子線11のビーム位置を検出する位置モニタ109は患者14より上流にあるため、i番目のスポットの計画位置Ppi(Xpi、Ypi)は位置モニタ109における理想位置Pmi(Xmi、Ymi)に変換される。適宜、X方向の理想位置Pmiを理想位置Xmi、Y方向の理想位置Pmiを理想位置Ymiと記載する。なお、これ以降の説明では計画位置Ppi(Xpi、Ypi)には言及せず、理想位置Pmi(Xmi、Ymi)を用いて説明する。位置モニタ109にて実際に照射された粒子線11のビーム位置は、計測位置Pmmi(Xmmi、Ymmi)としてリアルタイムで計測される。適宜、X方向の計測位置Pmmiを計測位置Xmmi、Y方向の計測位置Pmmiを計測位置Ymmiと記載する。
 X方向、Y方向の位置偏差ΔXi、ΔYiは、式(2)、式(3)に示すように、理想位置Xmi、Ymiと計測位置Xmmi、Ymmiとの差分であり、プラスマイナスの符号付きの量である。
 ΔXi=Xmi-Xmmi   ・・・(2)
 ΔYi=Ymi-Ymmi   ・・・(3)
 位置モニタ109にて測定されたビーム位置は、ある時間周期(例えば20マイクロ秒単位)で位置モニタ信号処理装置119にてリアルタイムで計算され読み出される。ビーム位置情報は、関心量情報data2の一例である。装置によって多少異なるが、ビーム位置情報にはいくつかの種類がある。例えば、20マイクロ秒のようにある一定周期で読み出しされる「読み出し単位のビーム位置」、あるいは計測した位置を例えば10回の読み出し値を移動平均した「時間平均ビーム位置」、あるいはスポットごとに算出した「スポットビーム位置」などいくつかの量が出力される。これらの量を特に識別する必要がない場合は、適宜、単に「ビーム位置」と記載する。位置偏差についても同様で、関心量として上記3種類、すなわち「読み出し単位の位置偏差」、「時間平均位置偏差」、「スポット位置偏差」のいずれも使用可能である。
 次に図2を用いて安全解析監視装置300の構成について説明する。安全解析監視装置300は、判定ロジック部302、安全解析監視装置300の分析結果を表示する表示部304と、表示部304に表示する表示内容を演算する表示演算部303と、および安全解析監視装置300を設定するためのユーザーインターフェース部305と、データを記憶するデータ記憶部301とを備える。データ記憶部301、判定ロジック部302、表示演算部303、表示部304、ユーザーインターフェース部305は、互いに監視装置配線39により接続されている。安全解析監視装置300内では高速な演算処理が求められるため、構成回路としてはFPGA(field-programmable gate array)などの高速プロセッサを用いると判定ロジック部302の条件を変える際にも柔軟性が得られるので、安全解析監視装置300に高速プロセッサを用いることが望ましい。データ記憶部301は、メモリを備えている。表示部304には警報レベル、カウンタの数値、グラフなどが表示される。表示部304は、例えば液晶表示パネル等である。表示の具体例は後述する。
 本実施の形態1では安全解析監視装置300は、従来の「シングルイベントによるインターロック系」の機能を含むインターロック系200に並列する形で設けてある。安全解析監視装置300には、粒子線照射装置101及び加速器120の加速器タイミング系105から関心量情報data2及び加速器運転情報data1が入力される。加速器タイミング系105から加速器120の運転情報である加速器運転情報data1が入力され、粒子線照射装置101の関心量情報data2の一例として、位置モニタ信号処理装置119からは位置モニタ109の情報である位置モニタ情報が入力され、照射制御系103からはスポット照射完了、層照射完了、1門終了、1セッション終了などのステータス信号の情報である照射ステータス情報data3が入力される。データ記憶部301には、計画情報data4、判定値情報data5が入力される。なお、加速器運転情報data1、関心量情報data2には、判定対象パラメータPiが含まれている。また、判定対象パラメータPiは、加速器運転情報data1、関心量情報data2に基づいて生成したものでもよい。前述したように、判定対象パラメータは関心量となるので、適宜、関心量Piを用いる。
 次に図3~図7を用いて実施の形態1の安全解析監視装置300及びインターロック系200についてさらに詳しく説明する。ここでは、関心量Piの一例として、位置偏差ΔXi、ΔYiを監視する例を説明する。実施の形態1の安全解析監視装置300は、位置偏差ΔXiを監視する関心量監視部330aと、位置偏差ΔYiを監視する関心量監視部330bとを備えている。関心量監視部330a及び関心量監視部330bは、同様に実装される。判定ロジック部302は、各関心量監視部330a、330bの関心量判定回路部307を構成する。表示部304には、各関心量監視部330a、330bの関心量情報表示306が表示される。関心量判定回路部307は、フラッグ判定部310、フラッグカウンタ部311、信号生成回路36を備える。
 関心量監視部330aのフラッグ判定部310は、例えば3つの比較演算回路31a、31b、31cを備えている。この比較演算回路31a、31b、31cでは位置偏差ΔXiと許容範囲(上限値及び下限値の絶対値である許容値Vde1a、Vde1b、Vde1c)を比較し、許容範囲超過の場合はフラッグ(図27参照)を出力する。このフラッグは、例えばパルスであり、フラッグ信号fs1a、fs1b、fs1cとして出力される。フラッグ信号fs1a、fs1b、fs1cは、フラッグの数に対応したパルスを含む信号、すなわちパルス状の信号である。フラッグカウンタ部311は、比較演算回路の数に応じた3つのデジタル演算回路32a、32b、32cを備えている。このデジタル演算回路32a、32b、32cはフラッグの発生個数を計測し、カウンタ閾値Nc1a、Nc1b、Nc1cを超えた場合に閾値超過を示す関心量レベル信号cs1a、cs1b、cs1cを生成する。また、デジタル演算回路32a、32b、32cは計測したフラッグの発生個数をカウント値信号cn1a、cn1b、cn1cとして出力する。信号生成回路36は、関心量レベル信号cs1cを照射中断信号sige2aとしてインターロック系200に出力する。ここで、例えば、関心量レベル信号cs1a、cs1b、cs1cが閾値超過を示す信号レベルは、高レベル(信号値1)である。関心量レベル信号cs1a、cs1b、cs1cが閾値超過を示さない信号レベルは、低レベル(信号値0)である。なお、同様に、関心量レベル信号cs2a、cs2b、cs2cが閾値超過を示す信号レベルは、高レベル(信号値1)である。関心量レベル信号cs2a、cs2b、cs2cが閾値超過を示さない信号レベルは、低レベル(信号値0)である。
 フラッグを生成するか否かを判定するための位置偏差ΔXiの許容値Vde1a、Vde1b、Vde1cは、照射制御系103からあらかじめ準備された設定ファイル(判定値情報data5)から行うか、あるいは安全解析監視装置300のユーザーインターフェース部305から設定する。許容値Vde1a、Vde1b、Vde1cの設定ファイルはデータ記憶部301に保存される。
 カウンタ閾値Nc1a、Nc1b、Nc1cの設定は、位置偏差ΔXiの許容値Vde1a、Vde1b、Vde1cの設定と同様に行うか、ユーザーインターフェース部305から設定する。カウンタ閾値Nc1a、Nc1b、Nc1cの設定ファイルはデータ記憶部301に保存される。ユーザーインターフェース部305のハードウェアを用いる場合は、サムホイールなどオペレータが誤って設定変更することが容易でない装置にするとよい。
 デジタル演算回路32a、32b、32cのカウンタ40(図6参照)をリセットするカウンタリセット信号sigr1には、照射制御系103からの照射ステータス情報data3の信号を用いる。カウンタリセット信号sigr1によるリセットのタイミングは、セッションごと、門ごと、層ごとなどである。表示したい目的など運用によってカウンタリセット信号sigr1を使い分ける。安全解析監視装置300から出力される照射中断信号sige2aは、インターロック系200に出力される。
 図4に示すように、関心量監視部330aの関心量判定回路部307は、位置偏差ΔXiを3つ許容値Vde1a、Vde1b、Vde1cで判定する3つの比較演算回路31a、31b、31cを備えている。比較演算回路31a、31b、31cは、それぞれ絶対値演算器37と比較器38を備えている。比較演算回路31aは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1aよりも大きい場合に、比較器38がフラッグ信号fs1aに1つのパルスを出力する。フラッグ信号fs1aにおける1つのパルスが、フラッグである。同様に、比較演算回路31bは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1bよりも大きい場合に、比較器38がフラッグ信号fs1bに1つのパルスを出力する。比較演算回路31cは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1cよりも大きい場合に、比較器38がフラッグ信号fs1cに1つのパルスを出力する。なお、比較器38は回路シンボルで記載されている。「A」、「B」は2つの入力であり、「A>B」は出力であり、この出力はA>Bが成立する場合に出力される。
 関心量監視部330aのフラッグ発生条件は、式(4)が成立することである。
 |ΔXi|>Vde1   ・・・(4)
ここで許容値Vde1は、図4の比較演算回路31a、31b、31cに入力される各許容値Vde1a、Vde1b、Vde1cを総括的に表現したものである。位置偏差ΔXiの許容範囲は、-Vde1~+Vde1の範囲である。
 デジタル演算回路32a、32b、32cは、同じ構成であり、それぞれ図6に示すように、カウンタ40と、比較器43とを備える。このデジタル演算回路の符号は、総括的に32を用い、区別する場合に32a、32b、32cを用いる。カウンタ40は、フラッグ入力信号Finが入力され、フラッグ入力信号Finに現れたパルスの数を計測し、カウント値Ncntを出力する。比較器43は、カウント値Ncntと閾値Nrefとを比較し、カウント値Ncntが閾値Nrefよりも大きい場合に閾値超過を示すレベル判定信号Floutを出力する。また、比較器43は、カウント値Ncntが閾値Nref以下の場合に閾値超過を示さないレベル判定信号Floutを出力する。カウンタ40は、リセット信号Rstが入力されると、カウント値Ncntをリセットする。ここで、例えば、レベル判定信号Floutが閾値超過を示す信号レベルは高レベル(信号値1)であり、レベル判定信号Floutが閾値超過を示さない信号レベルは低レベル(信号値0)である。図4のデジタル演算回路32a、32b、32cは、回路シンボルで記載されている。図4のデジタル演算回路32a、32b、32cにおけるf、n、rは、それぞれ図6に示したフラッグ入力信号Fin、閾値Nref、リセット信号Rstを入力する入力端子を表している。図4のデジタル演算回路32a、32b、32cにおけるc、oは、それぞれ図6に示したカウント値Ncnt、レベル判定信号Floutを出力する出力端子を表している。なお、他の図におけるデジタル演算回路32a、32b、32cも同じ回路シンボルで記載されている。比較器43は回路シンボルで記載されている。「A」、「B」は2つの入力であり、「A>B」は出力であり、この出力はA>Bが成立する場合に出力される。
 関心量監視部330bのフラッグ判定部310は、関心量監視部330aのフラッグ判定部310と同様である。関心量監視部330bのフラッグ判定部310は、図5に示すように、例えば3つの比較演算回路31a、31b、31cを備えている。この比較演算回路31a、31b、31cでは位置偏差ΔYiと許容範囲(上限値及び下限値の絶対値である許容値Vde2a、Vde2b、Vde2c)を比較し、許容範囲超過の場合はフラッグを出力する。このフラッグはパルス状のフラッグ信号fs2a、fs2b、fs2cとなって出力される。フラッグカウンタ部311は、比較演算回路の数に応じた3つのデジタル演算回路32a、32b、32cを備えている。このデジタル演算回路32a、32b、32cはフラッグの発生個数を計測し、カウンタ閾値Nc2a、Nc2b、Nc2cを超えた場合に閾値超過を示す関心量レベル信号cs2a、cs2b、cs2cを生成する。また、デジタル演算回路32a、32b、32cは計測したフラッグの発生個数をカウント値信号cn2a、cn2b、cn2cとして出力する。信号生成回路36は、関心量レベル信号cs2cを照射中断信号sige2bとしてインターロック系200に出力する。
 図5に示した関心量監視部330bのフラッグ判定部310では、比較演算回路31a、31b、31cにおける絶対値演算器37は、入力である位置偏差ΔYiの絶対値|ΔYi|を演算する。図5に示した比較演算回路31aは、位置偏差ΔYiの絶対値|ΔYi|が許容値Vde2aよりも大きい場合に、フラッグ信号fs2aに1つのパルスを出力する。同様に、図5に示した比較演算回路31bは、位置偏差ΔYiの絶対値|ΔYi|が許容値Vde2bよりも大きい場合に、フラッグ信号fs2bに1つのパルスを出力する。図5に示した比較演算回路31cは、位置偏差ΔYiの絶対値|ΔYi|が許容値Vde2cよりも大きい場合に、フラッグ信号fs2cに1つのパルスを出力する。
 関心量監視部330bのフラッグ発生条件は、式(5)が成立することである。
 |ΔYi|>Vde2   ・・・(5)
ここで許容値Vde2は、図5の比較演算回路31a、31b、31cに入力される各許容値Vde2a、Vde2b、Vde2cを総括的に表現したものである。位置偏差ΔYiの許容範囲は、-Vde2~+Vde2の範囲である。
 インターロック系200は、図3に示すように、インターロック判定装置201と、インターロック状態表示装置202と、照射中断信号生成回路203とを備えている。インターロック判定装置201は、図7に示すように、比較演算回路41a、41bを備えている。比較演算回路41aと比較演算回路41bとは、同じ回路構成である。比較演算回路41a、41bは、それぞれ絶対値演算器37と、比較器43を備えている。比較演算回路41aは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vdel1aよりも大きい場合に、比較器43が照射中断を示す照射中断信号sige1aを出力する。比較演算回路41aの比較器43は、絶対値|ΔXi|が許容値Vdel1a以下の場合に、照射中断を示さない照射中断信号sige1aを出力する。比較演算回路41bは、絶対値演算器37が位置偏差ΔYiの絶対値|ΔYi|を演算し、この絶対値|ΔYi|が許容値Vdel1bよりも大きい場合に、比較器43が照射中断を示す照射中断信号sige1bを出力する。比較演算回路41bの比較器43は、絶対値|ΔYi|が許容値Vdel1b以下の場合に、照射中断を示さない照射中断信号sige1bを出力する。ここで、例えば、照射中断信号sige1a、sige1bが照射中断を示す信号レベルは、高レベル(信号値1)である。照射中断信号sige1a、sige1bが照射中断を示さない信号レベルは、低レベル(信号値0)である。
 インターロック判定装置201に入力される許容値Vdel1aは、関心量監視部330aに入力される許容値Vde1a、Vde1b、Vde1cよりも大きい値に設定されている。例えば、許容値Vdel1aは2mmであり、許容値Vde1a、Vde1b、Vde1cはそれぞれ0.5mm、0.75mm、1mmである。また、インターロック判定装置201に入力される許容値Vdel1bは、関心量監視部330bに入力される許容値Vde2a、Vde2b、Vde2cよりも大きい値に設定されている。例えば、許容値Vdel1bは2mmであり、許容値Vde2a、Vde2b、Vde2cはそれぞれ0.5mm、0.75mm、1mmである。
 インターロック状態表示装置202は、照射中断信号sige1a、sige1bが照射中断を示す場合に、位置偏差ΔXi、ΔYiが許容値を超えたことを示す警報表示を表示する。照射中断信号生成回路203には、インターロック判定装置201が生成した照射中断信号sige1a、sige1bと安全解析監視装置300が生成した照射中断信号sige2a、sige2bとが入力される。照射中断信号生成回路203は、例えば4入力のOR回路(オア回路)であり、照射中断信号sige1a、sige1b、sige2a、sige2bの1つでも照射中断を示す場合に、照射中断を示す照射中断信号sige3を出力する。照射中断信号生成回路203は、照射中断信号sige1a、sige1b、sige2a、sige2bの全てが照射中断を示さない場合に、照射中断を示さない照射中断信号sige3を出力する。インターロック判定装置201が生成する照射中断信号の符号は、総括的にsige1を用い、区別して説明する場合にsige1a、sige1bを用いる。安全解析監視装置300が生成する照射中断信号の符号は、総括的にsige2を用い、区別して説明する場合にsige2a、sige2bを用いる。
 次に安全解析監視装置300の動作について説明する。安全解析監視装置300には、位置モニタ信号処理装置119より理想位置Pmi、計測位置Pmmi、位置偏差ΔPmなどの情報がリアルタイムで伝送される。これらの量について安全解析監視装置300内でも計算することで得られるものは外部から伝送しなくてもよい。また、計画情報data4のように照射開始前に得られる量であれば事前に安全解析監視装置300内に伝送し、データ記憶部301に保管しておいてもよい。安全解析監視装置300はこれらの情報に基づいて、関心量の一例である位置偏差ΔPmが正常範囲内で照射システムが動作していることをリアルタイムで判定する。
 安全解析監視装置300と並列に設置されたインターロック系200は、インターロック判定装置201を備えており、インターロック判定装置201は式(1)に基づきシングルイベントで動作する「シングルイベントによるインターロック系」と同様の動作をする。すなわちインターロック判定装置201は、式(1)の条件のいずれかが満たされなかった一回目の許容値超過で照射中断を示す照射中断信号sige1が生成され、照射中断信号生成回路203により照射中断を示す照射中断信号sige3が加速器120に出力される。加速器120は、照射中断を示す照射中断信号sige3を受けると、インターロックが作動し、粒子線11の照射を中断する。インターロック判定装置201の許容値Vdel1a、Vdel1bは、前述したように例えば2mmである。
 これに対して安全解析監視装置300では、偏差異常の許容範囲、すなわち許容値Vde1a、Vde1b、Vde1c、Vde2a、Vde2b、Vde2cを従来の「シングルイベントによるインターロック系」より狭めた範囲に設定にしておき、より高精度な異常判定を行う。これに伴い、安全解析監視装置300では許容範囲外の事象が増える。このため、インターロック動作による粒子線照射の不要な中断をしないように、フラッグが1回のみ発生するシングルイベントでは粒子線11の照射を自動的に中断させることをせずに、フラッグ回数がある値に到達した時点でのみ自動的に粒子線11の照射中断を行うように照射中断信号sige2を生成する。安全解析監視装置300は、許容範囲の閾値が、従来の「シングルイベントによるインターロック系」より厳しく設定されるが、フラッグが発生するたびにフラッグカウンタ部311の3つのカウンタ40をインクリメントして、複数イベントの発生回数が閾値を超えた場合に粒子線11の照射を自動的に中断する指令を示す照射中断信号sige2をインターロック系200に出力する。インターロック系200は、照射中断を示す照射中断信号sige2を受けると照射中断信号生成回路203により照射中断を示す照射中断信号sige3が加速器120に出力される。したがって、安全解析監視装置300は、従来の「シングルイベントによるインターロック系」よりも厳しい許容範囲で判定するとともに、複数イベントの発生回数を判定するので、粒子線治療の照射精度を高めながらも、不要な照射中断を防止することができる。
 安全解析監視装置300が判定するイベントの発生回数の閾値、すなわちカウンタ閾値Nc1a、Nc1b、Nc1c、Nc2a、Nc2b、Nc2cは事前に設定された値とし、照射セッションごとに設定可能とするが、1門の照射中には固定値とする。例えば、カウンタ閾値Nc1a、Nc2aは20であり、カウンタ閾値Nc1b、Nc2bは10であり、カウンタ閾値Nc1c、Nc2cは5である。安全解析監視装置300は、フラッグカウンタ部311で計測されたイベントの発生回数が閾値を超えた時点でそれぞれに対応する警報レベルを表示部304に表示し、オペレータに警報レベルを提示する。図3に示すように、複数の警報レベル、すなわち警報レベル1、警報レベル2、警報レベル3が設定されている場合は、この中であるレベル以上の警報が発生したときのみ照射中断を示す照射中断信号sige2を生成して、インターロック系200を介して粒子線11の照射を自動で中断するようにするにすることができる。このとき、照射開始からの偏差異常が発生した累積回数も、数値表示34a、34b、34cとして表示部304に表示するとよい。
 図3では、安全解析監視装置300が位置偏差ΔXi、ΔYiのそれぞれに対して3つの許容範囲と3つのカウンタ閾値を用いて3段階の警報レベルを表示部304に表示される例を示した。フラッグカウンタ部311のデジタル演算回路32aから閾値超過を示す関心量レベル信号cs1aが出力されると、警報レベル1を示す警報表示33aが表示される。このときフラッグカウンタ部311のデジタル演算回路32aからカウント値を示すカウント値信号cn1aが出力され、このカウント値信号cn1aが示すカウント値が数値表示34aに表示される。同様に、フラッグカウンタ部311のデジタル演算回路32bから閾値超過を示す関心量レベル信号cs1bが出力されると、警報レベル2を示す警報表示33bが表示される。このときフラッグカウンタ部311のデジタル演算回路32bからカウント値を示すカウント値信号cn1bが出力され、このカウント値信号cn1bが示すカウント値が数値表示34bに表示される。フラッグカウンタ部311のデジタル演算回路32cから閾値超過を示す関心量レベル信号cs1cが出力されると、警報レベル3を示す警報表示33cが表示される。このときフラッグカウンタ部311のデジタル演算回路32cからカウント値を示すカウント値信号cn1cが出力され、このカウント値信号cn1cが示すカウント値が数値表示34cに表示される。
 インターロック判定装置201の許容値Vdel1aの値が2mmであり、関心量監視部330aの許容値Vde1a、Vde1b、Vde1cがそれぞれ0.5mm、0.75mm、1mmであり、関心量監視部330aのカウンタ閾値Nc1a、Nc1b、Nc1cがそれぞれ20、10、5である例を用いて、安全解析監視装置300の動作を説明する。各許容値の大小関係は、Vdel1a>Vde1c>Vde1b>Vde1aになっている。各カウンタ閾値の大小関係は、Nc1a>Nc1b>Nc1cになっている。関心量である位置偏差ΔXiの絶対値|ΔXi|が許容値Vdel1a(2mm)を超えた場合に、インターロック判定装置201が照射中断を示す照射中断信号sige1aを生成し、照射中断信号生成回路203を介して照射中断を示す照射中断信号sige3が加速器120に出力される。加速器120は、照射中断を示す照射中断信号sige3に応じて粒子線11を直ちに遮断して粒子線11の照射を中断する。
 関心量である位置偏差ΔXiの絶対値|ΔXi|が許容値Vde1a(0.5mm)を超えた場合に、関心量監視部330aの比較演算回路31aがパルス状のフラッグを含むフラッグ信号fs1aを生成し、デジタル演算回路32aで計測されたフラッグの数であるカウント値Ncntがカウンタ閾値Nc1a(20)を超えた場合に、デジタル演算回路32aが閾値超過を示す関心量レベル信号cs1aを生成する。同様に、関心量である位置偏差ΔXiの絶対値|ΔXi|が許容値Vde1b(0.75mm)を超えた場合に、関心量監視部330aの比較演算回路31bがパルス状のフラッグを含むフラッグ信号fs1bを生成し、デジタル演算回路32bで計測されたフラッグの数であるカウント値Ncntがカウンタ閾値Nc1b(10)を超えた場合に、デジタル演算回路32bが閾値超過を示す関心量レベル信号cs1bを生成する。関心量である位置偏差ΔXiの絶対値|ΔXi|が許容値Vde1c(1mm)を超えた場合に、関心量監視部330aの比較演算回路31cがパルス状のフラッグを含むフラッグ信号fs1cを生成し、デジタル演算回路32cで計測されたフラッグの数であるカウント値Ncntがカウンタ閾値Nc1c(5)を超えた場合に、デジタル演算回路32cが閾値超過を示す関心量レベル信号cs1cを生成する。
 閾値超過を示す関心量レベル信号cs1cは、関心量監視部330aの信号生成回路36により照射中断を示す照射中断信号sige2aとしてインターロック系200に出力される。インターロック系200は、照射中断を示す照射中断信号sige2aを受け取る(受信する)と、照射中断信号生成回路203を介して照射中断を示す照射中断信号sige3を加速器120に出力する。加速器120は、照射中断を示す照射中断信号sige3に応じて粒子線11を直ちに遮断して粒子線11の照射を中断する。
 関心量である位置偏差ΔYiを監視する関心量監視部330bの動作は、関心量である位置偏差ΔXiを監視する関心量監視部330aと同様である。インターロック判定装置201の許容値Vdel1bの値が2mmであり、関心量監視部330bの許容値Vde2a、Vde2b、Vde2cがそれぞれ0.5mm、0.75mm、1mmであり、関心量監視部330bのカウンタ閾値Nc2a、Nc2b、Nc2cがそれぞれ20、10、5である例を用いて、安全解析監視装置300の動作を説明する。各許容値の大小関係は、Vdel1b>Vde2c>Vde2b>Vde2aになっている。各カウンタ閾値の大小関係は、Nc2a>Nc2b>Nc2cになっている。
 関心量である位置偏差ΔYiの絶対値|ΔYi|が許容値Vdel1b(2mm)を超えた場合に、インターロック判定装置201が照射中断を示す照射中断信号sige1bを生成し、照射中断信号生成回路203を介して照射中断を示す照射中断信号sige3が加速器120に出力される。加速器120は、照射中断を示す照射中断信号sige3に応じて粒子線11を直ちに遮断して粒子線11の照射を中断する。
 関心量である位置偏差ΔYiの絶対値|ΔYi|が許容値Vde2a(0.5mm)を超えた場合に、関心量監視部330bの比較演算回路31aがパルス状のフラッグを含むフラッグ信号fs2aを生成し、デジタル演算回路32aで計測されたフラッグの数であるカウント値Ncntがカウンタ閾値Nc2a(20)を超えた場合に、デジタル演算回路32aが閾値超過を示す関心量レベル信号cs2aを生成する。同様に、関心量である位置偏差ΔYiの絶対値|ΔYi|が許容値Vde2b(0.75mm)を超えた場合に、関心量監視部330bの比較演算回路31bがパルス状のフラッグを含むフラッグ信号fs2bを生成し、デジタル演算回路32bで計測されたフラッグの数であるカウント値Ncntがカウンタ閾値Nc2b(10)を超えた場合に、デジタル演算回路32bが閾値超過を示す関心量レベル信号cs2bを生成する。関心量である位置偏差ΔYiの絶対値|ΔYi|が許容値Vde2c(1mm)を超えた場合に、関心量監視部330bの比較演算回路31cがパルス状のフラッグを含むフラッグ信号fs2cを生成し、デジタル演算回路32cで計測されたフラッグの数であるカウント値Ncntがカウンタ閾値Nc2c(5)を超えた場合に、デジタル演算回路32cが閾値超過を示す関心量レベル信号cs2cを生成する。
 閾値超過を示す関心量レベル信号cs2cは、関心量監視部330bの信号生成回路36により照射中断を示す照射中断信号sige2bとしてインターロック系200に出力される。インターロック系200は、照射中断を示す照射中断信号sige2bを受け取る(受信する)と、照射中断信号生成回路203を介して照射中断を示す照射中断信号sige3を加速器120に出力する。加速器120は、照射中断を示す照射中断信号sige3に応じて粒子線11を直ちに遮断して粒子線11の照射を中断する。
 このように、実施の形態1の安全解析監視装置300は、監視対象である位置偏差ΔXi、ΔYi等の関心量に対して、従来の「シングルイベントによるインターロック系」のインターロックの幅を変更することなく、このインターロックの幅よりも小さな許容範囲で判定し、許容範囲を超過したイベントの回数を監視することによって、粒子線治療の照射精度を高めながら、すなわち粒子線11の照射の安全性を担保しながら、不要な照射中断を避けることができる。実施の形態1では、インターロックの幅が関心量の絶対値の上限値及び下限値(許容値Vdel1a、Vdel1b)とし、安全解析監視装置300におけるイベント発生を判定する判定幅(許容範囲)が関心量の絶対値の上限値及び下限値(許容値Vde1a、Vde1b、Vde1c、Vde2a、Vde2b、Vde2c)である例で説明した。なお、インターロックの幅、イベント発生を判定する判定幅は、上限値と下限値が同一絶対値に限らず、異なっていてもよい。
 実施の形態1の粒子線治療装置100は、従来の「シングルイベントによるインターロック系」と同様に動作するインターロック判定装置201を含むインターロック系200と、安全解析監視装置300とを備える。これにより、実施の形態1の粒子線治療装置100は、従来の「シングルイベントによるインターロック系」と同様に動作するインターロック判定装置201のインターロックの幅(許容値Vdel1a、Vdel1b)はこれまでと同様に広いままにしておくことができ、安全解析監視装置300において、このインターロックの幅(許容値Vdel1a、Vdel1b)よりも小さな許容範囲(許容値Vde1a、Vde1b、Vde1c、Vde2a、Vde2b、Vde2c)を設定することができる。このようにインターロックの幅と許容範囲を設定することで、実施の形態1の粒子線治療装置100は、インターロックの幅(許容値Vdel1a、Vdel1b)よりも小さな誤差(許容範囲との差)に対するフラッグを発生させ、そのフラッグの発生回数を監視することによって、粒子線治療の照射精度を高めながら、すなわち粒子線11の照射の安全性を担保しながら、不要な照射中断を避けることができる。
 安全解析監視装置300において、大きな位置偏差ΔXi、ΔYiが1回でも起きれば粒子線照射装置101、加速器制御系104、加速器120が正しく動いていない可能性が高いが、このような事象は従来の「シングルイベントによるインターロック系」と同様に動作するインターロック判定装置201で検出し、粒子線11の照射を中断すればよい。インターロック判定装置201の許容値Vdel1a、Vdel1bよりも小さな位置偏差ΔXi、ΔYiであれば、何回までかは許容できるので粒子線11の照射の即時の中断は不要である。なお、フラッグカウンタ部311のカウンタ40のリセットは運用によって、層ごとに行うか、あるいは1門ごと、セッションごとなどに行うが、稀な事象に対しては1日や1週間単位の積算値としてもよい。
 安全解析監視装置300のデータ記憶部301においては次の情報を記録することが望ましい。また、安全解析監視装置300の表示部304においては次の情報を表示することが望ましい。第1の情報は、どのレベルの警報が発生したかを示す情報、すなわち警報レベル情報である。この警報レベル情報は、例えば図3に示したように警報レベル1、警報レベル2、警報レベル3が表示部304に表示される。第2の情報は、警報が発生したときのスポット番号、スポット位置、計画線量である。この第2の情報は、例えば図3に示した情報表示35として表示部304に表示される。第3の情報は、各警報レベルに対応するイベントの発生回数(照射期間中の累積数)である。この第3の情報は、例えば図3に示したように数値表示34a、34b、34cが表示部304に表示される。
 実施の形態1の安全解析監視装置300は、第1の情報、第2の情報、第3の情報を安全解析監視装置300で管理することで、インターロックの不要な発生、すなわち粒子線照射の不要な中断を避けながらも、粒子線11の照射中のシステム安全レベルを把握し、粒子線治療装置100の安全性に通常どおりの余裕があるのか、それとも通常から変動しているのか、といった状態監視が可能となる。
 なお、これまで、位置偏差ΔXi、ΔYiに対して複数の許容値及びカウンタ閾値を設けて警報を段階的に発信し、より高レベルの警報のときのみ照射を自動的に中断する例で説明した。しかし、位置偏差ΔXi、ΔYiに対して1つの許容値及びカウンタ閾値を設けて、安全解析監視装置300が照射中断信号sige2(sige2a、sige2b)を生成してもよい。この場合でも、実施の形態1の安全解析監視装置300は、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
 以上のように、実施の形態1の安全解析監視装置300は、加速器120にて加速された粒子線11を走査して患者14に照射する粒子線治療装置100における、粒子線11の照射状態を判定する安全解析監視装置であって、粒子線治療装置100の機器から出力されたデータ(加速器運転情報data1、関心量情報data2)に基づく判定対象である関心量Piを判定し、関心量Piが予め定められた中断条件に合致する場合に粒子線11の照射中断を指令する中断指令(照射中断信号sige2)を生成する関心量判定回路部307を備えている。実施の形態1の安全解析監視装置300の関心量判定回路部307は、関心量Piに対して設定された少なくとも1つの許容範囲(上限値及び下限値の絶対値である許容値Vde1)を関心量Piが超えた事象を検出し、その検出回数が2回以上の所定の回数(カウンタ閾値Nc1c)に到達したときに中断指令(照射中断信号sige2)を生成することを特徴とする。実施の形態1の安全解析監視装置300は、この特徴により、関心量Piが許容範囲を超えた事象を検出し、その検出回数が2回以上の所定の回数に到達したときに中断指令(照射中断信号sige2)が生成されるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
 実施の形態1の粒子線治療装置100は、荷電粒子を必要なエネルギーまで加速して、加速された荷電粒子を粒子線11として発生させる加速器120と、粒子線11を粒子線照射装置101及び患者14の照射位置(照射点13)まで輸送するビーム輸送系121と、輸送された粒子線11を走査して患者14に照射する粒子線照射装置101と、粒子線11の照射状態を判定する安全解析監視装置300と、を備えたことを特徴とする。実施の形態1の粒子線治療装置100は、実施の形態1の安全解析監視装置300を備えるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
実施の形態2.
 図8は本発明の実施の形態2による安全解析監視装置の構成図であり、図9は本発明の実施の形態2によるインターロック系の構成図である。図10は、図8の安全解析監視装置の詳細な構成図である。図11は図10の第一の関心量判定回路部の構成図であり、図12は図10の第二の関心量判定回路部の構成図である。図13は図10の第三の関心量判定回路部の構成図であり、図14は図10の第四の関心量判定回路部の構成図である。実施の形態2は、関心量の標準偏差および関心量の平均値に基づいて監視する例である。実施の形態1では、関心量の例として位置偏差ΔPm(ΔXi、ΔYi)で説明したので、実施の形態2でも位置モニタ109で測定した位置に関する、位置偏差ΔPm(ΔXi、ΔYi)の標準偏差ΔPsgm(ΔXsgm、ΔYsgm)および平均値ΔPave(ΔXave、ΔYave)に基づいて位置偏差ΔPm(ΔXi、ΔYi)を監視する例を説明する。適宜、位置偏差ΔPm(ΔXi、ΔYi)の平均値および標準偏差は、単に偏差の平均値ΔPave(ΔXave、ΔYave)および偏差の標準偏差ΔPsgm(ΔXsgm、ΔYsgm)を用いる。ΔXaveはX方向の偏差の平均値であり、ΔYaveはY方向の偏差の平均値である。ΔXsgmはX方向の偏差の標準偏差であり、ΔYsgmはY方向の偏差の標準偏差である。適宜、X方向の偏差の平均値ΔXaveを偏差の平均値ΔXave、Y方向の偏差の平均値ΔYaveを偏差の平均値ΔYaveと記載する。また、X方向の偏差の標準偏差ΔXsgmを偏差の標準偏差ΔXsgm、Y方向の偏差の標準偏差ΔYsgmを偏差の標準偏差ΔYsgmと記載する。
 実施の形態1では、関心量として、「読み出し単位の位置偏差」、「時間平均位置偏差」、「スポット位置偏差」を使用できることを述べたが実施の形態2の位置偏差ΔPm(ΔXi、ΔYi)も、「読み出し単位の位置偏差」、「時間平均位置偏差」、「スポット位置偏差」を使用できる。また、位置偏差ΔPm(ΔXi、ΔYi)の標準偏差ΔPsgm(ΔXsgm、ΔYsgm)および平均値ΔPave(ΔXave、ΔYave)と、実施の形態3で説明する全信号Qiとに基づいて、照射中断信号sige2を生成するようにしてもよい。
 実施の形態2の安全解析監視装置300は、偏差の平均値ΔXave、ΔYave及び偏差の標準偏差ΔXsgm、ΔYsgmを計算する関心量演算部313を備え、さらに偏差の平均値ΔXave、ΔYave、偏差の標準偏差ΔXsgm、ΔYsgmをそれぞれ監視する4つの関心量監視部330a、330b、330c、330dを備える点で実施の形態1の安全解析監視装置300と異なる。実施の形態2のインターロック系200は、インターロック判定装置201が位置偏差ΔXi、ΔYiに対応する2つの照射中断信号sige1a、sige1bを生成し、照射中断信号生成回路203がこの2つの照射中断信号sige1a、sige1bと安全解析監視装置300が生成する4つの照射中断信号sige2a、sige2b、sige2c、sige2dとに基づいて照射中断信号sige3を生成する点で、実施の形態1のインターロック系200と異なる。安全解析監視装置300が生成する照射中断信号の符号は、総括的にsige2を用い、区別して説明する場合にsige2a、sige2b、sige2c、sige2dを用いる。
 偏差の平均値ΔXave、ΔYave、偏差の標準偏差ΔXsgm、ΔYsgmはそれぞれ式(6)、式(7)、式(8)、式(9)により計算される。関心量演算部313は、式(6)、式(7)、式(8)、式(9)により偏差の平均値ΔXave、ΔYave、偏差の標準偏差ΔXsgm、ΔYsgmを演算する。
 ΔXave=ΣΔXi/N   ・・・(6)
 ΔYave=ΣΔYi/N   ・・・(7)
 ΔXsgm=sqr((ΣΔXi)/N-(ΣΔXi/N)
                           ・・・(8)
 ΔYsgm=sqr((ΣΔYi)/N-(ΣΔYi/N)
                           ・・・(9)
 ここでNはその時点までに収集された位置偏差データの総数であって、照射開始時点からの位置偏差ΔPm(ΔXi、ΔYi)のデータの総数である。iは1からNまでの数である。また、Nが小さい場合は式(6)~式(9)までの値が突発的に変動する可能性があるので、Nが小さい場合には式(6)~式(9)の値をゼロとして出力するように関心量演算部313を設定しておくとよい。
 図10~図14を用いて、実施の形態2の安全解析監視装置300を説明する。実施の形態2の安全解析監視装置300は、関心量演算部313と、偏差の平均値ΔXaveを監視する関心量監視部330aと、偏差の平均値ΔYaveを監視する関心量監視部330bと、偏差の標準偏差ΔXsgmを監視する関心量監視部330cと、偏差の標準偏差ΔYsgmを監視する関心量監視部330dとを備える。偏差の平均値ΔXaveを監視する関心量監視部330a及び偏差の平均値ΔYaveを監視する関心量監視部330bは、図11、図12に示すように、3つの比較演算回路31a、31b、31cに入力される入力量、すなわち関心量に基づく関係量が、図4、図5に示した位置偏差ΔXi、ΔYiから偏差の平均値ΔXave、ΔYaveに変更されているが、実施の形態1の位置偏差ΔXiを監視する関心量監視部330a及び位置偏差ΔYiを監視する関心量監視部330bと同じ回路構成である。
 関心量監視部330aの関心量判定回路部307の構成を示している図11の比較演算回路31a、31b、31cは、式(10)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs1a、fs1b、fs1cに出力する。すなわち、比較演算回路31a、31b、31cは、式(10)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs1a、fs1b、fs1cを生成する。
 |ΔXave|>Vde1   ・・・(10)
ここで許容値Vde1は、図11の比較演算回路31a、31b、31cに入力される各許容値Vde1a、Vde1b、Vde1cを総括的に表現したものである。偏差の平均値ΔXaveの許容範囲は、-Vde1~+Vde1の範囲である。
 同様に、関心量監視部330bの関心量判定回路部307の構成を示している図12の比較演算回路31a、31b、31cは、式(11)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs2a、fs2b、fs2cに出力する。すなわち、比較演算回路31a、31b、31cは、式(11)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs2a、fs2b、fs2cを生成する。
 |ΔYave|>Vde2   ・・・(11)
ここで許容値Vde2は、図12の比較演算回路31a、31b、31cに入力される各許容値Vde2a、Vde2b、Vde2cを総括的に表現したものである。偏差の平均値ΔYaveの許容範囲は、-Vde2~+Vde2の範囲である。
 関心量監視部330aの関心量判定回路部307の構成を示している図11の比較演算回路31a、31b、31cに入力される各許容値の大小関係は、例えば実施の形態1と同様にVde1c>Vde1b>Vde1aになっている。しかしここで、関心量監視部330aの関心量判定回路部307の構成を示している図11のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の設定は、例えば実施の形態1と異なり、ここではNc1a=Nc1b=Nc1c=1とする。同様に関心量監視部330bの関心量判定回路部307の構成を示している図12の比較演算回路31a、31b、31cに入力される各許容値の大小関係は、例えば実施の形態1と同様にVde2c>Vde2b>Vde2aになっている。関心量監視部330bの関心量判定回路部307の構成を示している図12のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の設定は、例えば実施の形態1と異なり、ここではNc2a=Nc2b=Nc2c=1とする。各カウンタ閾値を1に設定する理由は、式(6)~式(9)にて定義される量はいずれも統計的な量であり、すなわち複数のデータを一つのセットとして捉え、そのセット全体から算出される特性量であり、シングルイベントに見られる突発的変動は自然と平準化されるからである。すなわち式(6)~式(9)の量を使用すること自体が複数イベントの情報に基づく判定に相当するためである。ただし、突発的な変動に対して感度を下げたい場合は、Nc1a、Nc1b、Nc1c、Nc2a、Nc2b、Nc2cを2以上に設定してもよい。
 偏差の標準偏差ΔXsgmを監視する関心量監視部330cの関心量判定回路部308及び偏差の標準偏差ΔYsgmを監視する関心量監視部330dの関心量判定回路部308は、図13、図14に示す様に、3つの比較演算回路31a、31b、31cに入力される入力量、すなわち関心量に基づく関係量が正の値である偏差の標準偏差ΔXsgm、ΔYsgmなので、比較器38のみである。関心量監視部330cの関心量判定回路部308の構成を示している図13の比較演算回路31a、31b、31cは、式(12)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs1a、fs1b、fs1cに出力する。すなわち、比較演算回路31a、31b、31cは、式(12)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs1a、fs1b、fs1cを生成する。
 ΔXsgm>Vde3   ・・・(12)
ここで許容値Vde3は、図13の比較演算回路31a、31b、31cに入力される各許容値Vde3a、Vde3b、Vde3cを総括的に表現したものである。偏差の標準偏差ΔXsgmの許容範囲は、0(ゼロ)~+Vde3の範囲である。
 同様に、関心量監視部330dの関心量判定回路部308の構成を示している図14の比較演算回路31a、31b、31cは、式(13)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs2a、fs2b、fs2cに出力する。すなわち、比較演算回路31a、31b、31cは、式(13)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs2a、fs2b、fs2cを生成する。
 ΔYsgm>Vde4   ・・・(13)
ここで許容値Vde4は、図14の比較演算回路31a、31b、31cに入力される各許容値Vde4a、Vde4b、Vde4cを総括的に表現したものである。偏差の標準偏差ΔYsgmの許容範囲は、0(ゼロ)~+Vde4の範囲である。
 関心量監視部330cの関心量判定回路部308の構成を示している図13の比較演算回路31a、31b、31cに入力される各許容値の大小関係は、関心量監視部330aの関心量判定回路部307の構成を示している図11の比較演算回路31a、31b、31cに入力される各許容値の大小関係に対応しており、Vde3c>Vde3b>Vde3aになっている。また、関心量監視部330dの関心量判定回路部308の構成を示している図14の比較演算回路31a、31b、31cに入力される各許容値の大小関係は、関心量監視部330bの関心量判定回路部307の構成を示している図12の比較演算回路31a、31b、31cに入力される各許容値の大小関係に対応しており、Vde4c>Vde4b>Vde4aになっている。なお、カウンタ閾値Nc3a、Nc3b、Nc3c、Nc4a、Nc4b、Nc4cは、カウンタ閾値Nc1a、Nc1b、Nc1c、Nc2a、Nc2b、Nc2cと同様に1とする。ただし、突発的な変動に対して感度を下げたい場合は、Nc1a、Nc1b、Nc1c、Nc2a、Nc2b、Nc2cを2以上に設定してもよい。
 関心量監視部330aのフラッグカウンタ部311は、関心量監視部330aの比較演算回路31a、31b、31cが生成したフラッグ信号fs1a、fs1b、fs1cのフラッグの発生個数を計測するデジタル演算回路32a、32b、32cを備えている。関心量監視部330aのデジタル演算回路32a、32b、32cの動作は、実施の形態1と同じである。関心量監視部330aの信号生成回路36は、関心量レベル信号cs1cを照射中断信号sige2aとしてインターロック系200に出力する。関心量監視部330bのフラッグカウンタ部311は、関心量監視部330bの比較演算回路31a、31b、31cが生成したフラッグ信号fs2a、fs2b、fs2cのフラッグの発生個数を計測するデジタル演算回路32a、32b、32cを備えている。関心量監視部330bのデジタル演算回路32a、32b、32cの動作は、実施の形態1と同じである。関心量監視部330bの信号生成回路36は、関心量レベル信号cs2cを照射中断信号sige2bとしてインターロック系200に出力する。
 関心量監視部330cのフラッグカウンタ部311は、関心量監視部330cの比較演算回路31a、31b、31cが生成したフラッグ信号fs1a、fs1b、fs1cのフラッグの発生個数を計測するデジタル演算回路32a、32b、32cを備えている。関心量監視部330cのデジタル演算回路32a、32b、32cは、実施の形態1の関心量監視部330aのフラッグカウンタ部311と同様に、フラッグの発生個数を計測し、カウンタ閾値Nc3a、Nc3b、Nc3cを超えた場合に閾値超過を示す関心量レベル信号cs1a、cs1b、cs1cを生成する。また、関心量監視部330cのデジタル演算回路32a、32b、32cは計測したフラッグの発生個数をカウント値信号cn1a、cn1b、cn1cとして出力する。関心量監視部330cの信号生成回路36は、関心量レベル信号cs1cを照射中断信号sige2cとしてインターロック系200に出力する。
 関心量監視部330dのフラッグカウンタ部311は、関心量監視部330dの比較演算回路31a、31b、31cが生成したフラッグ信号fs2a、fs2b、fs2cのフラッグの発生個数を計測するデジタル演算回路32a、32b、32cを備えている。関心量監視部330dのデジタル演算回路32a、32b、32cは、実施の形態1の関心量監視部330bのフラッグカウンタ部311と同様に、フラッグの発生個数を計測し、カウンタ閾値Nc4a、Nc4b、Nc4cを超えた場合に閾値超過を示す関心量レベル信号cs2a、cs2b、cs2cを生成する。また、関心量監視部330dのデジタル演算回路32a、32b、32cは計測したフラッグの発生個数をカウント値信号cn2a、cn2b、cn2cとして出力する。関心量監視部330dの信号生成回路36は、関心量レベル信号cs2cを照射中断信号sige2dとしてインターロック系200に出力する。
 実施の形態2のインターロック系200は、図9に示すように、インターロック判定装置201と、インターロック状態表示装置202と、照射中断信号生成回路203とを備えている。インターロック判定装置201に入力される許容値Vdel1aは、関心量監視部330aに入力される許容値Vde1a、Vde1b、Vde1cよりも大きい値に設定されている。例えば、許容値Vdel1aは2mmであり、許容値Vde1a、Vde1b、Vde1cはそれぞれ0.5mm、0.75mm、1mmである。しがたって、位置偏差ΔXi及び偏差の平均値ΔXaveに関する4つの許容値の大小関係は、Vdel1a>Vde1c>Vde1b>Vde1aになっている。また、インターロック判定装置201に入力される許容値Vdel1bは、関心量監視部330bに入力される許容値Vde2a、Vde2b、Vde2cよりも大きい値に設定されている。例えば、許容値Vdel1bは2mmであり、許容値Vde2a、Vde2b、Vde2cはそれぞれ0.5mm、0.75mm、1mmである。しがたって、位置偏差ΔYi及び偏差の平均値ΔYaveに関する4つの許容値の大小関係は、Vdel1b>Vde2c>Vde2b>Vde2aになっている。
 インターロック状態表示装置202は、照射中断信号sige1a、sige1bが照射中断を示す場合に、位置偏差ΔXi、ΔYiが許容値を超えたことを示す警報表示を表示する。照射中断信号生成回路203には、インターロック判定装置201が生成した照射中断信号sige1a、sige1bと安全解析監視装置300が生成した照射中断信号sige2a、sige2b、sige2c、sige2dとが入力される。照射中断信号生成回路203は、例えば6入力のOR回路(オア回路)であり、照射中断信号sige1a、sige1b、及びsige2a~sige2dの1つでも照射中断を示す場合に、照射中断を示す照射中断信号sige3を出力する。照射中断信号生成回路203は、照射中断信号sige1、sige1b、及びsige2a~sige2dの全てが照射中断を示さない場合に、照射中断を示さない照射中断信号sige3を出力する。
 関心量演算部313は、式(6)、式(7)、式(8)、式(9)により偏差の平均値ΔXave、ΔYave及び偏差の標準偏差ΔXsgm、ΔYsgmをリアルタイムで計算する。関心量演算部313は、判定ロジック部302と同等の速度で演算される回路であり、すなわち関心量演算回路である。関心量演算部313である関心量演算回路の具体的な回路構成は図示しないが、関心量演算回路は、例えば式(6)、式(7)、式(8)、式(9)に示す、加算、減算、乗算、除算を実行する演算器を組み合わせた構成になっている。
 実施の形態2の安全解析監視装置300は、実施の形態1の安全解析監視装置300と同様に動作する。実施の形態2の安全解析監視装置300は、関心量に基づく関係量の許容範囲、すなわち許容値Vde1a~Vde1c、Vde2a~Vde2cを、従来の「シングルイベントによるインターロック系」より狭めた範囲に設定にしておき、より高精度な異常判定を行う。安全解析監視装置300は、許容範囲の閾値が、従来の「シングルイベントによるインターロック系」より厳しく設定されるが、関心量に基づく関係量として式(6)~式(9)にて定義される統計的な量を用いて、関心量に基づく関係量が閾値を超えた場合に粒子線11の照射を自動的に中断する指令を示す照射中断信号sige2をインターロック系200に出力する。インターロック系200は、照射中断を示す照射中断信号sige2を受けると照射中断信号生成回路203により照射中断を示す照射中断信号sige3が加速器120に出力される。したがって、安全解析監視装置300は、従来の「シングルイベントによるインターロック系」よりも厳しい許容範囲で判定するとともに、複数イベントの情報に基づいて統計的に判定するので、粒子線治療の照射精度を高めながらも、不要な照射中断を防止することができる。
 なお、許容値Vdel1a、Vdel1b、許容値Vde1、Vde2、Vde3、Vde4、カウンタ閾値Nc1a~Nc1c、Nc2a~Nc2c、Nc3a~Nc3c、Nc4a~Nc4cは予め設定された値である。許容値Vde1、Vde2、Vde3、Vde4、カウンタ閾値Nc1a~Nc1c、Nc2a~Nc2c、Nc3a~Nc3c、Nc4a~Nc4cは実施の形態1と同様に設定される。ここでは、実施の形態1と同様に、偏差の平均値ΔXave、ΔYave、偏差の標準偏差ΔXsgm、ΔYsgmに対して複数の許容値及びカウンタ閾値を設けて警報を段階的に発信し、より高レベルの警報のときのみ照射を自動的に中断する例で説明した。しかし、偏差の平均値ΔXave、ΔYave、偏差の標準偏差ΔXsgm、ΔYsgmに対して1つの許容値及びカウンタ閾値を設けて、安全解析監視装置300が照射中断信号sige2(sige2a、sige2b、sige2c、sige2d)を生成してもよい。この場合にも、実施の形態2の安全解析監視装置300は、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
 また、実施の形態2の安全解析監視装置300は、位置偏差ΔXi、ΔYi、偏差の平均値ΔXave、ΔYave、偏差の標準偏差ΔXsgm、ΔYsgmをヒストグラムとしてほぼリアルタイムで表示部304に表示する。このようにすることによって、オペレータはシステム(粒子線治療装置100)の状況を視覚的に把握することができる。
 式(6)~式(9)に対する積算のリセット、および関心量監視部330a、330b、330c、330dのフラッグカウンタ部311のリセットについては、実施の形態1と同様の方法でよい。
 以上のように、実施の形態2の安全解析監視装置300は、実施の形態1の安全解析監視装置300と同様に動作するので、実施の形態1の安全解析監視装置300と同様に粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。また、実施の形態2の粒子線治療装置100は、実施の形態2の安全解析監視装置300を備えるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
実施の形態3.
 図15は本発明の実施の形態3による安全解析監視装置の構成を示す図である。図16は図15の第一の関心量判定回路部の構成図であり、図17は図15の第二の関心量判定回路部の構成図である。実施の形態1では関心量として位置偏差ΔPm(ΔXi、ΔYi)を用いた例を説明したが、本実施の形態3では関心量のフラッグ発生条件に、当該関心量の情報と当該関心量と異なる情報とを組み合わせた組合せ条件を用いる例について説明する。実施の形態3の安全解析監視装置300は、この組合せ条件を用いてフラッグを発生させて、関心量を監視する例である。
 実施の形態3の安全解析監視装置300は、関心量監視部330a、330bが、位置モニタ109により計測され、位置モニタ信号処理装置119から出力された各チャンネルの計測値を合算した量である全信号Qiと位置偏差ΔPm(ΔXi、ΔYi)とに基づいて、照射中断信号sige2を生成する点で、実施の形態1の安全解析監視装置300と異なる。位置モニタ信号処理装置119は、一定周期で位置モニタ109の位置情報を出力するが、そのたびに全信号Qiという量も出力する。全信号Qiとはi回目の計測における位置モニタ109の各チャンネルの計測値を合算した量で、全信号Qiは粒子線11における荷電粒子の個数(フルエンス)に比例する。粒子線11の物理特性によって若干のビームエネルギー依存性があるが、全信号Qiは特定のエネルギーにおいてはフルエンスと見做せる。粒子線照射装置101からは、スポット単位のスポット位置及び位置偏差ΔPm(ΔXi、ΔYi)とスポットの全信号Qiが出力される。
 位置偏差情報(位置偏差ΔPmの情報)は、例えば20マイクロ秒程度の短い時間単位で位置モニタ信号処理装置119にて算出されるが、加速器120による変動としては位置偏差ΔPmの変動だけでなく、粒子線11のビーム電流の揺らぎがある。粒子線11のビーム電流の揺らぎは1秒に比べて4桁ほど早い変化の場合があり、20マイクロ秒ごとに出力された位置偏差情報はビーム電流が高い瞬間に得られた情報だったり、ビーム電流が低い瞬間に得られた情報だったりする。全信号Qiが小さいときの位置情報(計測位置Pmmiの情報)はノイズの影響のため信頼性が相対的に低い。よって高速で読み出しされる位置情報、位置偏差情報には信頼性の低い測定値も交じっている可能性がある。しかし、全信号Qiが小さい場合には線量誤差としての影響は小さい。このため、フラッグ発生条件において、全信号Qiが小さい場合にはその位置情報及び位置偏差情報のデータを使用しないか、その位置情報及び位置偏差情報のデータの重み付けを低くする方法を適用することが考えられる。図15、図16、図17のフラッグ判定部310では、全信号Qiに対する条件を論理積であるAND(アンド)でフラッグ生成条件に追加し、全信号Qiがある閾値(許容値)以下の場合にはその測定は信頼性が劣るとして関心量の異常判定に用いないようにしている例である。なお、全信号Qiは、関心量の信頼性を示す信頼性量である。
 関心量監視部330aの関心量判定回路部307の構成を示している図16において、比較演算回路31a、31b、31cは、式(14)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs1a、fs1b、fs1cに出力する。すなわち、比較演算回路31a、31b、31cは、式(14)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs1a、fs1b、fs1cを生成する。
 (|ΔXi|>Vde1)AND(Qi>Vdeq)  ・・・(14)
ここで許容値Vde1は、図16の比較演算回路31a、31b、31cに入力される各許容値Vde1a、Vde1b、Vde1cを総括的に表現したものである。許容値Vdeqは、図16の比較演算回路31a、31b、31cに入力される各許容値Vdeqa、Vdeqb、Vdeqcを総括的に表現したものである。位置偏差ΔXiの許容範囲は、-Vde1~+Vde1の範囲である。
 関心量監視部330bの関心量判定回路部307の構成を示している図17において、比較演算回路31a、31b、31cは、式(15)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs2a、fs2b、fs2cに出力する。すなわち、比較演算回路31a、31b、31cは、式(15)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs2a、fs2b、fs2cを生成する。
 (|ΔYi|>Vde2)AND(Qi>Vdeq)  ・・・(15)
ここで許容値Vde2は、図17の比較演算回路31a、31b、31cに入力される各許容値Vde2a、Vde2b、Vde2cを総括的に表現したものである。許容値Vdeqは、図16の比較演算回路31a、31b、31cに入力される各許容値Vdeqa、Vdeqb、Vdeqcを総括的に表現したものである。位置偏差ΔYiの許容範囲は、-Vde2~+Vde2の範囲である。
 図16、図17について、実施の形態1の図4、図5と異なる部分を説明する。図16、図17の比較演算回路31a、31b、31cは、それぞれ絶対値演算器37、比較器38、比較器43、AND演算器44を備えている。図16の比較演算回路31aは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1aよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図16の比較演算回路31aは、全信号Qiが許容値Vdeqaよりも大きい場合に、比較器43が高レベルの内部信号so2を生成する。図16の比較演算回路31aは、内部信号so1、so2が共に高レベルの場合に、AND演算器44がAND演算を行いフラッグ信号fs1aに1つのパルスを出力する。フラッグ信号fs1aにおける1つのパルスが、フラッグである。
 同様に、図16の比較演算回路31bは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1bよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図16の比較演算回路31bは、全信号Qiが許容値Vdeqbよりも大きい場合に、比較器43が高レベルの内部信号so2を生成する。図16の比較演算回路31bは、内部信号so1、so2が共に高レベルの場合に、AND演算器44がAND演算を行いフラッグ信号fs1bに1つのパルスを出力する。図16の比較演算回路31cは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1cよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図16の比較演算回路31cは、全信号Qiが許容値Vdeqcよりも大きい場合に、比較器43が高レベルの内部信号so2を生成する。図16の比較演算回路31cは、内部信号so1、so2が共に高レベルの場合に、AND演算器44がAND演算を行いフラッグ信号fs1cに1つのパルスを出力する。
 同様に、図17の比較演算回路31aは、絶対値演算器37が位置偏差ΔYiの絶対値|ΔYi|を演算し、この絶対値|ΔYi|が許容値Vde2aよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図17の比較演算回路31aは、全信号Qiが許容値Vdeqaよりも大きい場合に、比較器43が高レベルの内部信号so2を生成する。図17の比較演算回路31aは、内部信号so1、so2が共に高レベルの場合に、AND演算器44がAND演算を行いフラッグ信号fs2aに1つのパルスを出力する。図17の比較演算回路31bは、絶対値演算器37が位置偏差ΔYiの絶対値|ΔYi|を演算し、この絶対値|ΔYi|が許容値Vde2bよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図17の比較演算回路31bは、全信号Qiが許容値Vdeqbよりも大きい場合に、比較器43が高レベルの内部信号so2を生成する。図17の比較演算回路31bは、内部信号so1、so2が共に高レベルの場合に、AND演算器44がAND演算を行いフラッグ信号fs2bに1つのパルスを出力する。図17の比較演算回路31cは、絶対値演算器37が位置偏差ΔYiの絶対値|ΔYi|を演算し、この絶対値|ΔYi|が許容値Vde2cよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図17の比較演算回路31cは、全信号Qiが許容値Vdeqcよりも大きい場合に、比較器43が高レベルの内部信号so2を生成する。図17の比較演算回路31cは、内部信号so1、so2が共に高レベルの場合に、AND演算器44がAND演算を行いフラッグ信号fs2cに1つのパルスを出力する。
 関心量監視部330aの関心量判定回路部307の構成を示している図16の比較演算回路31a、31b、31cの比較器38に入力される各許容値、及びインターロック判定装置201に入力される許容値Vdel1a(図7参照)の大小関係は、例えば実施の形態1と同様にVdel1a>Vde1c>Vde1b>Vde1aになっている。また、関心量監視部330aの関心量判定回路部307の構成を示している図16の比較演算回路31a、31b、31cの比較器43に入力される各許容値の大小関係は、例えば、Vdeqc>Vdeqb=Vdeqaになっている。関心量監視部330aの関心量判定回路部307の構成を示している図16のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の大小関係は、例えば実施の形態1と同様にNc1a>Nc1b>Nc1cになっている。許容値Vdel1a、Vde1c、Vde1b、Vde1aの数値例、許容値Vdeqc、Vdeqb、Vdeqaの数値例、カウンタ閾値Nc1a、Nc1b、Nc1cの数値例を示す。許容値Vdel1a、Vde1c、Vde1b、Vde1aの数値例は、2mm、1mm、0.75mm、0.5mmである。許容値Vdeqc、Vdeqb、Vdeqaの数値例は、500カウント、300カウント、300カウントである。なお、全信号Qiは、基準電荷で規格化した計測値であるカウントで数値化されている。カウンタ閾値Nc1a、Nc1b、Nc1cの数値例は、20、10、5である。
 同様に、関心量監視部330bの関心量判定回路部307の構成を示している図17の比較演算回路31a、31b、31cの比較器38に入力される各許容値、及びインターロック判定装置201に入力される許容値Vdel1b(図7参照)の大小関係は、例えば実施の形態1と同様にVdel1b>Vde2c>Vde2b>Vde2aになっている。また、関心量監視部330bの関心量判定回路部307の構成を示している図17の比較演算回路31a、31b、31cの比較器43に入力される各許容値の大小関係は、例えば、Vdeqc>Vdeqb=Vdeqaになっている。関心量監視部330bの関心量判定回路部307の構成を示している図17のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の大小関係は、例えば実施の形態1と同様にNc2a>Nc2b>Nc2cになっている。許容値Vdel1b、Vde2c、Vde2b、Vde2aの数値例、許容値Vdeqc、Vdeqb、Vdeqaの数値例、カウンタ閾値Nc2a、Nc2b、Nc2cの数値例を示す。許容値Vdel1b、Vde2c、Vde2b、Vde2aの数値例は、2mm、1mm、0.75mm、0.5mmである。許容値Vdeqc、Vdeqb、Vdeqaの数値例は、500カウント、300カウント、300カウントである。カウンタ閾値Nc2a、Nc2b、Nc2cの数値例は、20、10、5である。
 今まで、実施の形態3のフラッグ判定部310では、式(14)、式(15)に示したように、全信号Qiに対する条件をAND(アンド)でフラッグ生成条件に追加し、全信号Qiがある閾値(許容値)以下の場合にはその測定は信頼性が劣るとして関心量の異常判定に用いないようにする例を説明した。なお、実施の形態3の関心量判定回路部307は、関心量Piの情報に加え、全信号Qiという追加の情報を用いて関心量の信頼性を高めたので、信頼性の高い関心量に関して生成されたフラッグ5が1回検出された場合に、照射中断信号sige2を生成するようにしても良い場合もある。この場合は、カウンタ閾値Nc1c、Nc2cの数値は1である。また、この例以外にも他の例が考えられる。別の例として、位置偏差ΔXiを全信号Qiで重み付けした値を判定対象量として、関心量である位置偏差ΔXiの異常判定を行ってもよい。同様に、位置偏差ΔYiを全信号Qiで重み付けした値を判定対象量として、関心量である位置偏差ΔYiの異常判定を行ってもよい。この場合にも、インターロック判定装置201の構成を変更することなく、粒子線11の照射を中断する照射中断信号sige3を生成することができる。この場合の安全解析監視装置300のフラッグ判定部310の比較演算回路31a、31b、31cの構成例は後述する。
 安全解析監視装置300のフラッグ判定部310の比較演算回路31a、31b、31cの構成例を説明する。前述した別の例と更に別の例でも、同じ回路構成にできる。図15、図16、図17では全信号Qiが安全解析監視装置300のフラッグ判定部310に入力されるので、フラッグ判定部310においてQi・ΔXiの演算を行い、これを判定対象量として用いる。具体的には、関心量監視部330a、330bのフラッグ判定部310における比較演算回路31a、31b、31cを変更する。まず、関心量監視部330aのフラッグ判定部310における比較演算回路31a、31b、31cの変更例を説明する。例えば、比較器38、AND演算器44を削除し、絶対値演算器37の出力と全信号Qiを乗算する乗算器を追加して、比較器43の入力端子(記号Aを付した端子)に入力される信号を、全信号Qiから追加した乗算器の出力Qi・|ΔXi|に変更する。更に、比較器43を、第一入力端子(記号Aを付した端子)の入力値が第二入力端子(記号Bを付した端子)の入力値よりも大きい場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs1a、fs1b、fs1cを出力するタイプの比較器、すなわちパルス出力タイプの比較器に変更する。なお、比較演算回路31aでは、比較器43の第二入力端子(記号Bを付した端子)に入力される許容値は、Vde1a・Vdeqaを用いる。比較演算回路31b、31cでは、比較器43の第二入力端子(記号Bを付した端子)に入力される許容値は、それぞれVde1b・Vdeqb、Vde1c・Vdeqcを用いる。
 関心量監視部330bのフラッグ判定部310における比較演算回路31a、31b、31cの変更例は、関心量監視部330aのフラッグ判定部310における比較演算回路31a、31b、31cの変更例と同様である。例えば、比較器38、AND演算器44を削除し、絶対値演算器37の出力と全信号Qiを乗算する乗算器を追加して、比較器43の入力端子(記号Aを付した端子)に入力される信号を、全信号Qiから追加した乗算器の出力Qi・|ΔYi|に変更する。更に、比較器43を、第一入力端子(記号Aを付した端子)の入力値が第二入力端子(記号Bを付した端子)の入力値よりも大きい場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs2a、fs2b、fs2cを出力するタイプの比較器、すなわちパルス出力タイプの比較器に変更する。なお、比較演算回路31aでは、比較器43の第二入力端子(記号Bを付した端子)に入力される許容値は、Vde2a・Vdeqaを用いる。比較演算回路31b、31cでは、比較器43の第二入力端子(記号Bを付した端子)に入力される許容値は、それぞれVde2b・Vdeqb、Vde2c・Vdeqcを用いる。
 実施の形態1では、関心量として、「読み出し単位の位置偏差」、「時間平均位置偏差」、「スポット位置偏差」を使用できることを述べたが、実施の形態3の位置偏差ΔPm(ΔXi、ΔYi)も、「読み出し単位の位置偏差」、「時間平均位置偏差」、「スポット位置偏差」を使用できる。また、前述したように、実施の形態2の位置偏差ΔPm(ΔXi、ΔYi)の標準偏差ΔPsgm(ΔXsgm、ΔYsgm)および平均値ΔPave(ΔXave、ΔYave)と、全信号Qiとに基づいて、照射中断信号sige2を生成するようにしてもよい。
 実施の形態3の安全解析監視装置300は、フラッグ判定部310の判定条件が異なっているが、実施の形態1の安全解析監視装置300と同様に動作するので、実施の形態1の安全解析監視装置300と同様に粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。また、実施の形態3の安全解析監視装置300は、位置偏差ΔPm(ΔXi、ΔYi)と全信号Qiという二つの情報とを組み合わせた組合せ条件を用いることによって、粒子線照射の安全性の判定をより効率的に行うことができる。また、実施の形態3の粒子線治療装置100は、実施の形態3の安全解析監視装置300を備えるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。また、実施の形態3の粒子線治療装置100は、位置偏差ΔPm(ΔXi、ΔYi)と全信号Qiという二つの情報とを組み合わせた組合せ条件を用いることによって、粒子線照射の安全性の判定をより効率的に行うことができる。
実施の形態4.
 図18は本発明の実施の形態4による安全解析監視装置の構成を示す図であり、図19は図18のマスク信号を説明する図である。図20は図18の第一の関心量判定回路部の構成図であり、図21は図18の第二の関心量判定回路部の構成図である。図22は図18の他の第一の関心量判定回路部の構成図であり、図23は図18の他の第二の関心量判定回路部の構成図である。本実施の形態4では加速器120のタイミング情報を安全解析監視装置300に入力し、それを位置偏差異常判定に活用する例を説明する。
 ビーム位置偏差の主たる要因として加速器120による誤差と走査電磁石(X走査電磁石107、Y走査電磁石106)による誤差がある。まず前者の加速器120によるビーム位置偏差について説明する。加速器120の一例であるシンクロトロンは、入射、加速、出射、減速という運転サイクルを繰り返すことによって運転される。この周期は2秒~10秒程度である。この運転サイクルの中でビームが粒子線11として照射に使えるのは、出射期間に相当するビームである。この出射期間に相当するビームは、運転サイクルのサイクル周期の中で、時間がおよそ1秒~9秒程度の長さである。この出射期間中に照射点13でのビーム位置はゆっくりと変化し、サイクルごとの再現性があるのが典型的な例である。つまり、このようなビーム位置変動事象の時間は秒オーダであり、スポット1個の照射時間はミリ秒オーダであるのに対して、ビーム位置変動事象はゆっくりとした現象である。ビーム位置変動事象は、ビーム位置偏差の変動を生じさせる。このビーム位置偏差の変動は再現性があるので、ビーム調整の一環として照射点13でのビーム位置が変動しないように加速器120をあらかじめ調整する。しかし、1日の温度変動や季節変動などさまざまな要因によってある程度の偏差(例えば1~2mm程度)は残る。
 次にY走査電磁石106及びX走査電磁石107によるビーム位置偏差について説明する。Y走査電磁石106及びX走査電磁石107による誤差としては、励磁電流と振り角の関係に含まれる誤差と、磁場のヒステリシス効果の影響による誤差が主なものである。治療の照射野は一辺が最大20cm~40cm程度である。励磁電流と振り角の関係に含まれる誤差、およびヒステリシスによる誤差は、いずれもこの照射野の中心から端部にかけて緩やかに変化するものである。これに対し次のスポットへの移動距離は2mm~5mm程度である。従って、これらの誤差は双方ともスポット移動時間に対して比較的ゆっくりと変化する事象である。このような効果を補正するために校正をあらかじめ行うが、ある程度の誤差は残る。
 ビーム位置誤差、すなわちスポットの位置偏差について説明したが、これを補正するために粒子線照射装置101では、ビーム位置フィードバック制御という機能を具備している場合がある。ビーム位置フィードバック制御では、位置モニタ109でX方向、Y方向の位置偏差を計測し、その量に基づいて上流の電磁石(例えば、ビーム輸送系121の偏向電磁石)における補正電流値を計算しフィードバックすることで、計測位置が理想位置と一致するようにビーム位置を補正する制御方法である。例えば、ビーム輸送系121は、補正された補正電流値によりビーム輸送系121が備える偏向電磁石を制御することで、ビーム位置フィードバック制御を行っている。加速器120による誤差および走査電磁石(X走査電磁石107、Y走査電磁石106)による誤差の両方は、前述のようにいずれも比較的遅い現象であるため、ビーム位置フィードバックを用いることによって双方の誤差を同時に補正することができる。ビーム位置フィードバックが正常に動作していれば、位置モニタ109の精度範囲内、典型的には0.1mmレベルでスポット位置を計画どおりに照射することができる。
 このようなビーム位置フィードバック制御は、特許文献1、2のような「シングルイベントによるインターロック系」の改善とは異なる他の方法、すなわち粒子線治療の安全性と効率性を高める他の方法である。このようなフィードバック制御方法は、前述したように、ビーム位置を計測し、計測値と所望の値の差分を照射装置にフィードバックし、ビーム照射位置を高速制御する手法である。しかし、このようなビーム位置フィードバック制御には有限な時間遅れが必然的に発生するため、照射開始直後の時間遅れの範囲ではビーム位置偏差が意図した範囲内にあるとはいえない。一方で、一時的にそのような範囲外の状態になっても、その事象がフィードバック制御の時間遅れの範囲内に限られていれば、所望の線量分布を得るうえで必ずしも障害とはならない。従ってこのような事象でインターロックを作動させることは避けたいが、かといって閾値の幅を広めると常時その緩すぎる閾値で管理されることになり、線量分布の所望の精度が保証されないという問題があった。
 フィードバック制御方法を従来の「シングルイベントによるインターロック系」を備えた粒子線治療装置に適用した場合は、「シングルイベントによるインターロック系」でも大きな位置偏差は検出されるので、ビーム位置フィードバック装置が想定どおり機能していれば高精度のビーム位置制御が実現されるため所望の照射は実現できる。しかし、粒子線治療装置の健全な動作にはビーム位置フィードバックへの依存度が高いにも関わらず、従来の「シングルイベントによるインターロック系」で検出される誤差とビーム位置フィードバックに託された精度との間にはギャップがあり、従来の「シングルイベントによるインターロック系」はビーム位置フィードバックの動作を十分に監視することはできなかった。さらに、実際には機器の故障や、日内温度変動、季節温度変動によって粒子線治療装置の動作状態は変動する可能性がある。このため、インターロックの広い閾値を満足している状態であってもビーム位置フィードバック制御が所望の狭い範囲の位置偏差を満たしていることを確認することが重要である。フィードバック制御方法を実行する粒子線治療装置でも、従来の「シングルイベントによるインターロック系」は十分な対応ができない問題があった。
 ビーム位置フィードバックが正常に動作していれば、ビーム位置誤差を小さくすることができるが、位置フィードバックには有限な時間遅れがある。このためビームが出射された最初の部分、すなわちシンクロトロンの各運転サイクルのうち出射期間の開始部分では、位置フィードバック制御によって所望の精度が得られないという問題がある。ただし、位置フィードバックの静定時間は、フィードバック回路の定数設定に依存するが、数ミリ秒以下と早い。これに対して全出射期間は、前述のように秒オーダである。従ってこの程度の照射誤差であれば、全体の照射精度(3次元線量分布の平坦度)への影響は非常に小さいため、粒子線治療として許容できる範囲と言える。この状況に対して、従来の「シングルイベントによるインターロック系」であれば位置偏差の許容範囲を出射開始部分に合わせて広く設定せざるをえず、その広い許容範囲がすべての照射時間に適用されてしまうため、全体の照射精度が低下する恐れがある。逆に全てのスポットに対して判定範囲を狭めてしまうと、出射開始時点で毎回粒子線11の照射中断が頻繁に発生することになる。
 この問題を解決するために、安全解析監視装置300を用いて出射開始直後の期間のみに対して許容範囲を広く設定するか、位置偏差ΔPm(ΔXi、ΔYi)に対する感度を下げればよい。例えば、加速器タイミング系105が出力する出射ゲート信号siggにおける、出射開始直後の一定期間に限定して位置誤差異常のフラッグに対してマスクをかけることにより、出射開始時点でのビーム位置誤差への感度を下げているようにすればよい。このように、マスクがかけられた関心量は、関心量の感度が低減された低減関心量である。この一定期間は、後述する位置フィードバックの静定時間である。位置誤差異常のフラッグに対してマスクをかける安全解析監視装置300の構成を説明する。実施の形態4の安全解析監視装置300は、位置誤差異常のフラッグに対してマスクをかけるマスク信号sigmを出射ゲート信号siggから生成するマスク信号生成回路314を備え、関心量監視部330a、330bが、位置偏差ΔPm(ΔXi、ΔYi)とマスク信号sigmとに基づいて、照射中断信号sige2を生成する点で、実施の形態1の安全解析監視装置300と異なる。
 出射開始直後の期間を認識するには、加速器タイミング系105から安全解析監視装置300に入力された情報を使う。加速器120がビームを出すための出射ゲート信号siggは、式(16)に示すように式(16)の右辺(sigbr(オン) AND sigbe(オン))が成立する場合に高レベル(信号値1)になり、式(16)の右辺が成立しない場合に低レベル(信号値0)になる。
 sigg(オン)=sigbr(オン) AND sigbe(オン)
                           ・・・(16)
ここで、sigbrはビーム要求信号であり、sigbeは出射可信号である。ビーム要求信号sigbrは、照射系(粒子線照射装置101)がシンクロトロン(加速器120)からのビーム出力を要求する制御信号である。出射可信号sigbeは、シンクロトロン(加速器120)が入射と加速を終了し、出射準備完了した状態を表すものである。ビーム要求信号sigbr、出射可信号sigbeは、いずれも加速器タイミング系105にて従来から使われている制御信号である。sigg(オン)は、シンクロトロン(加速器120)に粒子線11の出射を許可する状態を示しており、例えば出射ゲート信号siggが高レベル(信号値1)であることを示している。sigbr(オン)は、粒子線11の出射を要求している状態を示しており、例えばビーム要求信号sigbr高レベル(信号値1)であることを示している。sigbe(オン)はシンクロトロンが出射準備完了した状態を示しており、例えば高レベル(信号値1)であることを示している。マスクをかける期間は、式(16)の出射ゲート信号siggがオフ(OFF)からオン(ON)に遷移したタイミングに対して決めればよい。
 出射ゲート信号sigg、マスク信号sigmのタイミング例を、図19に示した。図19の横軸は時間であり、縦軸は各信号の信号レベルである。信号レベルは、高レベル(Hレベル)と低レベル(Lレベル)である。反マスク信号sigmnは、マスク信号sigmの反転信号である。時刻t0で出射可信号sigbeがオフ(Lレベル)からオン(Hレベル)になり、時刻t1でビーム要求信号sigbrがオフ(Lレベル)からオン(Hレベル)になると、出射ゲート信号siggがオフ(Lレベル)からオン(Hレベル)になる。ここでは、出射ゲート信号siggはビーム要求信号sigbr及び出射可信号sigbeの遷移から回路動作の遅延は多少あるが、回路動作遅延は付加しないで説明する。同様に、マスク信号sigm、反マスク信号sigmnは出射ゲート信号siggの遷移から回路動作の遅延は多少あるが、回路動作遅延は付加しないで説明する。
 時刻t1で出射ゲート信号siggがオフ(Lレベル)からオン(Hレベル)になると、マスク信号sigmがオフ(Lレベル)からオン(Hレベル)になり、反マスク信号sigmnがオン(Hレベル)からオフ(Lレベル)になる。時刻t2で、マスク信号sigmがオン(Hレベル)からオフ(Lレベル)になり、反マスク信号sigmnがオフ(Lレベル)からオン(Hレベル)になる。時刻t1から時刻t2までの時間は、前述した位置フィードバックの静定時間であり、例えば1msである。時刻t4から時刻t5までの時間も時刻t1から時刻t2までの時間と同じである。時刻t3でビーム要求信号sigbrがオン(Hレベル)からオフ(Lレベル)になると、出射ゲート信号siggがオン(Hレベル)からオフ(Lレベル)になる。時刻t4でビーム要求信号sigbrがオフ(Lレベル)からオン(Hレベル)になると、出射ゲート信号siggがオフ(Lレベル)からオン(Hレベル)になる。時刻t4で出射ゲート信号siggがオフ(Lレベル)からオン(Hレベル)になると、マスク信号sigmがオフ(Lレベル)からオン(Hレベル)になり、反マスク信号sigmnがオン(Hレベル)からオフ(Lレベル)になる。時刻t5で、マスク信号sigmがオン(Hレベル)からオフ(Lレベル)になり、反マスク信号sigmnがオフ(Lレベル)からオン(Hレベル)になる。時刻t6でビーム要求信号sigbrがオン(Hレベル)からオフ(Lレベル)になると、出射ゲート信号siggがオン(Hレベル)からオフ(Lレベル)になる。マスク信号sigmがオン(Hレベル)の期間、反マスク信号sigmnがオフ(Lレベル)の期間は、関心量Piの感度が低減される特定の時間範囲である。マスク信号sigmがオフの時間範囲、反マスク信号sigmnがオンの時間範囲における関心量Piは、低減関心量である。ここでは出射ゲート信号siggのオン及びオフがビーム要求信号sigbrの状態に追従する例を記載したが、同様に出射ゲート信号siggのオン及びオフが出射可信号sigbeの状態に追従する場合もある。
 関心量監視部330aの関心量判定回路部307の構成を示している図20において、比較演算回路31a、31b、31cは、式(17)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs1a、fs1b、fs1cに出力する。すなわち、比較演算回路31a、31b、31cは、式(17)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs1a、fs1b、fs1cを生成する。
 (|ΔXi|>Vde1)AND sigmn(オン)
                        ・・・(17)
ここで許容値Vde1は、図20の比較演算回路31a、31b、31cに入力される各許容値Vde1a、Vde1b、Vde1cを総括的に表現したものである。式(17)が成立する場合は、低減関心量に対して設定された許容範囲を低減関心量が超えた場合に相当する。位置偏差ΔXiの許容範囲は、-Vde1~+Vde1の範囲である。
 関心量監視部330bの関心量判定回路部307の構成を示している図21において、比較演算回路31a、31b、31cは、式(18)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs2a、fs2b、fs2cに出力する。すなわち、比較演算回路31a、31b、31cは、式(18)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs2a、fs2b、fs2cを生成する。
 (|ΔYi|>Vde2)AND sigmn(オン)
                        ・・・(18)
ここで許容値Vde2は、図21の比較演算回路31a、31b、31cに入力される各許容値Vde2a、Vde2b、Vde2cを総括的に表現したものである。式(18)が成立する場合は、低減関心量に対して設定された許容範囲を低減関心量が超えた場合に相当する。位置偏差ΔYiの許容範囲は、-Vde2~+Vde2の範囲である。
 図20、図21について、実施の形態1の図4、図5と異なる部分を説明する。図20、図21の比較演算回路31a、31b、31cは、それぞれ絶対値演算器37、比較器38、反転演算器45、AND演算器44を備えている。図20の比較演算回路31aは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1aよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図20の比較演算回路31aは、反転演算器45がマスク信号sigmを反転した反マスク信号sigmnを生成する。図20の比較演算回路31aは、内部信号so1と反マスク信号sigmnが共に高レベルの場合に、AND演算器44がフラッグ信号fs1aに1つのパルスを出力する。フラッグ信号fs1aにおける1つのパルスが、フラッグである。
 同様に、図20の比較演算回路31bは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1bよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図20の比較演算回路31bは、反転演算器45がマスク信号sigmを反転した反マスク信号sigmnを生成する。図20の比較演算回路31bは、内部信号so1と反マスク信号sigmnが共に高レベルの場合に、AND演算器44がフラッグ信号fs1bに1つのパルスを出力する。図20の比較演算回路31cは、絶対値演算器37が位置偏差ΔXiの絶対値|ΔXi|を演算し、この絶対値|ΔXi|が許容値Vde1cよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図20の比較演算回路31cは、反転演算器45がマスク信号sigmを反転した反マスク信号sigmnを生成する。図20の比較演算回路31cは、内部信号so1と反マスク信号sigmnが共に高レベルの場合に、AND演算器44がフラッグ信号fs1cに1つのパルスを出力する。
 同様に、図21の比較演算回路31aは、絶対値演算器37が位置偏差ΔYiの絶対値|ΔYi|を演算し、この絶対値|ΔYi|が許容値Vde2aよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図21の比較演算回路31aは、反転演算器45がマスク信号sigmを反転した反マスク信号sigmnを生成する。図21の比較演算回路31aは、内部信号so1と反マスク信号sigmnが共に高レベルの場合に、AND演算器44がフラッグ信号fs2aに1つのパルスを出力する。図21の比較演算回路31bは、絶対値演算器37が位置偏差ΔYiの絶対値|ΔYi|を演算し、この絶対値|ΔYi|が許容値Vde2bよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図21の比較演算回路31bは、反転演算器45がマスク信号sigmを反転した反マスク信号sigmnを生成する。図21の比較演算回路31bは、内部信号so1と反マスク信号sigmnが共に高レベルの場合に、AND演算器44がフラッグ信号fs2bに1つのパルスを出力する。図21の比較演算回路31cは、絶対値演算器37が位置偏差ΔYiの絶対値|ΔYi|を演算し、この絶対値|ΔYi|が許容値Vde2cよりも大きい場合に、比較器38が高レベルの内部信号so1を生成する。また、図21の比較演算回路31cは、反転演算器45がマスク信号sigmを反転した反マスク信号sigmnを生成する。図21の比較演算回路31cは、内部信号so1と反マスク信号sigmnが共に高レベルの場合に、AND演算器44がフラッグ信号fs2cに1つのパルスを出力する。
 関心量監視部330aの関心量判定回路部307の構成を示している図20の比較演算回路31a、31b、31cの比較器38に入力される各許容値、及びインターロック判定装置201に入力される許容値Vdel1a(図7参照)の大小関係は、例えば実施の形態1と同様にVdel1a>Vde1c>Vde1b>Vde1aになっている。関心量監視部330aの関心量判定回路部307の構成を示している図20のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の大小関係は、例えば実施の形態1と同様にNc1a>Nc1b>Nc1cになっている。許容値Vdel1a、Vde1c、Vde1b、Vde1aの数値例、カウンタ閾値Nc1a、Nc1b、Nc1cの数値例を示す。許容値Vdel1a、Vde1c、Vde1b、Vde1aの数値例は、2mm、1mm、0.75mm、0.5mmである。カウンタ閾値Nc1a、Nc1b、Nc1cの数値例は、20、10、5である。
 同様に、関心量監視部330bの関心量判定回路部307の構成を示している図21の比較演算回路31a、31b、31cの比較器38に入力される各許容値、及びインターロック判定装置201に入力される許容値Vdel1b(図7参照)の大小関係は、例えば実施の形態1と同様にVdel1b>Vde2c>Vde2b>Vde2aになっている。関心量監視部330bの関心量判定回路部307の構成を示している図21のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の大小関係は、例えば実施の形態1と同様にNc2a>Nc2b>Nc2cになっている。許容値Vdel1b、Vde2c、Vde2b、Vde2aの数値例、カウンタ閾値Nc2a、Nc2b、Nc2cの数値例を示す。許容値Vdel1b、Vde2c、Vde2b、Vde2aの数値例は、2mm、1mm、0.75mm、0.5mmである。カウンタ閾値Nc2a、Nc2b、Nc2cの数値例は、20、10、5である。
 図20、図21の例では、全ての比較演算回路31a、31b、31cにおいて、マスク信号sigmでマスクをかけてパルス状のフラッグを含むフラッグ信号fs1a、fs1b、fs1c、fs2a、fs2b、fs2cを生成する例を説明した。安全解析監視装置300において、このように限定的に偏差判定の感度を下げても照射精度は低下しないし、従来の「シングルイベントによるインターロック系」の動作に影響を与えることはない。なお、低減関心量は関心量の感度が低減しているので、低減関心量を超えたことにより生成されたフラッグ5が1回検出された場合に、照射中断信号sige2を生成するようにしても良い場合もある。この場合は、カウンタ閾値Nc1c、Nc2cの数値は1である。
 この他にも、具体的な対処方法についてはバリエーションが考えられる。例えば、大きい許容値に対してはマスクをかけないこともできる。複数あるカウンタ(フラッグカウンタ部311のカウンタ40)のうち、許容範囲の狭いものはマスクして、許容範囲の広いものはマスクをかけないこともできる。この場合も、安全解析監視装置300において、このように限定的に偏差判定の感度を下げても照射精度は低下しないし、従来の「シングルイベントによるインターロック系」の動作に影響を与えることはない。図22に、位置偏差ΔXiと許容値Vde1cとを比較する比較演算回路31cは、マスク信号sigmによるマスクをかけない例を示した。同様に、図23に、位置偏差ΔYiと許容値Vde2cとを比較する比較演算回路31cは、マスク信号sigmによるマスクをかけない例を示した。
 図22の比較演算回路31a、31bは、図20の比較演算回路31a、31bと同じ動作である。図23の比較演算回路31a、31bは、図21の比較演算回路31a、31bと同じ動作である。図22の比較演算回路31cは、実施の形態1で説明した式(4)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs1cに出力する。すなわち、図22の比較演算回路31cは、式(4)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs1cを生成する。なお、この場合、式(4)の許容値Vde1は許容値Vde1cである。同様に、図23の比較演算回路31cは、実施の形態1で説明した式(5)が成立する場合に、1つのパルスを1つのフラッグとしてフラッグ信号fs2cに出力する。すなわち、図23の比較演算回路31cは、式(5)が成立する場合に、パルス状のフラッグを含むフラッグ信号fs2cを生成する。なお、この場合、式(5)の許容値Vde2は許容値Vde2cである。
 この他にも、具体的な対処方法についてはバリエーションが考えられる。誤差異常が複数回発生するたびにカウンタを1回インクリメントすることも可能である。この場合も、安全解析監視装置300において、このように限定的に偏差判定の感度を下げても照射精度は低下しないし、従来の「シングルイベントによるインターロック系」の動作に影響を与えることはない。
 出射ゲート信号siggの生成方法は、式(16)以外にも考えられる。式(16)のsigbe(オン)の代わりに、「マスタ」信号や「FT」信号(「フラットトップ」信号)などのタイミングから所定時間遅らせた信号を用いるなど、いくつかの同等な方法が考えられる。ここで、「マスタ信号」とはシンクロトロンの運転周期の開始を示すタイミング信号であり、「FT」(フラットトップ)信号とはシンクロトロンの加速が終了し所望のエネルギーにある状態を表す制御信号である。「FT」かつ「出射準備完了」であれば、「出射可」すなわちsigbe(オン)の状態になる。シンクロトロンの運転は、入射、加速から出射可に至るまではタイミングがあらかじめ決められているので、いずれの信号を使っても、然るべき組合せで遅延時間を適切に設定すれば同等の運用が可能である。
 ここで述べた、実施の形態4の複数の例では、位置偏差ΔPm(ΔXi、ΔYi)に加え、加速器120からの時間情報という他のパラメータも複合的に用いることによって、粒子線照射の安全性の判定をより効率的に実現することができる。なお、粒子線治療装置100において、ビーム位置フィードバックが適用された場合には、安全解析監視装置300は、前述した第1の情報、第2の情報、第3の情報を安全解析監視装置300で管理することで、ビーム位置フィードバックの安全性に通常どおりの余裕があるのか、それとも通常から変動しているのか、といった状態監視が可能となる。
 実施の形態4の安全解析監視装置300は、フラッグ判定部310の判定条件が異なっているが、実施の形態1の安全解析監視装置300と同様に動作するので、実施の形態1の安全解析監視装置300と同様に粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。また、実施の形態4の安全解析監視装置300は、位置偏差ΔPm(ΔXi、ΔYi)だけではなく、加速器120からの時間情報という他のパラメータも複合的に用いることによって、粒子線照射の安全性の判定をより効率的に実現することができる。また、実施の形態4の粒子線治療装置100は、実施の形態4の安全解析監視装置300を備えるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。また、実施の形態4の粒子線治療装置100は、位置偏差ΔPm(ΔXi、ΔYi)だけではなく、加速器120からの時間情報という他のパラメータも複合的に用いることによって、粒子線照射の安全性の判定をより効率的に実現することができる。
 以上のように、実施の形態4の安全解析監視装置300は、粒子線治療装置100の機器から出力されたデータ(加速器運転情報data1、関心量情報data2)に基づく判定対象である関心量Piに対し、関心量Piが予め定められた中断条件に合致する場合に粒子線11の照射中断を指令する中断指令(照射中断信号sige2)を生成する関心量判定回路部307を備えている。実施の形態4の安全解析監視装置300の関心量判定回路部307は、加速器120の運転周期における特定の時間範囲(反マスク信号sigmnがオフの時間範囲)において関心量Piの感度が低減された低減関心量(反マスク信号sigmnがオンの時間範囲における関心量Pi)に対して設定された、少なくとも1つの許容範囲(上限値及び下限値の絶対値である許容値Vde1)を低減関心量が超えた事象を検出し、その検出回数が所定の回数(カウンタ閾値Nc1c)に到達したときに中断指令(照射中断信号sige2)を生成することを特徴とする。実施の形態4の安全解析監視装置300は、この特徴により、低減関心量(反マスク信号sigmnがオンの時間範囲における関心量Pi)が許容範囲を超えた事象を検出し、その検出回数が所定の回数に到達したときに中断指令(照射中断信号sige2)が生成されるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
 実施の形態4の粒子線治療装置100は、荷電粒子を必要なエネルギーまで加速して、加速された荷電粒子を粒子線11として発生させる加速器120と、粒子線11を粒子線照射装置101及び患者14の照射位置(照射点13)まで輸送するビーム輸送系121と、輸送された粒子線11を走査して患者14に照射する粒子線照射装置101と、粒子線11の照射状態を判定する安全解析監視装置300と、を備える。実施の形態4の粒子線治療装置100のビーム輸送系121は、治療計画に計画された患者14における粒子線11を照射する計画位置Ppiを、粒子線11の位置を検出する位置モニタ109における位置に変換した理想位置Pmiと、位置モニタ109にて検出された粒子線11の位置である計測位置Pmmiとの差分である位置偏差ΔPmに基づいて粒子線11の位置が理想位置Pmiと一致するように制御する。実施の形態4の安全解析監視装置300は、位置偏差ΔPmである関心量Piに対し、関心量Piが予め定められた中断条件に合致する場合に粒子線11の照射中断を指令する中断指令(照射中断信号sige2)を生成する関心量判定回路部307を備え、関心量判定回路部307は、加速器120の運転周期における特定の時間範囲(反マスク信号sigmnがオフの時間範囲)において関心量Piの感度が低減された低減関心量(反マスク信号sigmnがオンの時間範囲における関心量Pi)に対して設定された、少なくとも1つの許容範囲(上限値及び下限値の絶対値である許容値Vde1)を低減関心量(反マスク信号sigmnがオンの時間範囲における関心量Pi)が超えた事象を検出し、その検出回数が所定の回数(カウンタ閾値Nc1c)に到達したときに中断指令(照射中断信号sige2)を生成することを特徴とする。実施の形態4の粒子線治療装置100は、この特徴により、低減関心量(反マスク信号sigmnがオンの時間範囲における関心量Pi)が許容範囲を超えた事象を検出し、その検出回数が所定の回数に到達したときに中断指令(照射中断信号sige2)が生成されるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
実施の形態5.
 図24は、本発明の実施の形態5による安全解析監視装置の構成を示す図である。図25は図24の第一の関心量判定回路部の構成図であり、図26は図24の第二の関心量判定回路部の構成図である。図27は、図24のカウンタリセット信号を示す図である。図28は、図25、図26のカウンタ閾値の設定例を説明する図である。本発明は、ある関心量に対して許容範囲を従来の「シングルイベントによるインターロック系」より狭くとり、その範囲を超えたときには生成するフラッグが主に複数回発生する場合に粒子線11の照射を中断するという技術思想に基づいている。実施の形態5では、関心量Piの情報に加え、フラッグの発生時間情報を、異常判定に用いる例について説明する。より具体的には、このフラッグの発生頻度を監視し、発生頻度が高くなった場合に粒子線11の照射を中断する方法について説明する。
 実施の形態5の安全解析監視装置300は、関心量監視部330a、330bにおけるフラッグカウンタ部311の各カウンタ40(図6参照)を一定周期にてリセットするリセット信号生成装置312を備え、関心量監視部330a、330bのフラッグ判定部310が生成する1つのフラッグ信号に対して複数のカウンタ40によりフラッグの発生頻度を監視する点で、実施の形態1の安全解析監視装置300と異なる。図24、図25、図26では、関心量監視部330a、330bのフラッグ判定部310が1つの比較演算回路31aを備える例を示した。実施の形態1の安全解析監視装置300と異なる部分を説明する。
 関心量監視部330a、330bのフラッグカウンタ部311のデジタル演算回路32a、32b、32cには、それぞれリセット信号生成装置312にて生成された、カウンタリセット信号sigr2a、sigr2b、sigr2cが入力されている。デジタル演算回路32aのカウンタ40は、カウンタリセット信号sigr2aにより周期Tm1でリセットされる。デジタル演算回路32bのカウンタ40は、カウンタリセット信号sigr2bにより周期Tm2でリセットされ、デジタル演算回路32cのカウンタ40は、カウンタリセット信号sigr2cにより周期Tm3でリセットされる。
 カウンタリセット信号sigr2a、sigr2b、sigr2cを、図27を用いて説明する。図27の横軸は時間であり、縦軸は、フラッグ信号、カウンタリセット信号の信号レベル(信号値)である。図27では、10個のフラッグ5a、5b、5c、5d、5e、5f、5g、5h、5i、5jを示した。フラッグの符号は、総括的に5を用い、区別して説明する場合に5a~5jを用いる。カウンタリセット信号sigr2aは、周期Tm1毎にパルスが発生している。同様に、カウンタリセット信号sigr2bは周期Tm2毎にパルスが発生しており、カウンタリセット信号sigr2cは周期Tm3毎にパルスが発生している。ここで、周期Tm1、Tm2、Tm3の大小関係は、Tm1<Tm2<Tm3である。リセット信号生成装置312は、図24に示したカウンタリセット信号sigr2a、sigr2b、sigr2cを生成する。
 関心量監視部330aの関心量判定回路部307の構成を示している図25において、比較演算回路31aの比較器38に入力される許容値Vde1aとインターロック判定装置201に入力される許容値Vdel1a(図7参照)との大小関係は、実施の形態1と同様にVdel1a>Vde1aになっている。関心量監視部330aの関心量判定回路部307の構成を示している図25のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の大小関係は、例えばNc1a<Nc1b<Nc1cになっている。許容値Vdel1a、Vde1aの数値例、カウンタ閾値Nc1a、Nc1b、Nc1cの数値例を示す。許容値Vdel1a、Vde1aの数値例は、2mm、0.5mmである。カウンタ閾値Nc1a、Nc1b、Nc1cの数値例は、5、8、11である。
 関心量監視部330bの関心量判定回路部307の構成を示している図26において、比較演算回路31aの比較器38に入力される許容値Vde2aとインターロック判定装置201に入力される許容値Vdel1b(図7参照)との大小関係は、実施の形態1と同様にVdel1b>Vde2aになっている。関心量監視部330bの関心量判定回路部307の構成を示している図26のデジタル演算回路32a、32b、32cに入力される各カウンタ閾値の大小関係は、例えばNc2a<Nc2b<Nc2cになっている。許容値Vdel1b、Vde2aの数値例、カウンタ閾値Nc2a、Nc2b、Nc2cの数値例を示す。許容値Vdel1b、Vde2aの数値例は、2mm、0.5mmである。カウンタ閾値Nc2a、Nc2b、Nc2cの数値例は、5、8、11である。
 図27に示したタイミング図のように、粒子線治療装置100が通常どおりに動作していたときに、安全解析監視装置300のフラッグ判定部310が出力したフラッグ信号fs1a、fs2aにおけるフラッグを、フラッグカウンタ部311のデジタル演算回路32a、32b、32cの各カウンタ40にてカウントする。安全解析監視装置300の関心量監視部330a、330bが共に図27に示したフラッグをカウントする例で説明する。デジタル演算回路32aのカウンタ40は、カウンタリセット信号sigr2aにおける周期Tm1の第一期間に3つのフラッグ5a、5b、5cをカウントする。デジタル演算回路32aのカウンタ40は、カウンタリセット信号sigr2aのリセットパルスを受けると、カウント値3をリセットし、リセット後の周期Tm1の第二期間に2つのフラッグ5d、5eをカウントする。その後、デジタル演算回路32aのカウンタ40は、カウンタリセット信号sigr2aのリセットパルスを受けると、カウント値2をリセットし、リセット後の周期Tm1の第三期間に3つのフラッグ5f、5g、5hをカウントする。以降、同様にフラッグをカウントする。
 同様に、デジタル演算回路32bのカウンタ40は、カウンタリセット信号sigr2bにおける周期Tm2の第一期間に4つのフラッグ5a、5b、5c、5dをカウントする。デジタル演算回路32bのカウンタ40は、カウンタリセット信号sigr2bのリセットパルスを受けると、カウント値4をリセットし、リセット後の周期Tm2の第二期間に4つのフラッグ5e、5f、5g、5hをカウントする。その後、デジタル演算回路32bのカウンタ40は、カウンタリセット信号sigr2bのリセットパルスを受けると、カウント値4をリセットし、リセット後の周期Tm2の第三期間に2つのフラッグ5i、5jをカウントする。以降、同様にフラッグをカウントする。
 デジタル演算回路32cのカウンタ40は、カウンタリセット信号sigr2cにおける周期Tm3の第一期間に5つのフラッグ5a、5b、5c、5d、5eをカウントする。デジタル演算回路32cのカウンタ40は、カウンタリセット信号sigr2cのリセットパルスを受けると、カウント値5をリセットし、リセット後の周期Tm3の第二期間に4つのフラッグ5f、5g、5h、5iをカウントする。以降、同様にフラッグをカウントする。
 ここで粒子線治療装置100が通常どおりに動作していたときに、単位時間あたりのフラッグの発生頻度の期待値がλであるとすると、一定の時間、すなわち一定の計測期間Tmの観測を行ったときに発生するフラッグ数の期待値Nexpはλ×Tmである。よってTm期間中に発生するフラッグ数に対して、カウンタ閾値Nc1a、Nc1b、Nc1cの値をNexpより十分高く設定することになる。カウンタ閾値Nc2a、Nc2b、Nc2cの値も、カウンタ閾値Nc1a、Nc1b、Nc1cの値と同様に設定することになる。すなわち、カウンタ閾値Nc1a、Nc1b、Nc1cの値、カウンタ閾値Nc2a、Nc2b、Nc2cの値を適切に設定することで、関心量の異常を判定することができる。
 カウンタ閾値Nc1a、Nc1b、Nc1cの値、カウンタ閾値Nc2a、Nc2b、Nc2cの値の設定方法を説明する。フラッグの発生回数がポアソン統計過程であるとした場合、それぞれの計測期間Tmの中でフラッグがn回発生する確率Pnは式(19)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 具体的な例として、1秒間にフラッグが発生する平均回数が10回とし、計測期間Tmがそれぞれ0.01秒、0.05秒、0.1秒とすると、その期間中のフラッグ発生回数の期待値はそれぞれ0.1回、0.5回、1回であり、確率Pnの値は、図28に示した確率計算結果62のようになる。確率Pnに対するカウンタ閾値Nc1a、Nc1b、Nc1cの値を、それぞれ5回(0.01秒)、8回(0.05秒)、11回(0.1秒)とすることは、いずれも確率Pnが1×10-8のレベルであり、どの期間に対しても確率的に同程度のフラッグ発生が生じる設定を行うことになる。カウンタ閾値Nc2a、Nc2b、Nc2cの値についても同様である。カウンタ閾値Nc1a、Nc2aは、Tmが0.01秒の破線枠63aで示した7.54E-08(7.54×10-8)に対応する5を選択する。カウンタ閾値Nc1b、Nc2bは、Tmが0.05秒の破線枠63bで示した5.88E-08(5.88×10-8)に対応する8を選択する。カウンタ閾値Nc1c、Nc2cは、Tmが0.1秒の破線枠63cで示した9.22E-09(9.22×10-9)に対応する11を選択する。
 確率Pnに対するカウンタ閾値をそれぞれ5回(0.01秒)、8回(0.05秒)、11回(0.1秒)とすることは、確率Pnが1×10-8のレベルで、かつどの期間に対しても確率的に同程度のフラッグ発生が生じる設定を行うことである。すなわち、フラッグの発生周期の期待値が同程度なので、計測期間Tmが0.1秒であってもそれより短時間の観測によって、関心量の一例である位置偏差ΔPm(ΔXi、ΔYi)のフラッグを立てることができる。このように実施の形態5の安全解析監視装置300は、複数のカウンタ40を備えたフラッグカウンタ部311を設け、そのカウンタ40に対応するカウンタ閾値を設定することで、位置偏差ΔPm(ΔXi、ΔYi)等の関心量の監視を多重化することができる。また、実施の形態5の安全解析監視装置300は、位置偏差ΔPm(ΔXi、ΔYi)等の関心量の監視が多重化されるだけでなく、各カウンタ40の数値を比較することで、前述した統計的仮定を崩すような異常がないかの確認をすることができる。なお、ここで示した手法は、実施の形態4で示した加速器120のタイミング情報を用いる手法と併せて実施し、出射開始直後の期間はフラッグを無効化しておいてもよい。
 実施の形態5の安全解析監視装置300は、実施の形態1の安全解析監視装置300と同様に、監視対象である位置偏差ΔPm(ΔXi、ΔYi)等の関心量に対して、従来の「シングルイベントによるインターロック系」のインターロックの幅を変更することなく、このインターロックの幅よりも小さな許容範囲で判定し、許容範囲を超過したイベントの回数を計測期間Tmの異なる、すなわち複数の周期Tm1、Tm2、Tm3で計測して監視する。実施の形態5の安全解析監視装置300は、このような動作により、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。また、実施の形態5の粒子線治療装置100は、実施の形態5の安全解析監視装置300を備えるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。なお、デジタル演算回路32a、32b、32cに入力される周期Tm1、Tm2、Tm3は、デジタル演算回路32a、32b、32cにおいてフラッグを計測する計測期間に相当するので、適宜、計測期間Tm1、Tm2、Tm3も用いることにする。
実施の形態6.
 図29は、本発明の実施の形態6による安全解析監視装置の構成を示す図である。図30は図29の第一の関心量判定回路部の構成図であり、図31は図29の第二の関心量判定回路部の構成図である。図32は図30、図31のデジタル演算回路の構成図であり、図33は図32のランニングカウンタの積算期間を説明する図であり、図34は図30、32のフラッグカウンタ部の計測例を説明する図である。実施の形態6では、実施の形態5のようにフラッグの発生頻度を監視する方法の他の例について説明する。実施の形態5では、フラッグカウンタ部311が一定周期でリセットされる例を示したが、本実施の形態6では、一定周期でリセットされないランニングカウンタを設けてフラッグ数を監視する例を説明する。ランニングカウンタとは、図33に示すように過去の一定期間(計測期間Tm)遡って発生したフラッグ数を計測するカウンタである。
 実施の形態6の安全解析監視装置300は、リセット信号生成装置312が一定周期ではなく、予め定められた条件が成立した場合にカウンタリセット信号sigr3を生成し、フラッグカウンタ部311がランニングカウンタ51を有するデジタル演算回路46a、46b、46cを備える点で、実施の形態5の安全解析監視装置300と異なる。実施の形態5の安全解析監視装置300と異なる部分を説明する。
 関心量監視部330a、330bのフラッグカウンタ部311は、それぞれ3つのデジタル演算回路46a、46b、46cを備えている。デジタル演算回路46a、46b、46cは、同じ構成であり、それぞれ図32に示すように、ランニングカウンタ51と、比較器43とを備える。このデジタル演算回路の符号は、総括的に46を用い、区別する場合に46a、46b、46cを用いる。図32に示したランニングカウンタ51は、一例であり、遅延付加器49と、2つのカウンタ47、48と、差分演算器50とを備える。フラッグ入力信号Finがカウンタ47及び遅延付加器49に入力される。遅延付加器49は、フラッグ入力信号Finに計測期間Tmだけ遅延させた、すなわち計測期間Tmだけ遅延を付加した遅延フラッグ入力信号Findを生成する。カウンタ48は、遅延付加器49から出力された遅延フラッグ入力信号Findに現れたパルスの数を計測し、カウント値Ncnt2を出力する。カウンタ47は、フラッグ入力信号Finに現れたパルスの数を計測し、カウント値Ncnt1を出力する。差分演算器50は、カウント値Ncnt1からカウント値Ncnt2を減算し、この減算した差分カウント値ΔNcntを出力する。カウンタ47、48は、リセット信号Rstが入力されると、カウント値Ncntをリセットする。
 デジタル演算回路46は、比較器43が、差分カウント値ΔNcntと閾値Nrefとを比較し、差分カウント値ΔNcntが閾値Nrefよりも大きい場合に閾値超過を示すレベル判定信号Floutを出力する。また、デジタル演算回路46は、比較器43が、差分カウント値ΔNcntが閾値Nref以下の場合に閾値超過を示さないレベル判定信号Floutを出力する。例えば、レベル判定信号Floutが閾値超過を示す信号レベルは高レベル(信号値1)であり、レベル判定信号Floutが閾値超過を示さない信号レベルは低レベル(信号値0)である。図30、図31のデジタル演算回路46a、46b、46cは、回路シンボルで記載されている。図30、図31のデジタル演算回路46a、46b、46cにおけるf、n、rは、それぞれ図32に示したフラッグ入力信号Fin、閾値Nref、リセット信号Rstを入力する入力端子を表している。図30、図31のデジタル演算回路46a、46b、46cにおけるc、oは、それぞれ図32に示した差分カウント値ΔNcnt、レベル判定信号Floutを出力する出力端子を表している。
 ランニングカウンタ51の動作を、図33を用いて説明する。カウンタ47、48のカウント値Ncnt1、Ncnt2は、関心量である位置偏差ΔPm(ΔXi、ΔYi)の読み込み周期Trごとに更新される。したがって、ランニングカウンタ51が出力する差分カウント値ΔNcntも、位置偏差ΔPm(ΔXi、ΔYi)の読み込み周期Trごとに更新される。一例として、読み込み周期Trは0.1ミリ秒であり、フラッグ数の積算期間、すなわち計測期間Tmは100ミリ秒である。図33の横軸は時間である。図33では、フラッグと4つの積算期間を示した。積算期間1である積算期間61aは、時刻tb1~時刻tc1までの計測期間Tmである。同様に、積算期間2である積算期間61bは、時刻tb2~時刻tc2までの計測期間Tmである。積算期間3である積算期間61cは、時刻tb3~時刻tc3までの計測期間Tmである。積算期間4である積算期間61dは、それぞれ時刻tb4~時刻tc4までの計測期間Tmである。積算期間61bは、積算期間61aと読み込み周期Trだけずれている。同様に、積算期間61cは積算期間61bと読み込み周期Trだけずれており、積算期間61dは積算期間61cと読み込み周期Trだけずれている。
 積算期間61aでは4つのフラッグ5a、5b、5c、5dが計測され、ランニングカウンタ51の差分カウント値ΔNcntは4となる。同様に、積算期間61bでは3つのフラッグ5b、5c、5dが計測され、ランニングカウンタ51の差分カウント値ΔNcntは3となる。積算期間61cでは4つのフラッグ5b、5c、5d、5eが計測され、ランニングカウンタ51の差分カウント値ΔNcntは4となる。積算期間61dでは4つのフラッグ5b、5c、5d、5eが計測され、ランニングカウンタ51の差分カウント値ΔNcntは4となる。
 カウンタ47、48のリセットはシンクロトロンの運転周期ごとか、エネルギーの変更ごとに行う。図32のリセット信号Rst、すなわちフラッグカウンタ部311に入力されるカウンタリセット信号sigr3には、シンクロトロンの運転周期ごとか、エネルギーの変更ごとに、例えばリセットを示すパルスが生成されている。このようなランニングカウンタ51を用いることによって統計的な原理により近い形で、関心量である位置誤差ΔPm(ΔXi、ΔYi)を扱うことができる。
 実施の形態6の安全解析監視装置300は、関心量監視部330a、330bのフラッグカウンタ部311に複数のデジタル演算回路46を備え、各デジタル演算回路46のランニングカウンタ51の積算期間すなわち計測期間Tmを異なるようにすることで、実施の形態5と同様にフラッグの発生頻度を監視することができる。図29、図30、図31では、実施の形態5と同様に、フラッグカウンタ部311に3つのデジタル演算回路46a、46b、46cが設けられた例を示した。例えば、デジタル演算回路46a、46b、46cの各計測期間を、計測期間Tm1、Tm2、Tm3とする。各計測期間Tm1、Tm2、Tm3の大小関係は、Tm1<Tm2<Tm3である。
 関心量監視部330aの関心量判定回路部307の構成を示している図30において、比較演算回路31aの比較器38に入力される許容値Vde1aとインターロック判定装置201に入力される許容値Vdel1a(図7参照)との大小関係は、実施の形態1と同様にVdel1a>Vde1aになっている。関心量監視部330aの関心量判定回路部307の構成を示している図30のデジタル演算回路46a、46b、46cに入力される各カウンタ閾値の大小関係は、例えばNc1a<Nc1b<Nc1cになっている。許容値Vdel1a、Vde1aの数値例、カウンタ閾値Nc1a、Nc1b、Nc1cの数値例を示す。許容値Vdel1a、Vde1aの数値例は、2mm、0.5mmである。カウンタ閾値Nc1a、Nc1b、Nc1cの数値例は、5、8、11である。
 関心量監視部330bの関心量判定回路部307の構成を示している図31において、比較演算回路31aの比較器38に入力される許容値Vde2aとインターロック判定装置201に入力される許容値Vdel1b(図7参照)との大小関係は、実施の形態1と同様にVde1b>Vde2aになっている。関心量監視部330bの関心量判定回路部307の構成を示している図31のデジタル演算回路46a、46b、46cに入力される各カウンタ閾値の大小関係は、例えばNc2a<Nc2b<Nc2cになっている。許容値Vdel1b、Vde2aの数値例、カウンタ閾値Nc2a、Nc2b、Nc2cの数値例を示す。許容値Vdel1b、Vde2aの数値例は、2mm、0.5mmである。カウンタ閾値Nc2a、Nc2b、Nc2cの数値例は、5、8、11である。
 粒子線治療装置100が通常どおりに動作していたときに、安全解析監視装置300のフラッグ判定部310が出力したフラッグ信号fs1a、fs2aにおけるフラッグを、フラッグカウンタ部311のデジタル演算回路46a、46b、46cの各ランニングカウンタ51にてカウントする。安全解析監視装置300の関心量監視部330a、330bが共に図34に示したフラッグをカウントする例で説明する。図34には、10個のフラッグ5a~5jを示した。時刻t0~時刻t1までの時間は、読み込み周期Trである。同様に、時刻t1~時刻t2までの時間、時刻t2~時刻t3までの時間、時刻t3~時刻t4までの時間、時刻t4~時刻t5までの時間、時刻t5~時刻t6までの時間は、それぞれ読み込み周期Trである。時刻t7~時刻t8までの時間、時刻t8~時刻t9までの時間は、読み込み周期Trである。区間52a、52b、52cは、デジタル演算回路46aがフラッグを計測する計測期間Tm1の区間である。区間53a、53b、53cは、デジタル演算回路46bがフラッグを計測する計測期間Tm2の区間である。区間53a、53b、53cは、デジタル演算回路46cがフラッグを計測する計測期間Tm3の区間である。図34において、各区間の符号の右側に各区間で計測されるカウント値を示した。
 時刻t7において、デジタル演算回路46aのランニングカウンタ51は、3つのフラッグ5e、5f、5gを計測し、そのカウント値3を差分カウント値ΔNcntとして出力する。同様に、時刻t7において、デジタル演算回路46bのランニングカウンタ51は、3つのフラッグ5e、5f、5gを計測し、そのカウント値3を差分カウント値ΔNcntとして出力する。時刻t7において、デジタル演算回路46cのランニングカウンタ51は、5つのフラッグ5c、5d、5e、5f、5gを計測し、そのカウント値5を差分カウント値ΔNcntとして出力する。
 次に、読み込み周期Trが経過した時刻t8において、デジタル演算回路46aのランニングカウンタ51は、3つのフラッグ5f、5g、5hを計測し、そのカウント値3を差分カウント値ΔNcntとして出力する。同様に、時刻t8において、デジタル演算回路46bのランニングカウンタ51は、4つのフラッグ5e、5f、5g、5hを計測し、そのカウント値4を差分カウント値ΔNcntとして出力する。時刻t8において、デジタル演算回路46cのランニングカウンタ51は、5つのフラッグ5d、5e、5f、5g、5hを計測し、そのカウント値5を差分カウント値ΔNcntとして出力する。
 その後、読み込み周期Trが経過した時刻t9において、デジタル演算回路46aのランニングカウンタ51は、3つのフラッグ5f、5g、5hを計測し、そのカウント値3を差分カウント値ΔNcntとして出力する。同様に、時刻t9において、デジタル演算回路46bのランニングカウンタ51は、4つのフラッグ5e、5f、5g、5hを計測し、そのカウント値4を差分カウント値ΔNcntとして出力する。時刻t9において、デジタル演算回路46cのランニングカウンタ51は、4つのフラッグ5e、5f、5g、5hを計測し、そのカウント値4を差分カウント値ΔNcntとして出力する。以降、同様にフラッグをカウントする。
 実施の形態5で説明したように、計測期間Tmの間に発生するフラッグ数に対して、カウンタ閾値を、Nexpより十分高く設定することで、すなわち適切に設定することで、関心量の異常を判定することができる。計測期間Tm1に対するカウンタ閾値Nc1a、Nc2aの設定例、計測期間Tm2に対するカウンタ閾値Nc1b、Nc2bの設定例、計測期間Tm3に対するカウンタ閾値Nc1c、Nc2cの設定例は、実施の形態5で説明した方法で設定できる。1秒間にフラッグが発生する平均回数が10回とし、計測期間Tm1、Tm2、Tm3がそれぞれ0.01秒、0.05秒、0.1秒とすると、その期間中のフラッグ発生回数の確率Pnが図28に示した確率計算結果62になる。カウンタ閾値Nc1a、Nc1b、Nc1cの値を、確率Pnが1×10-8のレベルでどの計測期間Tm1、Tm2、Tm3に対しても同程度となるように、それぞれ5回(0.01秒)、8回(0.05秒)、11回(0.1秒)と設定する。同様に、カウンタ閾値Nc2a、Nc2b、Nc2cの値を、それぞれ5回(0.01秒)、8回(0.05秒)、11回(0.1秒)と設定する。
 このように、カウンタ閾値Nc1a、Nc1b、Nc1c、Nc2a、Nc2b、Nc2cの値を設定すると、計測期間が短くても同程度の確率で、関心量の一例である位置偏差ΔPm(ΔXi、ΔYi)のフラッグを立てることができる。このように実施の形態6の安全解析監視装置300は、複数のランニングカウンタ51を備えたフラッグカウンタ部311を設け、そのランニングカウンタ51に対応するカウンタ閾値を設定することで、位置偏差ΔPm(ΔXi、ΔYi)等の関心量の監視を多重化することができる。また、実施の形態6の安全解析監視装置300は、位置偏差ΔPm(ΔXi、ΔYi)等の関心量の監視が多重化されるだけでなく、各ランニングカウンタ51の数値を比較することで、前述した統計的仮定を崩すような異常がないかの確認をすることができる。なお、ここで示した手法は、実施の形態4で示した加速器120のタイミング情報を用いる手法と併せて実施し、出射開始直後の期間はフラッグを無効化しておいてもよい。
 実施の形態6の安全解析監視装置300は、実施の形態1の安全解析監視装置300と同様に、監視対象である位置偏差ΔPm(ΔXi、ΔYi)等の関心量に対して、従来の「シングルイベントによるインターロック系」のインターロックの幅を変更することなく、このインターロックの幅よりも小さな許容範囲で判定し、許容範囲を超過したイベントの回数を計測期間Tmの異なる、すなわち複数の計測期間Tm1、Tm2、Tm3で計測して監視する。実施の形態6の安全解析監視装置300は、このような動作により、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。また、実施の形態6の粒子線治療装置100は、実施の形態6の安全解析監視装置300を備えるので、粒子線照射の安全性を損なうことなく、インターロック動作による粒子線照射の不要な中断を排し、粒子線治療の効率を高めることができる。
 なお、実施の形態1~実施の形態6では、安全解析監視装置300の構成回路としてはFPGAなどの高速プロセッサを用いる例で説明したが、判定ロジック部302、表示演算部303、ユーザーインターフェース部305、関心量演算部313は、図35に示すプロセッサ98、メモリ99により機能が実現されてもよい。図35は、安全解析監視装置の機能ブロックを実現するハードウェア構成例を示す図である。この場合、判定ロジック部302、表示演算部303、ユーザーインターフェース部305、関心量演算部313は、プロセッサ98がメモリ99に記憶されたプログラムを実行することにより、実現される。また、複数のプロセッサ98および複数のメモリ99が連携して各機能を実行してもよい。また、安全解析監視装置300は、FPGAなどの高速プロセッサと、プログラムを実行するプロセッサを共に備えていてもよい。
 なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 11…粒子線、13…照射点(照射位置)、14…患者、33a、33b、33c…警報表示、34a、34b、34c…数値表示、100…粒子線治療装置、101…粒子線照射装置、109…位置モニタ、120…加速器、121…ビーム輸送系、300…安全解析監視装置、307…関心量判定回路部、Ppi…計画位置、Pmi…理想位置、Pi…判定対象パラメータ(関心量)、ΔPm…位置偏差、ΔPave…偏差の平均値、ΔPsgm…偏差の標準偏差、Qi…全信号(信頼性量)、sige2、sige2a、sige2b、sige2c、sige2d…照射中断信号、sige3…照射中断信号、Nc1a、Nc1b、Nc1c…カウンタ閾値、Nc2a、Nc2b、Nc2c…カウンタ閾値、Nc3a、Nc3b、Nc3c…カウンタ閾値、Nc4a、Nc4b、Nc4c…カウンタ閾値、Vde1、Vde1a、Vde1b、Vde1c…許容値(許容範囲の上限値及び下限値の絶対値)、Vde2、Vde2a、Vde2b、Vde2c…許容値(許容範囲の上限値及び下限値の絶対値)、Vde3、Vde3a、Vde3b、Vde3c…許容値(許容範囲の上限値及び下限値の絶対値)、Vde4、Vde4a、Vde4b、Vde4c…許容値(許容範囲の上限値及び下限値の絶対値)、Vdel1a、Vdel1b…許容値(インターロック許容範囲の上限値及び下限値の絶対値)、Vdeq、Vdeqa、Vdeqb、Vdeqc…許容値(信頼性閾値)、data1…加速器運転情報、data2…関心量情報、Tm、Tm1、Tm2、Tm3…計測期間

Claims (12)

  1.  加速器にて加速された粒子線を走査して患者に照射する粒子線治療装置における、前記粒子線の照射状態を判定する安全解析監視装置であって、
    前記粒子線治療装置の機器から出力されたデータに基づく判定対象である関心量に対し、前記関心量が予め定められた中断条件に合致する場合に前記粒子線の照射中断を指令する中断指令を生成する関心量判定回路部を備え、
    前記関心量判定回路部は、
    前記関心量に対して設定された少なくとも1つの許容範囲を前記関心量が超えた事象を検出し、その検出回数が2回以上の所定の回数に到達したときに前記中断指令を生成することを特徴とする安全解析監視装置。
  2.  加速器にて加速された粒子線を走査して患者に照射する粒子線治療装置における、前記粒子線の照射状態を判定する安全解析監視装置であって、
    前記粒子線治療装置の機器から出力されたデータに基づく判定対象である関心量に対し、前記関心量が予め定められた中断条件に合致する場合に前記粒子線の照射中断を指令する中断指令を生成する関心量判定回路部を備え、
    前記関心量判定回路部は、
    前記加速器の運転周期における特定の時間範囲において前記関心量の感度が低減された低減関心量に対して設定された、少なくとも1つの許容範囲を前記低減関心量が超えた事象を検出し、その検出回数が所定の回数に到達したときに前記中断指令を生成することを特徴とする安全解析監視装置。
  3.  前記低減関心量は、前記関心量を判定する期間が前記特定の時間範囲だけ短くされた修正判定期間における前記関心量であることを特徴とする請求項2記載の安全解析監視装置。
  4.  加速器にて加速された粒子線を走査して患者に照射する粒子線治療装置における、前記粒子線の照射状態を判定する安全解析監視装置であって、
    前記粒子線治療装置の機器から出力されたデータに基づく判定対象である関心量に対し、前記関心量が予め定められた中断条件に合致する場合に前記粒子線の照射中断を指令する中断指令を生成する関心量判定回路部を備え、
    前記関心量判定回路部は、
    治療計画に計画された前記患者における前記粒子線を照射する計画位置を、前記粒子線の位置を検出する位置モニタにおける位置に変換した理想位置と、前記位置モニタにて検出された前記粒子線の位置である計測位置との差分である位置偏差を前記関心量とし、前記位置偏差の平均値に対して設定された少なくとも1つの許容範囲を前記位置偏差の平均値が超えた事象を検出したときに前記中断指令を生成することを特徴とする安全解析監視装置。
  5.  加速器にて加速された粒子線を走査して患者に照射する粒子線治療装置における、前記粒子線の照射状態を判定する安全解析監視装置であって、
    前記粒子線治療装置の機器から出力されたデータに基づく判定対象である関心量に対し、前記関心量が予め定められた中断条件に合致する場合に前記粒子線の照射中断を指令する中断指令を生成する関心量判定回路部を備え、
    前記関心量判定回路部は、
    治療計画に計画された前記患者における前記粒子線を照射する計画位置を、前記粒子線の位置を検出する位置モニタにおける位置に変換した理想位置と、前記位置モニタにて検出された前記粒子線の位置である計測位置との差分である位置偏差を前記関心量とし、前記位置偏差の標準偏差に対して設定された少なくとも1つの許容範囲を前記位置偏差の標準偏差が超えた事象を検出したときに前記中断指令を生成することを特徴とする安全解析監視装置。
  6.  加速器にて加速された粒子線を走査して患者に照射する粒子線治療装置における、前記粒子線の照射状態を判定する安全解析監視装置であって、
    前記粒子線治療装置の機器から出力されたデータに基づく判定対象である関心量に対し、前記関心量が予め定められた中断条件に合致する場合に前記粒子線の照射中断を指令する中断指令を生成する関心量判定回路部を備え、
    前記関心量判定回路部は、
    前記関心量に対して設定された少なくとも1つの許容範囲を前記関心量が超えると共に、前記関心量の信頼性を示す信頼性量が信頼性閾値を超えた事象を検出し、その検出回数が所定の回数に到達したときに前記中断指令を生成することを特徴とする安全解析監視装置。
  7.  前記関心量判定回路部は、
    治療計画に計画された前記患者における前記粒子線を照射する計画位置を、前記粒子線の位置を検出する位置モニタにおける位置に変換した理想位置と、前記位置モニタにて検出された前記粒子線の位置である計測位置との差分である位置偏差を、前記関心量として判定することを特徴とする請求項1から3、及び6のいずれか1項に記載の安全解析監視装置。
  8.  前記関心量判定回路部は、
    検出された前記事象の検出回数を複数の計測期間で計測し、前記検出回数が所定の回数を超えた場合に前記中断指令を生成することを特徴とする請求項1から3、及び6、7のいずれか1項に記載の安全解析監視装置。
  9.  前記関心量判定回路部にて検出された前記事象の検出回数が所定の回数に到達したときに警報を表示する表示部を更に備えたことを特徴とする請求項1から3、及び6から8のいずれか1項に記載の安全解析監視装置。
  10.  前記関心量判定回路部にて前記事象を検出したときに警報を表示する表示部を更に備えたことを特徴とする請求項4または5に記載の安全解析監視装置。
  11.  前記表示部は、
    前記警報を示す警報表示と、前記関心量判定回路部にて計測された前記検出回数を示す数値表示とを表示することを特徴とする請求項9記載の安全解析監視装置。
  12.  荷電粒子を必要なエネルギーまで加速して、加速された前記荷電粒子を粒子線として発生させる加速器と、前記粒子線を粒子線照射装置及び患者の照射位置まで輸送するビーム輸送系と、輸送された前記粒子線を走査して前記患者に照射する前記粒子線照射装置と、前記粒子線の照射状態を判定する請求項1から11のいずれか1項の安全解析監視装置と、を備えた粒子線治療装置。
PCT/JP2017/034429 2017-09-25 2017-09-25 安全解析監視装置及び粒子線治療装置 WO2019058536A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034429 WO2019058536A1 (ja) 2017-09-25 2017-09-25 安全解析監視装置及び粒子線治療装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/034429 WO2019058536A1 (ja) 2017-09-25 2017-09-25 安全解析監視装置及び粒子線治療装置

Publications (1)

Publication Number Publication Date
WO2019058536A1 true WO2019058536A1 (ja) 2019-03-28

Family

ID=65811229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034429 WO2019058536A1 (ja) 2017-09-25 2017-09-25 安全解析監視装置及び粒子線治療装置

Country Status (1)

Country Link
WO (1) WO2019058536A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034701A (ja) * 2004-07-28 2006-02-09 Hitachi Ltd 粒子線治療システム及び粒子線治療システムの制御システム
JP2009039219A (ja) * 2007-08-07 2009-02-26 Hitachi Ltd 荷電粒子ビーム照射システム及び荷電粒子ビーム照射方法
JP2011161055A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 粒子線ビーム照射装置及びその制御方法
JP2011206495A (ja) * 2010-03-31 2011-10-20 Hitachi Ltd 粒子線治療システム
WO2012086062A1 (ja) * 2010-12-24 2012-06-28 三菱電機株式会社 粒子線照射装置、粒子線治療装置及びデータ表示プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034701A (ja) * 2004-07-28 2006-02-09 Hitachi Ltd 粒子線治療システム及び粒子線治療システムの制御システム
JP2009039219A (ja) * 2007-08-07 2009-02-26 Hitachi Ltd 荷電粒子ビーム照射システム及び荷電粒子ビーム照射方法
JP2011161055A (ja) * 2010-02-10 2011-08-25 Toshiba Corp 粒子線ビーム照射装置及びその制御方法
JP2011206495A (ja) * 2010-03-31 2011-10-20 Hitachi Ltd 粒子線治療システム
WO2012086062A1 (ja) * 2010-12-24 2012-06-28 三菱電機株式会社 粒子線照射装置、粒子線治療装置及びデータ表示プログラム

Similar Documents

Publication Publication Date Title
US9364688B2 (en) Method and apparatus for monitoring the range of a particle beam
CN110709133B (zh) 粒子束监测系统和方法
JP5095037B2 (ja) 粒子線照射装置およびこれを備えた粒子線治療装置
Polf et al. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation
JP3737098B2 (ja) 粒子線出射装置、及び粒子線出射方法
US6859741B2 (en) Device and method for adapting the size of an ion beam spot in the domain of tumor irradiation
US9802061B2 (en) Apparatus for particle therapy verification comprising a collimator with multiple openings
WO2011099448A1 (ja) 粒子線ビーム照射装置及びその制御方法
JP6588158B2 (ja) 線量誤差分布演算装置および線量誤差分布演算装置を備えた粒子線治療装置
JP5707524B1 (ja) 粒子線治療システムおよびプログラムならびに粒子線治療システムの制御方法
JP5393564B2 (ja) 荷電粒子ビーム輸送装置及び粒子線治療システム
JP5614679B2 (ja) イオンビーム照射装置におけるフィードバックシステム
TWI839525B (zh) 劑量評估系統
WO2019058536A1 (ja) 安全解析監視装置及び粒子線治療装置
JP7430057B2 (ja) 校正装置、治療計画装置及び校正方法
WO2021038941A1 (ja) 粒子線モニタ装置、粒子線治療システムおよび粒子線モニタ方法
EP4180089A1 (en) Particle therapy system and irradiation control apparatus
Markov et al. A procedure for determining the absorbed dose in a substance exposed to pulsed heavy ion beams
JP7248470B2 (ja) 中性子線検出装置
CN108697904A (zh) 粒子射线治疗装置及粒子射线治疗装置的扫描次数决定方法
JP6301274B2 (ja) 粒子線照射装置および粒子線照射装置の作動方法
Jhala İnvestigation of dosimetric characteristics and exploration of potential applications of amorphous silicon detector
JP2002228755A (ja) 放射線発生装置
JP2019055005A (ja) 粒子線治療システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP