CN102564343B - Detection device for surface-shape errors of solar trench type curved surface reflector - Google Patents
Detection device for surface-shape errors of solar trench type curved surface reflector Download PDFInfo
- Publication number
- CN102564343B CN102564343B CN201110449273.0A CN201110449273A CN102564343B CN 102564343 B CN102564343 B CN 102564343B CN 201110449273 A CN201110449273 A CN 201110449273A CN 102564343 B CN102564343 B CN 102564343B
- Authority
- CN
- China
- Prior art keywords
- curved surface
- beam splitter
- optical reflector
- self
- shape error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 30
- 238000012360 testing method Methods 0.000 claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims description 29
- 238000012545 processing Methods 0.000 abstract description 15
- 238000000034 method Methods 0.000 abstract description 12
- 239000003550 marker Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
太阳能槽式曲面反光镜面形误差检测装置,涉及镜面检测领域,它解决现有对槽式曲面反光镜面形误差的检测时存在检测过程繁琐耗时,并且不适合快速、在线检测的问题,同时存在对后续的图像处理复杂的问题,本装置包括光源装置、自校准装置和图像采集与处理装置;光源装置包括激光器、扩束镜和分束镜组;激光器发出的光束经扩束镜扩束后再经分束镜组分束并反射,经分束镜组分束后的测试光束投射至被测曲面反光镜上,经分束镜组反射的自校准光束入射至自校准装置,自校准装置对投射至被测曲面反光镜上的测试光束的平行度校准;图像采集与处理装置接收被测曲面反光镜反射的光斑信息并判断被测曲面反光镜的面形误差。本发明易于操作,成本较低。
The solar trough-type curved surface reflective mirror surface shape error detection device relates to the field of mirror surface detection. It solves the problems that the detection process is cumbersome and time-consuming in the existing detection of the trough-type curved surface reflective mirror surface shape error, and it is not suitable for fast and online detection. At the same time, there are For the complex problem of subsequent image processing, this device includes a light source device, a self-calibration device, and an image acquisition and processing device; the light source device includes a laser, a beam expander and a beam splitter group; the beam emitted by the laser is expanded by the beam expander Then the beam is divided into beams and reflected by the beam splitter, and the test beam beamed by the beam splitter is projected onto the measured curved surface mirror, and the self-calibration beam reflected by the beam splitter is incident on the self-calibration device, and the self-calibration device Calibrate the parallelism of the test beam projected onto the tested curved mirror; the image acquisition and processing device receives the light spot information reflected by the tested curved mirror and judges the surface shape error of the tested curved mirror. The invention is easy to operate and has low cost.
Description
技术领域technical field
本发明涉及镜面检测领域,具体涉及一种太阳能槽式曲面反光镜的面形误差检测装置。The invention relates to the field of mirror surface detection, in particular to a surface shape error detection device for a solar trough type curved surface reflector.
背景技术Background technique
在太阳能利用领域,为了提高太阳辐射能流密度,需要采用太阳能聚光器。槽式聚光器是目前太阳能利用领域应用较广的聚光方式,在一些国家(如德国、西班牙)已经实现商业化生产,在我国仍处于起步阶段。槽式聚光器由多片曲面反光镜拼接而成,曲面反光镜的面形精度决定了槽式聚光器的聚光性能,因此对曲面反光镜面形误差的检测至关重要。为实现槽式曲面反光镜的批量化、标准化生产,需要提供一种能快速、在线检测槽式曲面反光镜面形误差的检测方法及装置。槽式曲面反光镜的面形误差用镜面上某点法线方向与该点理想法线方向的偏角来表示,误差一般在毫弧度量级。In the field of solar energy utilization, in order to increase the flux density of solar radiation, solar concentrators are required. The trough concentrator is a widely used concentrating method in the field of solar energy utilization. It has been commercialized in some countries (such as Germany and Spain), but it is still in its infancy in my country. The trough concentrator is composed of multiple curved mirrors. The surface shape accuracy of the curved mirror determines the light concentrating performance of the trough concentrator, so it is very important to detect the surface error of the curved mirror. In order to realize batch and standardized production of trough-type curved surface reflectors, it is necessary to provide a detection method and device capable of quickly and on-line detection of surface shape errors of trough-type curved surface reflectors. The surface shape error of the trough curved mirror is expressed by the declination angle between the normal direction of a certain point on the mirror surface and the ideal normal direction of the point, and the error is generally on the order of milliradians.
目前,槽式曲面反光镜面形误差的检测方法主要有激光逐点扫描法、摄影测量法、反射栅格摩尔条纹检测法等。激光逐点扫描法是利用激光束照射被测曲面反光镜,激光束经曲面反光镜反射后,投射到位于曲面反光镜约2倍焦距处的接收屏上,通过记录激光束在接收屏上的投射位置反推被测点的法线方向,该方法精度较高,但需要进行大量点的数据采集,非常耗时,不适合快速、在线检测槽式曲面反光镜。摄影测量法是先在被测曲面反光镜上粘贴大量标志点,利用相机在不同角度对这些标志点进行成像,通过像点、物点的空间位置关系求解标志点的坐标,并拟合出曲面反光镜的三维图形,该装置较简单,但需要在反光镜表面粘贴大量标志点,繁琐而耗时,也不适合快速、在线检测槽式曲面反光镜。反射栅格摩尔条纹检测法是利用相机拍摄栅格条纹经被测曲面反光镜反射所成的像,栅格条纹的像携带了被测曲面反光镜的调制信息,对栅格条纹的像进行图像处理,进而反演被测曲面反光镜的面形信息,该方法是一种可以实现快速检测的好方法,但对曲面反光镜的定位精度要求较高,并且后续的图像处理较为复杂。At present, the detection methods of the surface shape error of the trough curved mirror mainly include laser point-by-point scanning method, photogrammetry method, reflection grid moiré fringe detection method and so on. The laser point-by-point scanning method is to use the laser beam to irradiate the measured curved mirror. After the laser beam is reflected by the curved mirror, it is projected on the receiving screen located at about 2 times the focal length of the curved mirror. By recording the laser beam on the receiving screen The projected position reverses the normal direction of the measured point. This method has high accuracy, but it requires a large number of point data collection, which is very time-consuming and is not suitable for fast and online detection of grooved curved surface mirrors. The photogrammetry method is to first paste a large number of marker points on the measured surface mirror, use the camera to image these marker points at different angles, solve the coordinates of the marker points through the spatial position relationship of the image point and the object point, and fit the surface The three-dimensional graphics of the reflector, the device is relatively simple, but it needs to paste a large number of mark points on the surface of the reflector, which is cumbersome and time-consuming, and is not suitable for fast and online detection of grooved curved surface reflectors. The reflective grid Moore fringe detection method is to use the camera to capture the image of the grid stripe reflected by the measured curved surface mirror. The grid stripe image carries the modulation information of the measured curved surface mirror, and the image of the grid stripe is imaged Processing, and then inverting the surface shape information of the measured curved mirror, this method is a good way to achieve rapid detection, but the positioning accuracy of the curved mirror is high, and the subsequent image processing is more complicated.
发明内容Contents of the invention
本发明为解决现有对槽式曲面反光镜面形误差的检测时存在检测过程繁琐耗时,并且不适合快速、在线检测的问题,同时存在对后续的图像处理复杂的问题,提供一种太阳能槽式曲面反光镜面形误差检测装置。The present invention provides a solar trough in order to solve the problem that the detection process is cumbersome and time-consuming in the detection of the surface shape error of the trough-type curved surface mirror, and it is not suitable for fast and on-line detection. At the same time, there is the problem of complicated subsequent image processing. Type curved surface mirror surface shape error detection device.
一种太阳能槽式曲面反光镜面形误差检测装置,该装置包括光源装置、自校准装置和图像采集与处理装置;所述光源装置包括激光器、扩束镜和分束镜组;图像采集与处理装置包括光屏、相机和计算机;A solar trough-type curved surface reflective mirror surface shape error detection device, the device includes a light source device, a self-calibration device and an image acquisition and processing device; the light source device includes a laser, a beam expander and a beam splitter mirror group; the image acquisition and processing device including light screens, cameras and computers;
所述激光器发出的光束经扩束镜扩束后再经分束镜组分束并反射,经分束镜组分束后的测试光束投射至被测曲面反光镜上,经分束镜组反射的自校准光束入射至自校准装置,所述自校准装置对投射至被测曲面反光镜上的测试光束的平行度校准;所述光屏接收被测曲面反光镜反射的光斑信息,相机采集光屏上的光斑信息并将光斑信息传输至计算机中,计算机通过接收的光斑信息判断被测曲面反光镜的面形误差,所述自校准装置包括自校准装置包括f-θ透镜和CCD探测器;所述自校准光束经f-θ透镜会聚于CCD探测器上。The beam emitted by the laser is expanded by the beam expander and then reflected by the beam splitter group, and the test beam beamed by the beam splitter group is projected onto the curved surface mirror under test and reflected by the beam splitter group. The self-calibration beam is incident on the self-calibration device, and the self-calibration device calibrates the parallelism of the test beam projected onto the measured curved surface reflector; the light screen receives the spot information reflected by the measured curved surface reflector, and the camera collects the light The spot information on the screen and the spot information is transmitted to the computer, and the computer judges the surface error of the measured curved surface mirror by the received spot information, and the self-calibration device includes a self-calibration device including an f-theta lens and a CCD detector; The self-calibrating light beam is converged on the CCD detector through the f-θ lens.
本发明的有益效果:本发明太阳能槽式曲面反光镜面形误差检测装置可快速、准确的对太阳能槽式曲面反光镜的面形进行在线检测;本装置是使用光学系统模拟平行太阳光入射到被测曲面反光镜上,使用相机拍摄曲面反光镜投射到焦平面上的光斑,对光斑进行图像处理,进而判断被测曲面反光镜的面形误差是否合乎使用要求。本装置对被测曲面反光镜的定位精度要求较低,图像处理简单,检测精度较高,检测速度快,结合扫描与调节机构可实现被测曲面反光镜的在线检测,易于操作,成本较低。Beneficial effects of the present invention: The surface shape error detection device of the solar trough curved reflective mirror of the present invention can quickly and accurately detect the surface shape of the solar trough curved reflective mirror online; the device uses an optical system to simulate parallel sunlight incident on the On the curved mirror, use the camera to shoot the light spot projected on the focal plane by the curved mirror, and perform image processing on the light spot, and then judge whether the surface shape error of the tested curved mirror meets the requirements for use. The device has low requirements on the positioning accuracy of the measured curved surface mirror, simple image processing, high detection accuracy, and fast detection speed. Combined with the scanning and adjustment mechanism, the online detection of the measured curved surface mirror can be realized, which is easy to operate and low in cost. .
附图说明Description of drawings
图1是本发明太阳能槽式曲面反光镜面形误差检测装置的实施例1的结构图;Fig. 1 is the structural diagram of Embodiment 1 of the solar trough type curved surface reflector surface error detection device of the present invention;
图2是本发明太阳能槽式曲面反光镜面形误差检测装置的实施例2的结构图。Fig. 2 is a structural view of Embodiment 2 of the surface error detection device of the solar trough curved surface mirror of the present invention.
图中,1、激光器,2、扩束镜,3、分束镜组,4、倾斜分束镜,5、水平分束镜,6、分束镜单元,7、自校准光束,8、测试光束,9、f-θ透镜,10、CCD探测器,11、滑动横梁,12、导轨,13、被测曲面反光镜,14、升降支杆,15、挡板,16、相机,17、三脚架,18、光屏,19、数据线一,20、数据线二,21、计算机,22、传送装置,23、快门。In the figure, 1. Laser, 2. Beam expander, 3. Beam splitter group, 4. Inclined beam splitter, 5. Horizontal beam splitter, 6. Beam splitter unit, 7. Self-calibrating beam, 8. Test Beam, 9, f-θ lens, 10, CCD detector, 11, sliding beam, 12, guide rail, 13, measured curved surface mirror, 14, lifting rod, 15, baffle, 16, camera, 17, tripod , 18, light screen, 19, data line one, 20, data line two, 21, computer, 22, transmission device, 23, shutter.
具体实施方式Detailed ways
具体实施方式一、结合图1说明本实施方式,太阳能槽式曲面反光镜面形误差检测装置,包括光源装置、自校准装置和图像采集与处理装置。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 1. This embodiment will be described with reference to FIG. 1 . The surface error detection device of the solar trough curved reflector includes a light source device, a self-calibration device, and an image acquisition and processing device.
所述的光源装置包括激光器1、扩束镜2和分束镜组3;所述的分束镜组3由一系列的分束镜单元6组成,每个分束镜单元6由两片分束镜组成(倾斜分束镜4和水平分束镜5),两片分束镜的夹角为45°。Described light source device comprises laser 1, beam expander mirror 2 and beam splitting mirror group 3; Described beam splitting mirror group 3 is made up of a series of beam splitting mirror units 6, and each beam splitting mirror unit 6 is made up of two pieces Beam mirror composition (tilt beam splitter 4 and horizontal beam splitter 5), the angle between the two beam splitters is 45°.
扩束镜2对激光器1发出的激光束进行扩束和准直,经分束镜组3分为一系列能量近似相等且相互平行的测试光束8,并投射到被测曲面反光镜13上。调节分束镜组3中各分束镜单元6的位置和倾斜,使投射到被测曲面反光镜13上的光束相互平行。分束镜组3中分束镜单元6的数量由被测曲面反光镜13的开口尺寸和测量精度需求决定。自校准装置接收由分束镜组3反射的光束,数据采集与处理部分包括光屏、相机和计算机,光屏在被测曲面反光镜的理想焦线处,与被测曲面反光镜的光轴呈一定角度,相机用于拍摄光屏上的光斑,相机通过数据线与计算机相连,计算机用于对相机拍摄的图像以及自校准装置图像采集与处理装置进行图像处理,并计算被测曲面反光镜的面形误差。The beam expander 2 expands and collimates the laser beam emitted by the laser 1, divides it into a series of
本实施方式中还包括扫描与调节机构,所述扫描与调节机构包括滑动横梁11、导轨12、升降支杆14和挡板15,所述滑动横梁11用于安装光源装置和自校准装置,导轨12用于安装滑动横梁11,激光器1、扩束镜2、分束镜组3固定在位于导轨12上的滑动横梁11上,并呈一字排列,升降支杆14用于对被测曲面反光镜13的位置和姿态进行调整,挡板15用于固定被测曲面反光镜13的位置。其中,导轨12、升降支杆14和挡板15的相对位置事先固定,由被测曲面反光镜13的几何参数决定,挡板15用以支撑被测曲面反光镜13的一端,升降支杆14的升降高度事先由被测曲面反光镜13的几何参数计算得出,使平行扫描激光束的方向与被测曲面反光镜13的光轴方向相一致,滑动横梁11沿被测曲面反光镜13的焦线方向运动,保证扫描激光束扫描被测曲面反光镜13。This embodiment also includes a scanning and adjusting mechanism, which includes a sliding beam 11, a
本实施方式中所述的自校准装置由f-θ透镜9、CCD探测器10和数据线二20,激光束经分束镜组3后,部分被反射的自校准光束7经f-θ透镜9会聚于CCD探测器10上,若所有分束镜单元6反射的光束在CCD探测器上的光斑均重合,证明投射到被测反光镜13上的测试光束8相互平行,否则,须调整分束镜单元6的位置及倾斜,直至所有分束镜单元6反射的光束在CCD探测器10上的光斑重合。The self-calibration device described in this embodiment consists of an f-θ lens 9, a
所述的图像采集与处理部分由光屏18、相机16、三脚架17、数据线一19和计算机21组成。光屏18放置在被测曲面反光镜13的标准焦线处,并与被测曲面反光镜13的光轴方向呈一定角度(0~90°),用以接收由被测曲面反光镜13反射的光斑,光屏18的尺寸和倾斜角度需要根据被测曲面反光镜13的几何参数进行设计,以保证能够获取被测曲面反光镜13的所有反射光斑。相机16用于采集光屏18上的光斑信息,由三脚架17支撑并进行位置和角度的调整。当滑动横梁11沿被测曲面反光镜13的焦线方向扫描的时候,相机16会拍摄一系列图像,并通过数据线一19将图像信息传输到计算21中,计算机21通过对图像信息的处理进而判断被测曲面反光镜13是否合格。The image acquisition and processing part is composed of a
本实施方式中还包括传送装置22,所述被测曲面反光镜13放置在生产线传送装置22上,经传送装置22输送至预订位置后停止。升降支杆14将被测曲面反光镜13的一端支起,升降支杆14的上升高度可根据被测曲面反光镜13的几何参数计算得出,保证由分束镜组3出射的测试光束6与被测曲面反光镜13的光轴方向一致。被测曲面反光镜13的另一端卡在挡板15上,测试光束8沿被测曲面反光镜13的光轴方向入射到被测曲面反光镜13上,经被测曲面反光镜13反射并会聚于光屏18上。由于被测曲面反光镜13存在一定的面形误差,使得光屏18上的光斑有一定的杂散分布。测试光束8随着滑动横梁11的运动对被测曲面反光镜13进行扫描,相机16拍摄光屏18上的光斑信息并通过数据线一19传送给计算机21,计算机21通过图像处理判断被测曲面反光镜是否合格,从而达到在线快速检测的目的。In this embodiment, a conveying
具体实施方式二、结合图2说明本实施方式,本实施方式与具体实施方式一的区别在于,本实施方式在实施方式一的基础上在每个分束镜单元6中增加快门23,为了能够定量的对被测曲面反光镜13的面形误差进行测试,需要在每个分束镜单元中增加快门23,在对被测曲面反光镜13进行面形误差检测时,当投射到光屏上的光斑偏离理想位置时,可将快门23全部关闭,并从左到右依次打开快门23,即能找到偏离光斑所对应的被测点,并由光斑的偏离量和被测点的坐标信息求得被测点的法线方向与理想法线方向的偏差。Embodiment 2. This embodiment is described in conjunction with FIG. 2. The difference between this embodiment and Embodiment 1 is that, on the basis of Embodiment 1, a shutter 23 is added in each beam splitter unit 6 in this embodiment, in order to be able to To quantitatively test the surface error of the measured
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110449273.0A CN102564343B (en) | 2011-12-29 | 2011-12-29 | Detection device for surface-shape errors of solar trench type curved surface reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110449273.0A CN102564343B (en) | 2011-12-29 | 2011-12-29 | Detection device for surface-shape errors of solar trench type curved surface reflector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102564343A CN102564343A (en) | 2012-07-11 |
CN102564343B true CN102564343B (en) | 2014-03-12 |
Family
ID=46410415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110449273.0A Expired - Fee Related CN102564343B (en) | 2011-12-29 | 2011-12-29 | Detection device for surface-shape errors of solar trench type curved surface reflector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102564343B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102937422A (en) * | 2012-10-30 | 2013-02-20 | 中广核太阳能开发有限公司 | Surface type detection equipment and method of solar light collecting mirror surface |
CN104697470A (en) * | 2013-12-08 | 2015-06-10 | 首航节能光热技术股份有限公司 | Solar trough type condenser splicing-angle detection device and detection method |
CN104697446A (en) * | 2013-12-09 | 2015-06-10 | 首航节能光热技术股份有限公司 | Groove type condenser measuring instrument and measuring method thereof |
CN105136430B (en) * | 2015-08-13 | 2018-04-06 | 武汉圣普太阳能科技有限公司 | A kind of detection method and detection means of slot light collection mirror-type face precision |
CN105465559B (en) * | 2015-12-30 | 2017-10-31 | 中国科学院长春光学精密机械与物理研究所 | Solar groove type optical reflector of curved surface Surface inspection system supporting and adjusting device |
CN107561016B (en) * | 2017-08-17 | 2020-06-09 | 华北电力大学 | System for detecting gas concentration by laser |
CN108693635B (en) * | 2018-04-13 | 2020-06-23 | 东华大学 | Light ray converter for online detection of surface flaws of automotive interior parts and design method |
JP7279469B2 (en) * | 2019-03-28 | 2023-05-23 | セイコーエプソン株式会社 | Three-dimensional measuring device and robot system |
CN110715604A (en) * | 2019-11-29 | 2020-01-21 | 南京工艺装备制造有限公司 | A tool for online detection of bending of guide rails |
CN112229325A (en) * | 2020-10-27 | 2021-01-15 | 广东莱宝智能装备股份有限公司 | An automatic positioning light source system |
CN115500582B (en) * | 2022-08-17 | 2024-03-22 | 上海科技大学 | Foot three-dimensional contour acquisition system |
CN118936368B (en) * | 2024-08-16 | 2025-06-10 | 中广核太阳能开发有限公司 | Detection device and detection method for splicing angle of groove-type condenser reflector |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5982481A (en) * | 1996-10-01 | 1999-11-09 | Mcdonnell Douglas Corporation | Alignment system and method for dish concentrators |
CN102095387A (en) * | 2010-12-07 | 2011-06-15 | 南京航空航天大学 | Optical rotation angle field detection device based on polarized beam splitting imaging and measurement method thereof |
CN202024876U (en) * | 2011-01-17 | 2011-11-02 | 东莞市康达机电工程有限公司 | Light-focusing precision testing device for solar parabolic reflection plate |
CN102243067A (en) * | 2011-04-15 | 2011-11-16 | 中国科学院长春光学精密机械与物理研究所 | Surface shape detection device for solar condensing mirror |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0384402A (en) * | 1989-08-28 | 1991-04-10 | Yokohama Haitetsuku Kk | Device for measuring shape of curved surface |
-
2011
- 2011-12-29 CN CN201110449273.0A patent/CN102564343B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5982481A (en) * | 1996-10-01 | 1999-11-09 | Mcdonnell Douglas Corporation | Alignment system and method for dish concentrators |
CN102095387A (en) * | 2010-12-07 | 2011-06-15 | 南京航空航天大学 | Optical rotation angle field detection device based on polarized beam splitting imaging and measurement method thereof |
CN202024876U (en) * | 2011-01-17 | 2011-11-02 | 东莞市康达机电工程有限公司 | Light-focusing precision testing device for solar parabolic reflection plate |
CN102243067A (en) * | 2011-04-15 | 2011-11-16 | 中国科学院长春光学精密机械与物理研究所 | Surface shape detection device for solar condensing mirror |
Non-Patent Citations (3)
Title |
---|
JP平3-84402A 1991.04.10 |
塔式太阳能定日镜子镜镜面形精度和聚光性能评价的新方法;许文斌等;《仪器仪表学报》;20110630;第32卷(第6期);第1344-1348页 * |
许文斌等.塔式太阳能定日镜子镜镜面形精度和聚光性能评价的新方法.《仪器仪表学报》.2011,第32卷(第6期),第1344-1348页. |
Also Published As
Publication number | Publication date |
---|---|
CN102564343A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102564343B (en) | Detection device for surface-shape errors of solar trench type curved surface reflector | |
CN108050933B (en) | Pyramid prism retroreflection light spot positioning precision detection device and method | |
CN106197312B (en) | A kind of settled date mirror surface-shaped rapid detection system and its method | |
CN103245303B (en) | Multi-pose heavy-calibre planar optical elements surface shape detection apparatus and method | |
CN104215178B (en) | Object volume non-contact measurement method based on reflecting mirror secondary imaging and device | |
Ren et al. | A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system | |
CN106813575B (en) | The outer blindage position measuring system of coronagraph and location measurement method | |
CN105806253B (en) | A kind of detection method of settled date mirror surface-shaped | |
CN103335819A (en) | Device and method for optical detection of high-precision pyramid prism | |
CN104697470A (en) | Solar trough type condenser splicing-angle detection device and detection method | |
WO2013017097A1 (en) | Calibrating device and calibrating method for heliostat | |
WO2013083053A1 (en) | Calibration method and calibration system for heliostat of solar power station | |
WO2013017099A1 (en) | Calibration device and calibration method for heliostat | |
CN103676487A (en) | Workpiece height measuring device and correcting method thereof | |
CN104034352A (en) | Method for measuring field curvature of space camera by adopting laser tracker and interference check | |
CN103439089B (en) | Automatic calibration device and calibration method for focal plane position of collimator | |
CN102980534B (en) | The non-contact measurement method of a kind of hidden rotating shaft and end face squareness and system | |
CN203949641U (en) | A kind of solar groove type condenser splicing angle detection device | |
CN111707450A (en) | Device and method for detecting positional relationship between focal plane of optical lens and mechanical mounting surface | |
CN206725192U (en) | The off-axis amount and focal length measuring equipment of off-axis parabolic mirror | |
CN103438830A (en) | Solar energy condenser detection apparatus and detection method thereof | |
CN104635760A (en) | High-precision automatic regulating system for digital atmosphere fine-particle laser radar | |
CN111426449A (en) | Method for calibrating parallelism of optical axes of multiple autocollimators | |
CN106289096B (en) | A kind of convex spherical mirror surface testing system and detection method | |
CN102519405A (en) | Detector for flatness of reflecting surface of plane mirror and service method of detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140312 Termination date: 20151229 |
|
EXPY | Termination of patent right or utility model |