CN103226059A - Wavefront measuring device and measuring method for optical system - Google Patents

Wavefront measuring device and measuring method for optical system Download PDF

Info

Publication number
CN103226059A
CN103226059A CN2013101221168A CN201310122116A CN103226059A CN 103226059 A CN103226059 A CN 103226059A CN 2013101221168 A CN2013101221168 A CN 2013101221168A CN 201310122116 A CN201310122116 A CN 201310122116A CN 103226059 A CN103226059 A CN 103226059A
Authority
CN
China
Prior art keywords
array
optical system
imaging len
measuring apparatus
ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101221168A
Other languages
Chinese (zh)
Inventor
陈永权
段亚轩
李坤
赵建科
胡丹丹
赛建刚
龙江波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN2013101221168A priority Critical patent/CN103226059A/en
Publication of CN103226059A publication Critical patent/CN103226059A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

The invention relates to a wavefront measuring device and a measuring method for an optical system. The wavefront measuring device for the optical system comprises a laser, a small lens array, an imaging lens array, a CCD (Charge Coupled Device) array and an acquisition control computer, wherein the small lens array, the imaging lens array and the CCD array are arranged on an emergent light path of the laser sequentially, and the CCD array is electrically connected with the acquisition control computer. The wavefront measuring device and the measuring method for the optical system can quickly measure system wavefront of the heavy-caliber optical system without a heavy-caliber optical element.

Description

Optical system Wavefront measuring apparatus and measuring method
Technical field
The invention belongs to the optical detection field, relate to a kind of optical system Wavefront measuring apparatus and measuring method, relate in particular to a kind of heavy-caliber optical system Wavefront measuring apparatus.
Background technology
The wavefront of optical system is an important technology index after its system is debug, and its quality directly affects the image quality or the transmission performance of system.Along with the continuous development in China's aerospace industry, military project target range, the utilization of heavy-caliber optical system is more and more, and following, the difficulty of test of wavefront is also more and more higher.
Existing method of testing comprises following several:
1) adopt laser interferometer that the wavefront of optical system is tested, but the restriction of bore of Stimulated Light interferometer (interferometer of China's bore maximum is Ф 800mm at present) or standard reflection aperture of mirror, the wavefront measurement bore is also limited thereupon.Simultaneously, development large-caliber laser interferometer, used optical elements of large caliber difficulty of processing is big in the system, and cost is very expensive, and is less economical.
2) adopt small-bore laser interferometer scanning survey, it is bigger that this method is influenced by wavefront splicing precision, and when simultaneously heavy-caliber optical system being tested, system adjusts relative complex, and Measuring Time is longer.
3) adopt Hartmann's wavefront measurement system that the wavefront of heavy-caliber optical system is tested, the method need be developed a bore the contract beam system suitable with optical system bore to be measured, and expense is also higher relatively.
Summary of the invention
In order to solve the problems referred to above that exist in the background technology, the present invention proposes a kind of optical system Wavefront measuring apparatus and measuring method that does not adopt optical elements of large caliber to measure system's wavefront of heavy-caliber optical system fast.
Technical solution of the present invention is: the invention provides a kind of optical system Wavefront measuring apparatus, its special character is: described optical system Wavefront measuring apparatus comprises laser instrument, lenslet array, imaging len array, ccd array and acquisition controlling computing machine; Described lenslet array, imaging len array and ccd array are successively set on the emitting light path of laser instrument; Described CCD and acquisition controlling computing machine are electrical connected.
The imaging object plane of above-mentioned imaging len array is the focal plane of lenslet array.
Above-mentioned lenslet array comprises four lenslets at least; Described imaging len array comprises at least one imaging len; The imaging object plane of described imaging len array is the focal plane of the lenslet in the lenslet array.
Above-mentioned ccd array is arranged on the imaging surface place of imaging len array.
Above-mentioned ccd array comprise with the imaging len array in the corresponding to CCD of number of imaging len.
Above-mentioned laser instrument comprises optical fiber pigtail, and the fibre core of described optical fiber pigtail is less than the diffraction-limited of optical system to be measured.
The fibre core of above-mentioned optical fiber pigtail is less than one times of diffraction-limited of optical system to be measured.
A kind of measuring method that is used for the optical system Wavefront measuring apparatus, its special character is: described measuring method may further comprise the steps:
1) opens laser instrument and produce laser;
2) the resulting laser of step 1) is injected optical system to be measured and forms plane wave;
3) by lenslet array to step 2) formed plane wave carries out light beam and focuses on, and forms the array focal spot;
4) by the imaging len array the formed array focal spot of step 3) is carried out imaging, form light spot image;
5) by the ccd array synchronous acquisition by the formed light spot image of step 4);
6) by the acquisition controlling computing machine interpretation is carried out in the position of the light spot image after gathering, and calculate the wavefront slope that ccd array collects;
7) wavefront for the treatment of the photometry system restores.
Advantage of the present invention is:
1, adopt measurement mechanism provided by the present invention, can carry out the wavefront test of heavy-caliber optical system, be particularly useful for the system wavefront test of bore greater than the optical system of 1m, the system development cost is relatively low;
2, adopt wavefront slope that wavefront is restored, have the advantage that Hartmann wave front sensor is measured, but the wavefront of real time dynamic measurement heavy-caliber optical system, the measuring accuracy height;
3, according to the size and the beam sampling requirement of measuring bore, can have at design lenslet array and imaging len array, avoid using in the test macro optical elements of large caliber.
Description of drawings
Fig. 1 is the structural representation of optical system Wavefront measuring apparatus provided by the present invention;
Wherein:
The 1-laser instrument; 2-optical system to be measured; The 3-lenslet array; 4-imaging len array; The 5-CCD array; 6-acquisition controlling computing machine.
Embodiment
The present invention comprises laser instrument 1, optical system to be measured 2, lenslet array 3, imaging len array 4, ccd array 5, acquisition controlling computing machine 6 as shown in Figure 1, is provided with wave front restoration software in the acquisition controlling computing machine 6.Lenslet array 3, imaging len array 4 and ccd array 5 are successively set on the emitting light path of laser instrument 1; Optical system 2 to be measured places between laser instrument 1 and the lenslet array 3; Ccd array 5 is electrical connected with acquisition controlling computing machine 6.
The imaging object plane of imaging len array 4 is focal planes of lenslet array 3; Lenslet array 3 comprises four lenslets at least; Imaging len array 4 comprises at least one imaging len; The imaging object plane of imaging len array 4 is focal planes of the lenslet in the lenslet array 3.
Ccd array 5 is arranged on the imaging surface place of imaging len array 4; Ccd array 5 comprise with the imaging len array in the corresponding to CCD of number of 4 imaging len.
Laser instrument 1 comprises optical fiber pigtail, and the fibre core of optical fiber pigtail is less than the diffraction-limited of optical system to be measured, especially less than one times of diffraction-limited of optical system to be measured.
The present invention is when concrete work, its working method is: open laser instrument 1, laser is exported by optical fiber pigtail, the fibre core of optical fiber is less than one times of diffraction-limited of optical system 2 to be measured, laser is injected optical system 2 to be measured, form plane wave, focus on by 3 pairs of light beams behind optical system 2 collimations to be measured of lenslet array, form the array focal spot, by imaging len array 4 to the array focal spot imaging in its corresponding visual field, by ccd array 5 synchronous acquisition light spot images, the facula position of each subimage after gathering is carried out interpretation, treat the wavefront of photometry system and restore by calculating wavefront slope that ccd array 5 collects.

Claims (8)

1. optical system Wavefront measuring apparatus, it is characterized in that: described optical system Wavefront measuring apparatus comprises laser instrument, lenslet array, imaging len array, ccd array and acquisition controlling computing machine; Described lenslet array, imaging len array and ccd array are successively set on the emitting light path of laser instrument; Described ccd array and acquisition controlling computing machine are electrical connected.
2. optical system Wavefront measuring apparatus according to claim 1 is characterized in that: the imaging surface of described imaging len array is the focal plane of lenslet array.
3. optical system Wavefront measuring apparatus according to claim 2 is characterized in that: described lenslet array comprises four lenslets at least; Described imaging len array comprises at least one imaging len; The imaging object plane of described imaging len array is the focal plane of the lenslet in the lenslet array.
4. optical system Wavefront measuring apparatus according to claim 3 is characterized in that: described ccd array is arranged on the imaging surface place of imaging len array.
5. optical system Wavefront measuring apparatus according to claim 4 is characterized in that: described ccd array comprise with the imaging len array in the corresponding to CCD of number of imaging len.
6. according to the described optical system Wavefront measuring apparatus of the arbitrary claim of claim 1-5, it is characterized in that: described laser instrument comprises optical fiber pigtail, and the fibre core of described optical fiber pigtail is less than the diffraction-limited of optical system to be measured.
7. optical system Wavefront measuring apparatus according to claim 6 is characterized in that: the fibre core of described optical fiber pigtail is less than one times of diffraction-limited of optical system to be measured.
8. measuring method that is used for the described optical system Wavefront measuring apparatus of the arbitrary claim of claim 1-7, it is characterized in that: described measuring method may further comprise the steps:
1) opens laser instrument and produce laser;
2) the resulting laser of step 1) is injected optical system to be measured and forms plane wave;
3) by lenslet array to step 2) formed plane wave carries out light beam and focuses on, and forms the array focal spot;
4) by the imaging len array the formed array focal spot of step 3) is carried out imaging, form light spot image;
5) by the ccd array synchronous acquisition by the formed light spot image of step 4);
6) by the acquisition controlling computing machine interpretation is carried out in the position of the light spot image after gathering, and calculate the wavefront slope that ccd array collects;
7) wavefront for the treatment of the photometry system restores.
CN2013101221168A 2013-04-09 2013-04-09 Wavefront measuring device and measuring method for optical system Pending CN103226059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101221168A CN103226059A (en) 2013-04-09 2013-04-09 Wavefront measuring device and measuring method for optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101221168A CN103226059A (en) 2013-04-09 2013-04-09 Wavefront measuring device and measuring method for optical system

Publications (1)

Publication Number Publication Date
CN103226059A true CN103226059A (en) 2013-07-31

Family

ID=48836587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101221168A Pending CN103226059A (en) 2013-04-09 2013-04-09 Wavefront measuring device and measuring method for optical system

Country Status (1)

Country Link
CN (1) CN103226059A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075882A (en) * 2014-07-01 2014-10-01 中国科学院长春光学精密机械与物理研究所 Wave-front optical dither analyzing method suitable for large-caliber photoelectric detecting system
CN104089583A (en) * 2014-06-24 2014-10-08 北京空间机电研究所 Wavefront subaperture inversion method of optical system
CN104535300A (en) * 2014-12-20 2015-04-22 中国科学院西安光学精密机械研究所 Large-diameter parallel light pipe wavefront and image surface position calibration device and method
CN104075882B (en) * 2014-07-01 2016-11-30 中国科学院长春光学精密机械与物理研究所 It is applicable to the wavefront optics jitter analysis method of heavy caliber Photodetection system
CN110476043A (en) * 2017-02-03 2019-11-19 伍普提克斯股份有限公司 For acquiring the method and optical system of the tomographic imaging distribution of the wavefront of electromagnetic field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967063A (en) * 1988-06-16 1990-10-30 The Aerospace Corporation Charge controlled adaptive-optics system
US5629765A (en) * 1995-12-15 1997-05-13 Adaptive Optics Associates, Inc. Wavefront measuring system with integral geometric reference (IGR)
CN1607379A (en) * 2003-10-15 2005-04-20 中国科学院光电技术研究所 Hartmann wavefront sensor based on micro-prism array for pulse light beam quality detection
CN102252833A (en) * 2011-06-24 2011-11-23 北京理工大学 Large-diameter wide-dynamic range collimating system wavefront quality detection device
CN102879109A (en) * 2012-09-12 2013-01-16 中国科学院西安光学精密机械研究所 Dynamic wave-front testing device
CN203216704U (en) * 2013-04-09 2013-09-25 中国科学院西安光学精密机械研究所 Optical system wavefront measurement apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967063A (en) * 1988-06-16 1990-10-30 The Aerospace Corporation Charge controlled adaptive-optics system
US5629765A (en) * 1995-12-15 1997-05-13 Adaptive Optics Associates, Inc. Wavefront measuring system with integral geometric reference (IGR)
CN1607379A (en) * 2003-10-15 2005-04-20 中国科学院光电技术研究所 Hartmann wavefront sensor based on micro-prism array for pulse light beam quality detection
CN102252833A (en) * 2011-06-24 2011-11-23 北京理工大学 Large-diameter wide-dynamic range collimating system wavefront quality detection device
CN102879109A (en) * 2012-09-12 2013-01-16 中国科学院西安光学精密机械研究所 Dynamic wave-front testing device
CN203216704U (en) * 2013-04-09 2013-09-25 中国科学院西安光学精密机械研究所 Optical system wavefront measurement apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089583A (en) * 2014-06-24 2014-10-08 北京空间机电研究所 Wavefront subaperture inversion method of optical system
CN104089583B (en) * 2014-06-24 2016-08-24 北京空间机电研究所 A kind of sub-aperture inversion method of optical system wavefront
CN104075882A (en) * 2014-07-01 2014-10-01 中国科学院长春光学精密机械与物理研究所 Wave-front optical dither analyzing method suitable for large-caliber photoelectric detecting system
CN104075882B (en) * 2014-07-01 2016-11-30 中国科学院长春光学精密机械与物理研究所 It is applicable to the wavefront optics jitter analysis method of heavy caliber Photodetection system
CN104535300A (en) * 2014-12-20 2015-04-22 中国科学院西安光学精密机械研究所 Large-diameter parallel light pipe wavefront and image surface position calibration device and method
CN110476043A (en) * 2017-02-03 2019-11-19 伍普提克斯股份有限公司 For acquiring the method and optical system of the tomographic imaging distribution of the wavefront of electromagnetic field

Similar Documents

Publication Publication Date Title
CN102589766B (en) Digital laser explosion loading dynamic photoelastic experiment system
CN105444878A (en) High-precision mass measurement device and high-precision mass measurement method of chemical oxygen iodine laser far-field beam
CN104359564A (en) Pulse laser beam quality synchronous measuring system and synchronous control method thereof
CN103063415B (en) A kind of long focus length of lens measuring method based on Moire fringe coupling
CN103063414B (en) Focal length measuring device adopting symmetrical grating
CN203216702U (en) Focal length measuring device for long focal length optical system
CN102393255B (en) System capable of solving inclination problem of narrow field of view lens in wave aberration detection and method thereof
CN103994719A (en) High-precision three-dimensional imaging device based on Geiger APD arrays and using method thereof
CN102564343B (en) Detection device for surface-shape errors of solar trench type curved surface reflector
CN204831220U (en) Calcirm -fluoride optical flat two sides depth of parallelism high accuracy testing arrangement
CN103399413B (en) Double helix light beam-based sample axial drift detection and compensation method and device
CN102564731A (en) Device for measuring focal length and wavefront distortion of lens
CN109238659A (en) A kind of focal length of lens measurement technology and device based on experiment ray tracing principle
CN102507596A (en) Optical element surface defect detecting system based on active laser beam scanning
KR20140100771A (en) Multi Optical Axies Arrange Inspection Device and Axies Arranging Method thereof
CN103226059A (en) Wavefront measuring device and measuring method for optical system
CN102252830A (en) Detection device and detection method of optical ghost image
CN104764593A (en) Horizontal type double-port plane Fizeau interference testing device
CN106841236B (en) Transmission optical element defect testing device and method
CN103868680B (en) Ground telescope out of focus aberration detection method based on speckle interference imaging
CN103148935A (en) Industrial laser beam parameter measuring device
CN203216704U (en) Optical system wavefront measurement apparatus
CN112097923B (en) Simple wavefront measurement method for optical element
CN111220088A (en) Measurement system and method
CN110906883B (en) High-resolution three-dimensional detection method integrating multi-view vision and synthetic aperture imaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130731