WO2013083053A1 - Calibration method and calibration system for heliostat of solar power station - Google Patents

Calibration method and calibration system for heliostat of solar power station Download PDF

Info

Publication number
WO2013083053A1
WO2013083053A1 PCT/CN2012/086006 CN2012086006W WO2013083053A1 WO 2013083053 A1 WO2013083053 A1 WO 2013083053A1 CN 2012086006 W CN2012086006 W CN 2012086006W WO 2013083053 A1 WO2013083053 A1 WO 2013083053A1
Authority
WO
WIPO (PCT)
Prior art keywords
heliostat
calibration
image sensor
image
reflected
Prior art date
Application number
PCT/CN2012/086006
Other languages
French (fr)
Chinese (zh)
Inventor
孙海翔
朱亮
Original Assignee
Sun Haixiang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Haixiang filed Critical Sun Haixiang
Publication of WO2013083053A1 publication Critical patent/WO2013083053A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/005Testing of reflective surfaces, e.g. mirrors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Sustainable Energy (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Control Of Position Or Direction (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A heliostat calibration method for a solar power station. The method: acquiring a distance offset (ei) between the center position of a reflected light spot of a heliostat (2) and the center of a receiver (1) via a movement of an image sensor (3), and controlling the heliostat (2) to rotate to a nominal position (Gi); determining the size of the offset of the heliostat (2) by comparing the distance offset (ei) to a set offset value (di), when the offset of the heliostat (2) is small, calibrating only a smaller number of calibration errors would suffice, and when the offset of the heliostat (2) is great, then calibrating a greater number of calibration errors. The heliostat calibration method determines the center position of the reflected light spot of the heliostat (2) via the image sensor set, and allows for rapid calibration movement, for reduced mechanical error, and for increased calibration precision. Also, the heliostat calibration method performs calibration by a scheme of first determining the size of the offset of the heliostat (2), then determining a calibration parameter, thus increasing the calibration efficiency and calibration precision.

Description

说 明 书 太阳能发电站的定日镜校准方法及校准系统 技术领域  Description of the heliostat calibration method and calibration system of solar power station
本发明属于太阳能发电领域, 特别涉及一种太阳能发电站的定日镜校准方法及校准系统。  The invention belongs to the field of solar power generation, and particularly relates to a heliostat calibration method and a calibration system for a solar power station.
背景技术 Background technique
中央塔式接收器发电站中, 塔顶的接收器接受来自定日镜组反射的太阳光。 接收器转换入射辐射能输 出高压高温蒸汽, 之后可送入涡轮机进行电力发电。 定日镜一般安装于塔周围的地面。 各定日镜具有刚性 反射表面, 可跟踪太阳, 表面白天采用向阳方位, 保持反射移动的太阳光至接收器。 需要高度准确地跟踪 太阳, 减少接收器周围溢出的反射光。 因此提供一种能够准确跟踪太阳实现较高效率且较小损耗的定日镜 校准系统成为本领域人员亟需解决的技术问题。  In a central tower receiver power station, the receiver at the top of the tower receives sunlight from the heliostat group. The receiver converts incident radiant energy to output high-pressure, high-temperature steam, which can then be sent to a turbine for electrical power generation. Heliostats are typically installed on the ground around the tower. Each heliostat has a rigid reflective surface that tracks the sun, and the surface uses a sunny position during the day to keep the reflected sunlight moving to the receiver. It is necessary to track the sun with high accuracy and reduce the reflected light that overflows around the receiver. Therefore, it is a technical problem that those skilled in the art need to solve to provide a heliostat calibration system capable of accurately tracking the sun to achieve higher efficiency and less loss.
为解决上述问题, 现有的定日镜校准系统常用的校准方法为: 通过图像传感器多次检测的定日镜反射 太阳光的光斑空间位置, 也就是光斑的中心位置, 以及该对应的定日镜的旋转角度, 此处的旋转角度是指 定曰镜的俯仰角 Φ和 /或平摇角 ω, 得出该定日镜所需校准的误差值。根据获得的误差值, 更新定日镜在数 据库中的参数,根据这些参数和接收器及太阳的位置,计算出定日镜将阳光反射在接收器上需旋转的角度, 开始跟踪。 但是, 上述校准方法中, 首先要确定需要校准的误差个数 η, 通过至少获得 η/2个光斑中心位 置以及定日镜的旋转角度信息才能进行校准。 由于不能得知待校准的定日镜误差大小, 为了精确校准, 通 常选取较多的校准误差进行校准, 这样, 就需要定日镜多次转动来获取多个光斑中心位置及定日镜的旋转 角度信息, 校准过程中定日镜多次轨迹转动引入了机械误差, 校准精度降低。  In order to solve the above problems, the calibration methods commonly used in the existing heliostat calibration system are: the spatial position of the spot reflected by the heliostat reflected by the image sensor, that is, the center position of the spot, and the corresponding date The rotation angle of the mirror, where the rotation angle is the pitch angle Φ and/or the pan angle ω of the specified , mirror, and the error value of the calibration required for the heliostat is obtained. According to the obtained error value, the parameters of the heliostat in the database are updated. According to these parameters and the position of the receiver and the sun, the angle at which the heliostat reflects the sunlight on the receiver is calculated and the tracking is started. However, in the above calibration method, first, the number of errors η to be calibrated is determined, and calibration can be performed by obtaining at least η/2 spot center positions and rotation angle information of the heliostat. Since the heliostat error to be calibrated cannot be known, in order to accurately calibrate, more calibration errors are usually selected for calibration. Thus, multiple rotations of the heliostat are required to obtain multiple spot center positions and heliostat rotations. Angle information, the mechanical error is introduced by the multiple trajectory rotation of the heliostat during the calibration process, and the calibration accuracy is reduced.
例如, 中国专利 CN101918769A公开了一种中央塔式接收器太阳能发电厂中的定日镜定标和跟踪控制 方法, 其包括反射阳光至接收器的定日镜场、 指向至少一定日镜子分组的摄像机。 摄像机配置为可产生多 个定日镜反射的阳光图像。 该系统就是通过上述校准方法进行校准的。 在校准过程中, 确定光斑中心位置 的过程如下: 首先通过摄像机捕捉定日镜反射的光斑, 此时定日镜处于起始配置, 为了使摄像机找到定日 镜的反射光斑中心位置,控制系统控制定日镜转动,最终使定日镜转动到摄像机捕捉到光斑中心位置为止, 此时得到了一组光斑中心位置及定日镜旋转角度信息值; 欲校准 η个误差时, 则需要经过至少 η/2次上述 过程得到 η/2组光斑中心位置及定日镜旋转角度信息值再进行校准。 其校准过程较复杂。 另外, 该校准系 统需要通过定日镜的不断旋转使固定于定日镜场内的摄像机获得定日镜的反射光斑中心, 图 1所示为使用 摄像机获得光斑中心样本时执行的定日镜转动的轨线图, 定日镜的方位以两个旋转角控制, 平摇角 ω和俯 仰角 φ。 平摇角 ω沿水平轴表示。 俯仰角 φ沿垂直轴表示。 通过该轨迹图可以得出, 该系统需要定日镜多 次转动才能到达摄像机能够检测到光斑中心的位置。 定日镜的反射光斑无法照射在接收器上, 影响了发电 效率, 且定日镜的多次轨迹转动引入了机械误差, 校准精度降低。 另外在较大的发电厂中, 数量庞大的定 日镜的转动会消耗控制定日镜转动的校准电机的电能。又例如,美国专利 US20100139644中,虽然校准时, 定日镜的转动轨迹较 CN101918769A有所简化, 但为了获得定日镜反射光斑轮廓位置, 仍需控制系统控制 大量定日镜转动到摄像机能够扑捉到的位置; 这样, 定日镜的反射光斑无法照射在接收器上, 影响了发电 效率。 而且, 以上两种方案中, 无论定日镜参数误差大小, 定日镜均需旋转到多个位置, 以获得多组用于 校准所需数据, 影响了发电效率。 For example, Chinese Patent No. CN101918769A discloses a heliostat calibration and tracking control method in a central tower receiver solar power plant, which includes a heliostat field that reflects sunlight to a receiver, and a camera that points to a mirror group of at least a certain day. . The camera is configured to produce multiple sunlight images that are reflected by the heliostats. The system is calibrated by the above calibration method. During the calibration process, the process of determining the center position of the spot is as follows: First, the spot reflected by the heliostat is captured by the camera, and the heliostat is in the initial configuration, in order to enable the camera to find the center position of the reflected spot of the heliostat, the control system controls The heliostat rotates, and finally the heliostat rotates until the camera captures the center of the spot. At this time, a set of spot center position and heliostat rotation angle information values are obtained. To calibrate n errors, at least η is required. The above process is performed /2 times to obtain the η/2 group spot center position and the heliostat rotation angle information value and then calibrated. The calibration process is more complicated. In addition, the calibration system requires the camera fixed in the field of heliostats to obtain the center of the reflected spot of the heliostat through the continuous rotation of the heliostat. Figure 1 shows the heliostat rotation performed when the center sample of the spot is obtained using the camera. The trajectory map, the orientation of the heliostat is controlled by two rotation angles, a pan angle ω and a pitch angle φ. The pan angle ω is represented along the horizontal axis. The pitch angle φ is represented along the vertical axis. From the trajectory map, it can be concluded that the system requires multiple rotations of the heliostat to reach the position where the camera can detect the center of the spot. The reflected spot of the heliostat cannot be irradiated on the receiver, which affects the power generation efficiency, and the multiple trajectory rotation of the heliostat introduces a mechanical error, and the calibration accuracy is lowered. In addition, in larger power plants, the rotation of a large number of heliostats consumes the electrical energy of the calibrated motor that controls the rotation of the heliostat. For example, in US Pat. No. 20100139644, although the trajectory of the heliostat is simplified compared to CN101918769A during calibration, in order to obtain the position of the heliostat reflection spot contour, it is still necessary to control the system to control a large number of heliostats to be able to capture the camera. Where it is; thus, the reflected spot of the heliostat cannot be illuminated on the receiver, affecting the power generation effectiveness. Moreover, in the above two schemes, regardless of the error of the heliostat parameter, the heliostat needs to be rotated to multiple positions to obtain multiple sets of data for calibration, which affects the power generation efficiency.
发明内容 Summary of the invention
为此, 本发明所要解决的技术问题在于现有定日镜校准方法校准效率低、 校准精度低的问题, 进而提 供一种根据误差大小确定校准误差个数的太阳能发电站的定日镜校准方法。  Therefore, the technical problem to be solved by the present invention is that the existing heliostat calibration method has low calibration efficiency and low calibration accuracy, and further provides a heliostat calibration method for a solar power station that determines the number of calibration errors according to the error size. .
为解决上述技术问题,本发明公开一种太阳能发电站的定日镜校准系统的校准方法,其包括以下步骤: a. 控制单元控制定日镜转动, 使所述定日镜的反射图像对准公称位置 G1; In order to solve the above technical problem, the present invention discloses a calibration method for a heliostat calibration system of a solar power plant, which comprises the following steps: a. The control unit controls the rotation of the heliostat to align the reflected image of the heliostat Nominal position G 1;
b. 图像传感器组采集定日镜的反射图像, 所述控制单元根据所述图像传感器组采集的图像, 确定所 述定日镜的反射图像中心位置 U, 并将反射图像中心位置 U与所述公称位置 Gi进行比对, 确定反射图像 的中心位置 U与所述公称位置 Gi的距离偏差 ei及对应的定日镜; 同时获得此时所述定日镜旋转角度; c 重复 1次步骤 a-b, 得到距离偏差值 ei与设定偏差值 di比较; 当至少 k组 ei>di时, 其中 l k i, 校准所有参数的误差; 否则, 只需校准部分参数的误差;  b. The image sensor group collects a reflection image of the heliostat, the control unit determines a center position U of the reflection image of the heliostat according to the image acquired by the image sensor group, and the center position U of the reflection image is The nominal position Gi is compared, determining the distance deviation ei of the center position U of the reflected image from the nominal position Gi and the corresponding heliostat; simultaneously obtaining the rotation angle of the heliostat at this time; c repeating the step ab once, Obtaining the distance deviation value ei and comparing the set deviation value di; when at least k groups ei>di, wherein lki, calibrating the error of all parameters; otherwise, only the error of the partial parameters is calibrated;
d. 控制单元根据校准参数个数 m, 旋转定日镜至少 m/2次确定定日镜旋转的次数, 并根据获得的光 斑中心位置及定日镜的旋转角度, 计算所需校准的误差。  d. The control unit determines the number of rotations of the heliostats according to the number of calibration parameters m, rotating the heliostat at least m/2 times, and calculates the error of the required calibration according to the obtained center position of the spot and the rotation angle of the heliostat.
步骤 b所述的图像传感器组通过固定或者上下移动或者左右移动或者旋转移动的方式采集定日镜的反 射图像。  The image sensor group described in step b acquires the reflected image of the heliostat by fixed or up-and-down movement or left-right movement or rotational movement.
步骤 c中设定偏差值 di=nGiLi- 1, 其中 GiLi- 1为反射图像中心理想移动距离; 0<n 1。  In step c, the deviation value di=nGiLi-1 is set, where GiLi-1 is the ideal moving distance of the center of the reflected image; 0<n1.
步骤 c中设定偏差值 di=n LiLi-l, 其中 LiLi-1为反射图像中心实际移动距离; 0<η 1。  In step c, the deviation value di=n LiLi-l is set, where LiLi-1 is the actual moving distance of the center of the reflected image; 0<η 1.
步骤 c中设定偏差值 为固定值。  In step c, set the deviation value to a fixed value.
步骤 d中定日镜旋转的次数为至少 m/2次。  In step d, the number of rotations of the heliostat is at least m/2 times.
步骤 c中 k为根据校准精度设定的预设值。  In step c, k is a preset value set according to the calibration accuracy.
所述部分参数的误差为俯仰角误差及平摇角误差和 /或定日镜中心位置误差。  The error of the partial parameters is a pitch angle error and a pan angle error and/or a heliostat center position error.
步骤 b中, 由所述角度传感器的测量值或者控制单元的命令得到所述定日镜旋转角度。  In step b, the heliostat rotation angle is obtained by the measured value of the angle sensor or the command of the control unit.
本发明同时公开一种应用上述校准方法的太阳能发电站的定日镜校准系统, 其包括接收器, 所述接收 器用于接收定日镜反射的太阳光; 至少一个定日镜组成的定日镜场: 其安装于所述接收器的周围; 至少一 个图像传感器组成的图像传感器组: 用于采集定日镜的校准光源反射图像; 以及上述校准方法的控制单 元: 用于处理图像传感器组获得的图像信息, 并校准跟踪太阳的定日镜的参数同时控制定日镜转动; 所述 控制单元控制所述定日镜转动, 使所述定日镜的反射光斑对准公称位置, 所述图像传感器组采集所述定日 镜反射光斑的图像,所述控制单元根据图像传感器组采集的图像信息,确定所述定日镜反射图像中心位置, 将反射图像中心位置与所述公称位置进行比对, 确定没有对准所述公称位置的定日镜, 并对所述定日镜进 行校准。  The invention also discloses a heliostat calibration system for a solar power station applying the above calibration method, comprising a receiver for receiving sunlight reflected by a heliostat; a heliostat composed of at least one heliostat Field: mounted around the receiver; image sensor group consisting of at least one image sensor: a calibration source for collecting heliostats; and a control unit for the above calibration method: for processing the image sensor group Image information, and calibrating the parameters of the heliostat tracking the sun while controlling the rotation of the heliostat; the control unit controls the rotation of the heliostat to align the reflected spot of the heliostat with a nominal position, the image sensor The group collects the image of the heliostat reflection spot, and the control unit determines the center position of the heliostat reflection image according to the image information collected by the image sensor group, and compares the center position of the reflection image with the nominal position. A heliostat that is not aligned with the nominal position is determined and the heliostat is calibrated.
所述图像传感器组采集到的定日镜的反射图像为斑点, 用于获得定日镜反射光斑的轮廓; 所述图像传 感器可移动地设置于所述定日镜场上,使定日镜的反射图像落入所述图像传感器组的采集范围。  The reflected image of the heliostat collected by the image sensor group is a spot for obtaining a contour of the heliostat reflection spot; the image sensor is movably disposed on the heliostat field to make the heliostat The reflected image falls within the acquisition range of the image sensor group.
所述图像传感器安装于位于所述接收器与所述定日镜场之间的安装支架上,所述图像传感器环绕所述 接收器的周向设置且所述图像传感器的采集面面向所述定日镜设置, 其沿所述安装支架上下移动。 所述图像传感器可移动地安装于位于所述接收器与所述定日镜场之间的安装支架上, 所述图像传感器 环绕所述接收器的周向且所述图像传感器采集面面向所述接收器设置, 其沿所述安装支架上下移动。 The image sensor is mounted on a mounting bracket between the receiver and the heliostat field, the image sensor is disposed circumferentially around the receiver and the collection surface of the image sensor faces the A sun mirror is provided that moves up and down along the mounting bracket. The image sensor is movably mounted on a mounting bracket between the receiver and the heliostat field, the image sensor surrounds a circumference of the receiver and the image sensor acquisition surface faces the A receiver arrangement that moves up and down along the mounting bracket.
所述图像传感器安装于旋转安装支架上, 所述旋转安装支架可绕所述接收器的支撑塔转动, 所述图像 传感器组沿竖直方向设置且其采集面面向所述定日镜设置, 其与所述旋转安装支架同时绕所述支撑架转 动。  The image sensor is mounted on a rotating mounting bracket that is rotatable about a support tower of the receiver, the image sensor group is disposed in a vertical direction and its collection surface is disposed facing the heliostat, Rotating around the support frame simultaneously with the rotating mounting bracket.
所述图像传感器可上下移动地安装于旋转安装支架上, 所述图像传感器沿水平方向排列且其采集面面 向所述接收器设置, 所述旋转安装支架可绕所述接收器的支撑塔转动。  The image sensor is movably mounted on a rotary mounting bracket, the image sensors are arranged in a horizontal direction and their collection faces are disposed toward the receiver, and the rotary mounting bracket is rotatable about a support tower of the receiver.
所述定日镜场设置于所述接收器的一侧, 所述图像传感器安装于位于所述接收器与所述定日镜场之间 的平面安装支架上, 所述图像传感器组沿水平或竖直方向排列, 其沿所述平面安装支架上下或水平移动。  The heliostat field is disposed on one side of the receiver, and the image sensor is mounted on a plane mounting bracket between the receiver and the heliostat field, the image sensor group is horizontal or Arranged in a vertical direction that moves up and down or horizontally along the planar mounting bracket.
所述图像传感器组采集到的定日镜的反射图像为斑点, 用于获得定日镜反射光斑的轮廓; 所述图像传 感器固定安装于定日镜场上, 使定日镜的反射图像落入所述图像传感器组的采集范围。  The reflected image of the heliostat collected by the image sensor group is a spot for obtaining a contour of the heliostat reflection spot; the image sensor is fixedly mounted on the heliostat field, so that the reflected image of the heliostat falls into the image The collection range of the image sensor group.
所述图像传感器组安装于位于所述接收器与所述定日镜之间的固定支架上,所述图像传感器环绕所述 接收器的周向设置且所述图像传感器的采集面面向所述定日镜设置, 其沿所述接收器为中心上下布置数 组。  The image sensor group is mounted on a fixing bracket between the receiver and the heliostat, the image sensor is disposed around a circumference of the receiver, and an acquisition surface of the image sensor faces the A daylight setting, which arranges an array up and down along the center of the receiver.
图像传感器组固定安装于位于所述接收器与所述定日镜之间的固定安装支架上, 所述固定安装支架环 绕所述接收器的接收面下侧的支撑塔设置。  The image sensor group is fixedly mounted on a fixed mounting bracket between the receiver and the heliostat, the fixed mounting bracket being disposed around a support tower on a lower side of the receiving surface of the receiver.
所述定日镜配置有两个旋转轴, 所述定日镜绕所述旋转轴进行俯仰转动以及平摇转动; 所述双旋转轴 配有角度传感器, 用于精确测定两个旋转轴转过的实际角度。  The heliostat is configured with two rotating shafts, and the heliostat performs a pitch rotation and a panning rotation about the rotating shaft; the double rotating shaft is equipped with an angle sensor for accurately measuring two rotating shafts. The actual angle.
所述定日镜配置有两个旋转轴, 所述定日镜分别绕两所述旋转轴进行俯仰转动; 所述双旋转轴配有角 度传感器, 用于精确测定两个旋转轴转过的实际角度。  The heliostat is configured with two rotating shafts, and the heliostats respectively perform pitch rotation about two rotating shafts; the double rotating shaft is provided with an angle sensor for accurately measuring the actual rotation of the two rotating shafts angle.
所述校准系统还包括视日跟踪传感器, 其用于实时跟踪太阳位置。  The calibration system also includes a day-of-day tracking sensor for tracking the sun position in real time.
所述校准系统还包括安装于所述图像传感器组移动轨道上的位置传感器, 用于确定接收器以及图像传 感器的位置。  The calibration system also includes a position sensor mounted on the moving track of the image sensor group for determining the position of the receiver and the image sensor.
所述校准光源为太阳光光源或人工光源。  The calibration source is a solar light source or an artificial light source.
本发明的上述技术方案相比现有技术具有以下优点:  The above technical solution of the present invention has the following advantages over the prior art:
( 1 ) 本发明的定日镜校准方法通过判断定日镜的误差大小确定校准参数个数, 再进行误差校准, 这 样, 当误差较小时, 只需定日镜旋转到较少个位置, 获得较少组定日镜校准所需数据, 相比于现有技术中 通过人工选择校准参数个数后再进行误差校准, 且均须获得多组用于校准所需数据的情况, 本发明的校准 效率高, 同时校准精度高。  (1) The heliostat calibration method of the present invention determines the number of calibration parameters by judging the error amount of the heliostat, and then performs error calibration, so that when the error is small, only the heliostat is rotated to a smaller number of positions, The data required for the calibration of fewer sets of heliostats is compared to the prior art by manually selecting the number of calibration parameters and then performing error calibration, and both sets of calibration data required for calibration, the calibration of the present invention High efficiency and high calibration accuracy.
( 2 ) 本发明的定日镜校准系统直接通过图像传感器组来确定定日镜的反射光斑中心位置, 其相比于 现有技术中通过定日镜的不断转动使定日镜中心对准图像传感器, 最终使图像传感器捕捉到光斑中心位置 的方式, 本发明的校准动作快, 机械误差小, 校准精度提高。  (2) The heliostat calibration system of the present invention directly determines the center position of the reflected spot of the heliostat directly through the image sensor group, which aligns the center of the heliostat with the continuous rotation of the heliostat in the prior art. The sensor finally captures the image sensor to the center of the spot. The calibration action of the present invention is fast, the mechanical error is small, and the calibration accuracy is improved.
( 3 ) 另一方面, 本发明的图像传感器可移动地设置于所述接收器的周向上, 可以在所述控制单元控 制所述定日镜,使所述定日镜的反射光斑试图对准所述接收器的时,根据图像传感器获得的光斑轮廓位置, 确定反射光斑没对准接收器的定日镜。 控制单元可以只对反射光斑没有照射到接收器上的定日镜进行校 准。 其余对准接收器上的定日镜可以继续正常工作。 相比于现有技术中校准与发电分开的校准系统, 本发 明的太阳能发电站的效率更高。 (3) On the other hand, the image sensor of the present invention is movably disposed in the circumferential direction of the receiver, and the heliostat may be controlled at the control unit to cause the reflection spot of the heliostat to be aligned At the time of the receiver, it is determined that the reflected spot is not aligned with the heliostat of the receiver according to the position of the spot contour obtained by the image sensor. The control unit can only calibrate the heliostats that do not illuminate the receiver on the reflected spot. Quasi. The remaining heliostats on the receiver can continue to operate normally. The solar power plant of the present invention is more efficient than prior art calibration systems that are separate from calibration and power generation.
(4 ) 本发明的校准光源可以选用太阳光也可以选用人工光源, 晴天时可以通过太阳光进行校准, 阴 天或者夜晚时选择人工光源同样实现定日镜的校准。  (4) The calibration light source of the present invention can be selected from sunlight or artificial light source, and can be calibrated by sunlight on a sunny day, and the artificial light source can also be calibrated on a cloudy or nighttime.
附图说明 DRAWINGS
为了使本发明的内容更容易被清楚的理解, 下面根据本发明的具体实施例并结合附图, 对本发明作进 一步详细的说明, 其中  In order to make the content of the present invention easier to understand, the present invention will be further described in detail below with reference to the accompanying drawings
图 1是现有技术中使用摄像机获得光斑中心样本时执行的定日镜转动的轨线图;  1 is a trajectory diagram of a heliostat rotation performed when a camera is used to obtain a spot center sample in the prior art;
图 2是实施例 1中的定日镜校准系统的示意图;  2 is a schematic view of a heliostat calibration system in Embodiment 1;
图 3是图像传感器移动时获得的光斑图;  Figure 3 is a spot diagram obtained when the image sensor is moved;
图 4是具有减光装置的图像传感器结构示意图;  4 is a schematic structural view of an image sensor having a dimming device;
图 5是具有减光装置和遮光装置的图像传感器结构示意图;  Figure 5 is a schematic structural view of an image sensor having a light reducing device and a light blocking device;
图 6是控制单元的信息流框图;  Figure 6 is a flow chart of the information flow of the control unit;
图 7是实施例 1中的反射光斑中心位置与公称位置关系图;  Figure 7 is a diagram showing the relationship between the center position of the reflected spot and the nominal position in the embodiment 1;
图 8是实施例 2的定日镜校准系统的示意图;  Figure 8 is a schematic view of a heliostat calibration system of Embodiment 2;
图 9是安装人工光源的图像传感器结构示意图;  9 is a schematic structural view of an image sensor in which an artificial light source is mounted;
图 10是实施例 3的定日镜校准系统的示意图;  Figure 10 is a schematic view of the heliostat calibration system of Embodiment 3;
图 11是实施例 3中的反射光斑中心位置与公称位置关系图;  Figure 11 is a diagram showing the relationship between the center position of the reflected spot and the nominal position in Embodiment 3;
图 12是实施例 4的定日镜校准系统的示意图;  Figure 12 is a schematic view of a heliostat calibration system of Embodiment 4;
图 13是实施例 5的定日镜校准系统的示意图;  Figure 13 is a schematic illustration of a heliostat calibration system of Embodiment 5;
图 14是实施例 6的定日镜校准系统的示意图;  Figure 14 is a schematic view of a heliostat calibration system of Embodiment 6;
图 15是实施例 6的定日镜校准系统的俯视图;  Figure 15 is a plan view of the heliostat calibration system of Embodiment 6;
图 16是实施例 7的定日镜校准系统的示意图;  Figure 16 is a schematic view of the heliostat calibration system of Embodiment 7;
图 17是实施例 8的定日镜校准系统的示意图;  Figure 17 is a schematic illustration of a heliostat calibration system of Embodiment 8;
图 18是实施例 9的定日镜校准系统的示意图。  Figure 18 is a schematic illustration of the heliostat calibration system of the ninth embodiment.
图中附图标记表示为:  The reference numerals in the figure are indicated as:
1-接收器 2-定日镜 3-图像传感器 4,4'-安装支架 5-减光装置 6-太阳光光源 7-人工光源 8,8'-旋转 安装支架 9-支撑塔 10,10'-平面安装支架 11,11 '-固定安装支架 12-视日跟踪传感器 13-光强传感器 14,14'-电机 15-冷却装置 51-减光圆盘 52-遮光装置  1-receiver 2 heliostat 3-image sensor 4, 4'-mounting bracket 5 - dimming device 6 - solar light source 7 - artificial light source 8, 8' - rotating mounting bracket 9 - supporting tower 10, 10' - Planar mounting bracket 11, 11 '- Fixed mounting bracket 12 - Day tracking sensor 13 - Light intensity sensor 14, 14' - Motor 15 - Cooling device 51 - Light reduction disc 52 - Shading device
具体实施方式 detailed description
以下将结合附图, 使用以下实施例对本发明进行进一步阐述。  The invention will be further illustrated by the following examples in conjunction with the accompanying drawings.
实施例 1 Example 1
图 2所示为太阳能发电站的定日镜校准系统, 其包括一个安装于支撑塔 9上的接收器 1, 所述接收器 1接收定日镜 2反射的太阳光以直接产生蒸汽或电; 所述接收器 1距地面的高度保证所述定日镜场中的定 日镜 2均能反射到所述接收器 1上。 2 shows a heliostat calibration system for a solar power plant, comprising a receiver 1 mounted on a support tower 9, the receiver 1 receiving sunlight reflected by the heliostat 2 to directly generate steam or electricity; The height of the receiver 1 from the ground ensures the setting in the heliostat field The day mirror 2 can be reflected onto the receiver 1.
还包括安装于所述接收器的周围的定日镜场; 所述定日镜场包括至少一个定日镜 2; 所述定日镜 2配 置有两个旋转轴, 所述定日镜 2绕所述旋转轴进行俯仰转动, 平摇转动; 所述双旋转轴配有角度传感器, 用于精确测定两个旋转轴转过的实际俯仰角度 φ以及平摇角度 "。所述定日镜 2通过调整镜面方位以跟踪 移动的太阳, 以使得太阳光被持续反射至接收器 1上。  Also included is a heliostat field mounted around the receiver; the heliostat field includes at least one heliostat 2; the heliostat 2 is configured with two axes of rotation, and the heliostat 2 is wound The rotating shaft performs a pitching rotation and a panning rotation; the double rotating shaft is provided with an angle sensor for accurately measuring an actual pitching angle φ and a panning angle of the two rotating shafts. The heliostat 2 passes The mirror orientation is adjusted to track the moving sun so that the sunlight is continuously reflected onto the receiver 1.
以及用于捕捉校准光源照射在定日镜 2上的反射光斑的图像传感器组, 所述图像传感器组包括至少一 个图像传感器 3。 所述图像传感器 3的图像采集范围大于所述定日镜场的反射误差范围, 其采集待校准定 日镜的图像。 本实施例中的校准光源为太阳光光源 6, 所述图像传感器 3为安装于位于所述接收器 1与所 述定日镜场之间的安装支架 4上的摄像机, 所述图像传感器 3环绕所述接收器 1的周向设置, 其沿安装支 架 4上下移动。  And an image sensor group for capturing a reflected spot of the calibration light source that is incident on the heliostat 2, the image sensor group including at least one image sensor 3. The image acquisition range of the image sensor 3 is greater than the reflection error range of the heliostat field, which captures an image of the heliostat to be calibrated. The calibration light source in this embodiment is a solar light source 6, and the image sensor 3 is a camera mounted on a mounting bracket 4 between the receiver 1 and the heliostat field, and the image sensor 3 surrounds The receiver 1 is disposed circumferentially and moves up and down along the mounting bracket 4.
由于图像传感器组需通过定日镜 2与接收器 1之间,大量定日镜的反射光斑会照射在图像传感器组上, 能量极高, 需减光程度很高的减光设备。 因此本实施例中, 所述图像传感器组配置有用于减弱光强的减光 装置 5 ; 减光装置 5为光的反射装置和光的吸收装置的组合, 用于保护图像传感器组不受强光影响。 当图 像传感器组移动到接收器 1周边而不在接收器 1上时, 照射在图像传感器组上的光斑极具减少, 过高的反 射率会导致图像传感器组捕捉不到定日镜的图像, 所以此时减光程度需极具减小, 因此, 本实施例中, 需 要提供减光程度可变, 且变化范围较大的设备。如图 4所示, 所述减光装置 5包括一个减光圆盘 51, 其设 置于所述图像传感器 3前面, 沿圆周方向均分为 6块, 每块的减光率不同, 当图像传感器 3移动至接收器 1的正前方位置处时, 光强传感器 13检测到光强较强, 控制电机 14将该减光圆盘 51转动到减光率高的一 块, 当图像传感器 3位于接收器 1上部或下部位置时, 光强传感器 13检测到光强较弱, 控制电机 14将该 减光圆盘 51转动到减光率低的一块。  Since the image sensor group needs to pass between the heliostat 2 and the receiver 1, a large number of heliostat reflection spots are irradiated on the image sensor group, and the energy is extremely high, and the dimming device with a high degree of dimming is required. Therefore, in this embodiment, the image sensor group is provided with a dimming device 5 for reducing the light intensity; the dimming device 5 is a combination of a light reflecting device and a light absorbing device for protecting the image sensor group from strong light. . When the image sensor group moves to the periphery of the receiver 1 and not to the receiver 1, the spot on the image sensor group is greatly reduced, and the excessive reflectance causes the image sensor group to capture the image of the heliostat, so At this time, the degree of dimming needs to be extremely reduced. Therefore, in the present embodiment, it is necessary to provide a device having a variable degree of dimming and a large variation range. As shown in FIG. 4, the dimming device 5 includes a dimming disc 51 which is disposed in front of the image sensor 3 and is equally divided into 6 blocks in the circumferential direction, and the dimming rate of each block is different when the image sensor 3 When moving to the position directly in front of the receiver 1, the light intensity sensor 13 detects that the light intensity is strong, and the control motor 14 rotates the light reduction disk 51 to a block having a high dimming rate when the image sensor 3 is located at the receiver. At the upper or lower position, the light intensity sensor 13 detects that the light intensity is weak, and the control motor 14 rotates the dimming disk 51 to a block having a low dimming rate.
更优选的, 在所述减光圆盘 51前还可以设置一个与减光圆盘 51同轴的遮光装置 52, 如图 5所示。所 述遮光装置 52 设置一个通光孔, 允许所有太阳光通过, 其他部分遮蔽所有阳光。 工作时, 通过电机 14' 带动该遮光装置 52连续旋转,与减光圆盘 51异步, 当通光孔与图像传感器对准时, 图像传感器完成采集。 该遮光装置 52可以减小曝光时间, 进一步减小强光对图像传感器的影响。  More preferably, a light blocking device 52 coaxial with the dimming disc 51 may be disposed in front of the dimming disc 51, as shown in FIG. The shading device 52 is provided with a light-passing hole to allow all sunlight to pass through, and the other portion shields all sunlight. In operation, the shading device 52 is continuously rotated by the motor 14', asynchronously with the dimming disc 51, and the image sensor completes the acquisition when the light passing hole is aligned with the image sensor. The shading device 52 can reduce the exposure time and further reduce the effect of strong light on the image sensor.
所述图像传感器组还配置有冷却装置 15, 所述冷却装置为风冷或水冷装置, 该冷却装置用于避免经过 接收器处的图像传感器受热辐射而损坏。  The image sensor group is also provided with a cooling device 15, which is an air-cooled or water-cooled device for preventing damage to the image sensor passing through the receiver due to heat radiation.
所述校准系统还包括视日跟踪传感器 12, 其用于实时跟踪太阳位置获得太阳光线向量。  The calibration system also includes a day-of-day tracking sensor 12 for tracking the sun position in real time to obtain a solar ray vector.
所述校准系统还包括安装于所述图像传感器组移动轨道上的位置传感器, 用于确定接收器以及图像传 感器的位置。  The calibration system also includes a position sensor mounted on the moving track of the image sensor group for determining the position of the receiver and the image sensor.
该校准系统还包括控制单元, 如图 6所示, 所述控制单元接受图像传感器组采集的定日镜图像信息, 位置传感器采集的图像传感器 3位置信息, 视日跟踪传感器 12采集到的太阳光位置信息, 以及角度传感 器采集的定日镜 2旋转角度信息; 并控制图像传感器 3的移动以及定日镜 2的转动。 在所述控制单元控制 所述定日镜 2转动, 使所述定日镜的反射光斑对准接收器时, 所述图像传感器组 3采集所述定日镜反射光 斑的图像, 所述控制单元根据图像传感器组采集的图像信息, 确定所述定日镜 2反射的光斑中心位置, 将 光斑中心位置与所述接收器 1的位置进行比对, 确定反射光斑没有对准所述接收器 1的定日镜 2, 并对没 有对准接收器 1的定日镜 2进行校准。 The calibration system further includes a control unit. As shown in FIG. 6, the control unit receives the heliostat image information acquired by the image sensor group, the position information of the image sensor 3 collected by the position sensor, and the sunlight collected by the tracking sensor 12 Position information, and heliostat 2 rotation angle information acquired by the angle sensor; and controlling the movement of the image sensor 3 and the rotation of the heliostat 2. When the control unit controls the rotation of the heliostat 2 to align the reflected light spot of the heliostat to the receiver, the image sensor group 3 collects an image of the heliostat reflection spot, the control unit Determining a spot center position reflected by the heliostat 2 according to image information collected by the image sensor group, comparing a spot center position with a position of the receiver 1, and determining that the reflected spot is not aligned with the receiver 1. Heliostat 2, and no The heliostat 2 aligned with the receiver 1 is calibrated.
所述控制单元是通过图像传感器组的连续移动获得所述定日镜反射的光斑中心位置。当串行图像传感 器组用时 30t从导轨的一端匀速运动到另一端后, 可以得到图 3所示的二维图, 它反映整个时间段内能捕 捉到反射光斑的图像传感器的情况。 依据此图便可推出反射光斑中心的空间位置, 即光斑图的形心位置。  The control unit obtains a spot center position reflected by the heliostat by continuous movement of the image sensor group. When the serial image sensor group is used 30 seconds from the one end of the guide rail to the other end, the two-dimensional map shown in Fig. 3 can be obtained, which reflects the image sensor capable of capturing the reflected spot in the entire time period. According to this figure, the spatial position of the center of the reflected spot, that is, the centroid position of the spot map, can be derived.
所述校准系统通过安装于定日镜旋转轴上的角度传感器获得定日镜的旋转角, 也就是通过俯仰角 φ, 平摇角 ω信息, 进而得出该定日镜所需校准的误差值。 其中, 定日镜的俯仰角 φ为定日镜绕与水平面平行 的轴的旋转角度, 定日镜的平摇角 "为定日镜绕与水平面垂直的轴的旋转角度。  The calibration system obtains the rotation angle of the heliostat through an angle sensor mounted on the rotation axis of the heliostat, that is, the pitch angle φ and the pan angle ω information, thereby obtaining the error value of the calibration required for the heliostat. . Wherein, the pitch angle φ of the heliostat is the rotation angle of the heliostat about the axis parallel to the horizontal plane, and the panning angle of the heliostat is the rotation angle of the heliostat about the axis perpendicular to the horizontal plane.
定日镜需要校准的误差包括: 俯仰角及平摇角 (φ。, ω。), 两旋转轴的非垂直度 η。, 定日镜镜面中心 ο 的的空间位置 (x,y,z),以及定日镜自身坐标系相对全局坐标系的三个欧拉转角( α 0, β 0, Y o)o 在其他的实施例 中, 还可以引入更多的误差参数, 以提高校准精度。  The errors that the heliostats need to calibrate include: pitch angle and pan angle (φ., ω.), the non-perpendicularity η of the two axes of rotation. , the spatial position (x, y, z) of the center of the mirror mirror ο, and the three Euler angles (α 0, β 0, Y o) of the heliostat's own coordinate system relative to the global coordinate system. In the embodiment, more error parameters can also be introduced to improve the calibration accuracy.
其中, 定日镜的俯仰角 φ为定日镜绕与水平面平行的轴的旋转角度, 定日镜的平摇角 ω为定日镜绕与 水平面垂直的轴的旋转角度, 定日镜的中心位置为定日镜的镜面中心的位置坐标 (x,y,z), 旋转轴非垂直度 误差 η。为两旋转轴实际夹角值。 欧拉转角(α。, β。, γ。;)为定日镜自身坐标系相对于全局坐标系的三个坐标 轴的偏角。  Wherein, the pitch angle φ of the heliostat is the rotation angle of the heliostat about the axis parallel to the horizontal plane, and the panning angle ω of the heliostat is the rotation angle of the heliostat about the axis perpendicular to the horizontal plane, the center of the heliostat The position is the position coordinate (x, y, z) of the mirror center of the heliostat, and the non-perpendicular error η of the rotation axis. The actual angle value for the two rotating axes. The Euler angle (α., β., γ.;) is the declination of the heliostat's own coordinate system relative to the three coordinate axes of the global coordinate system.
该太阳能发电站的定日镜校准系统的校准方法包括以下步骤:  The calibration method of the heliostat calibration system of the solar power plant comprises the following steps:
a. 控制单元控制所述定日镜转动, 使所述定日镜的反射光斑对准公称位置 G1 ; a control unit controls the rotation of the heliostat to align the reflected light spot of the heliostat with the nominal position G 1 ;
b. 图像传感器组由接收器上侧至接收器下侧移动一次, 采集定日镜的反射光斑, 所述控制单元根据 所述图像传感器组采集的光斑, 确定所述定日镜反射的光斑中心位置, 并将光斑中心位置 与公 称位置 进行比对,确定未对准接收器的光斑的中心位置 与公称位置 的距离偏差 ei及对应 的定日镜; 并通过所述角度传感器的测量值得到所述定日镜旋转角度; b. The image sensor group is moved once from the upper side of the receiver to the lower side of the receiver to collect the reflected spot of the heliostat, and the control unit determines the center of the spot reflected by the heliostat according to the spot collected by the image sensor group Positioning, and comparing the center position of the spot with the nominal position, determining the distance deviation ei between the center position of the spot that is not aligned with the receiver and the nominal position and the corresponding heliostat; and obtaining the measured value of the angle sensor Describe the rotation angle of the sun mirror;
c 控制单元根据此时反射光斑中心位置 以及公称位置 G2与定日镜镜面中心的注册位置 , 计算 出旋转到公称位置 G2所需的一组调整角度, 控制单元控制所述定日镜完成旋转; c The control unit calculates a set of adjustment angles required to rotate to the nominal position G 2 according to the center position of the reflected spot at this time and the registered position of the nominal position G 2 and the center of the mirror surface of the heliostat, and the control unit controls the heliostat to complete Rotate
d. 图像传感器组由接收器下侧至接收器上侧移动一次, 采集定日镜的反射光斑, 所述控制单元根据 所述图像传感器组采集的光斑, 确定所述定日镜反射的光斑中心位置 L2 ; d. The image sensor group is moved once from the lower side of the receiver to the upper side of the receiver to collect the reflected spot of the heliostat, and the control unit determines the center of the spot reflected by the heliostat according to the spot collected by the image sensor group Position L 2 ;
e. 控制单元计算此时光斑中心位置 L2与此时公称位置 G2新的距离偏差 e2 ; 此时, 设定偏差值 d^nG^ , 其中 G2L!为反射图像中心理想移动距离; 0<η 1 ; e. The control unit calculates a new distance deviation e 2 between the spot center position L 2 and the nominal position G 2 at this time ; at this time, sets the deviation value d^nG^ , where G 2 L! is the ideal moving distance of the reflected image center 0<η 1 ;
f. 根据 e2与 d2相比, 当 <d2时, 此时的定日镜偏差较小, 只需校准俯仰角及平摇角误差, 通过已 经获得的光斑中心位置及定日镜旋转角度信息, 根据误差校准公式计算所需校准的误差值; 当 >d2时, 此时定日镜偏差较大, 根据校准误差的个数 9, 旋转定日镜至少 5次, 图像传感器组运 动, 获得相应的光斑中心位置以及定日镜旋转角度, 根据误差校准公式计算所需校准的误差值; 将校准的误差值存储至所述控制单元。 f. According to e 2 and d 2 , when <d 2 , the heliostat deviation is small at this time, only need to calibrate the pitch angle and the pan angle error, and the center position of the spot and the heliostat rotation Angle information, calculate the error value of the required calibration according to the error calibration formula; when >d 2 , the heliostat deviation is large at this time, according to the number of calibration errors 9, rotate the heliostat at least 5 times, the image sensor group moves Obtaining a corresponding spot center position and a heliostat rotation angle, and calculating an error value of the required calibration according to an error calibration formula; storing the corrected error value to the control unit.
其中, 上述误差校准公式为:  Wherein, the above error calibration formula is:
¾ .、 k― ¾  3⁄4 ., k― 3⁄4
έ : ¾一  έ : 3⁄4 one
s¾ ―晴、' 其中, ω为定日镜绕旋转轴旋转的平摇角; s 3⁄4 ―Sun , ' Where ω is a panning angle of the heliostat rotating about the axis of rotation;
φ为定日镜绕旋转轴旋转的俯仰角;  φ is the pitch angle of the heliostat rotating about the axis of rotation;
S为与水平面垂直的单位向量;  S is a unit vector perpendicular to the horizontal plane;
£为太阳光光线向量;  £ is the sun light ray vector;
k为光斑中心位置坐标;  k is the position coordinate of the spot center;
0为定日镜镜面中心位置坐标。  0 is the coordinate of the center position of the mirror surface of the heliostat.
其中, 在只需校准俯仰角误差(^及平摇角误差 ω。时, 欧拉转角(<1。, 0。^。)的误差值、 定日镜镜面中 心 0的空间位置 (x,y,z)的误差值以及两旋转轴的非垂直度 η。误差值调用控制单元中的存储值。  Wherein, when only the pitch angle error (^ and the pan angle error ω, only the error value of the Euler angle (<1., 0.^.), and the spatial position of the center of the mirror mirror 0 (x, y) The error value of z) and the non-perpendicularity η of the two axes of rotation. The error value calls the stored value in the control unit.
步骤 c中,光斑中心和注册定日镜镜面中心的向量 ai及此时太阳光向量 b之间的平分线定义为此时的 定日镜镜面法向量 c1 ; 公称位置 G2和注册定日镜镜面中心的向量 及此时太阳光向量 b之间的平分线为 定义为 "对准"接收器中心后的镜面法向量 ¾; 两个法向量 (^与 ¾对应的角度差即为定日镜需要转动的 角度。 Step c, the center of the spot and the registration vectors ai heliostat mirror center bisector between the case and the vector b is defined as the sunlight in this case the normal vector of the heliostat mirror c. 1; G 2 and nominal position registration heliostats The vector at the center of the mirror surface and the bisector between the solar vector b at this time are defined as the mirror normal vector 3⁄4 after the center of the receiver is aligned ; the two normal vectors (the angle difference between ^ and 3⁄4 is the fixed date) The angle at which the mirror needs to be rotated.
步骤 b与步骤 c中的公称位置 Gl, G2为控制单元根据现有定日镜参数, 控制定日镜旋转, 试图使定 日镜光斑到达的一个预定位置。 其中公称位置 与02位置可以相同, 也可以不同。 本实施例中, 公称位 置 与02不同, 如图 7所示。 The nominal positions G1, G2 in step b and step c are control units that control the rotation of the heliostat according to the existing heliostat parameters, attempting to make the heliostat spot reach a predetermined position. The nominal position and the 0 2 position may be the same or different. In this embodiment, the nominal position is different from 0 2 , as shown in FIG.
根据校准精度要求, 设定偏差值 d2还可以选取为 nl^Li或者 η02 其中较小的值,其中 L2I^为反射图 像中心实际移动距离; G2L!为反射图像中心理想移动距离; 0<η 1。 According to the calibration accuracy requirement, the set deviation value d 2 can also be selected as the smaller value of nl^Li or η0 2 , where L 2 I^ is the actual moving distance of the center of the reflected image; G 2 L! is the ideal moving center of the reflected image Distance; 0<η 1.
实施例 2 Example 2
图 8所示为本实施例的定日镜校准系统, 该校准系统与实施例 1中的校准系统的不同在于: 本实施例中的校准光源为人工光源 7。 所述人工光源 7设置于所述接收器 1上。 作为另一种可以实施 的方式, 该人工光源还可以设置在可移动的图像传感器 3上, 如图 9所示。 这样, 即使大量定日镜将反射 光斑集中照射在图像传感器组上, 总能量相对太阳光做校准光源的情况会低很多。 无需上述减光程度变化 范围很大的减光设备。  Fig. 8 shows the heliostat calibration system of the present embodiment, which is different from the calibration system of the first embodiment in that the calibration light source in this embodiment is an artificial light source 7. The artificial light source 7 is disposed on the receiver 1. As another way of implementation, the artificial light source can also be disposed on the movable image sensor 3 as shown in FIG. Thus, even if a large number of heliostats illuminate the reflected spot on the image sensor group, the total energy is much lower than the calibration of the light source. There is no need for a dimming device with a wide range of dimming changes.
实施例 3 Example 3
图 10为本实施例中的校准系统, 其与实施例 1的校准系统基本一致, 其区别点在于:  FIG. 10 is a calibration system in the embodiment, which is basically the same as the calibration system of Embodiment 1, and the difference is:
所述图像传感器所述图像传感器 3安装于旋转安装支架 8上, 所述旋转安装支架 8可绕所述接收器 1 的支撑塔 9转动,所述图像传感器组沿竖直方向设置,其与所述旋转安装支架 8同时绕所述支撑塔 9转动。 所述控制单元通过图像传感器组的转动获得所述定日镜反射的光斑中心位置。  The image sensor 3 is mounted on a rotary mounting bracket 8 that is rotatable about a support tower 9 of the receiver 1, the image sensor group being disposed in a vertical direction, The rotary mounting bracket 8 is simultaneously rotated about the support tower 9. The control unit obtains a spot center position reflected by the heliostat by rotation of the image sensor group.
所述定日镜配置有两个与水平面平行的旋转轴 X轴、 Y轴, 所述定日镜分别绕两所述旋转轴进行俯仰 转动; 所述两个旋转轴分别配有角度传感器, 用于精确测定两个旋转轴转过的俯仰角度。  The heliostat is configured with two X-axis and Y-axis of rotation axis parallel to the horizontal plane, and the heliostats respectively perform pitch rotation about the two rotation axes; the two rotation axes are respectively equipped with angle sensors, Accurately measure the pitch angle of two rotating axes.
如图 11所示, 该定日镜校准系统的校准方法包括以下步骤:  As shown in FIG. 11, the calibration method of the heliostat calibration system includes the following steps:
a. 控制单元控制所述定日镜转动, 使所述定日镜的反射光斑对准接收器;  a control unit controls the rotation of the heliostat to align the reflected light spot of the heliostat with the receiver;
b. 图像传感器组绕所述支撑塔 9旋转一次, 采集定日镜的反射图像, 所述控制单元根据所述图像传 感器组采集的图像, 确定所述定日镜反射的光斑中心位置, 并将光斑中心位置 与公称位置 进行比对, 确定未对准接收器的光斑的中心位置 与公称位置 之间的距离偏差 el及对应的定 日镜; 并通过所述角度传感器的测量值或者控制单元的命令得到所述定日镜旋转角度; c 控制单元根据反射光斑中心位置 以及公称位置 G2与定日镜镜面中心的注册位置 , 计算出旋 转到公称位置 G2所需的一组调整角度, 控制系统控制所述定日镜完成旋转; b. The image sensor group rotates once around the support tower 9 to collect a reflection image of the heliostat, and the control unit determines the center position of the spot reflected by the heliostat according to the image acquired by the image sensor group, and Spot center position and nominal position Performing an alignment to determine a distance deviation el between the center position of the spot that is not aligned with the receiver and the nominal position and a corresponding heliostat; and obtaining the date by the measured value of the angle sensor or the command of the control unit Mirror rotation angle; c The control unit calculates a set of adjustment angles required to rotate to the nominal position G 2 according to the center position of the reflected spot and the registered position of the nominal position G 2 and the center of the mirror surface of the heliostat, and the control system controls the date The mirror completes the rotation;
d. 图像传感器组绕所述支撑塔 9再次旋转, 采集定日镜的反射图像, 所述控制单元根据所述图像传 感器组采集的图像, 确定所述定日镜反射的光斑中心位置 L2; d. The image sensor group is rotated again around the support tower 9, collecting the reflected image of the heliostat, the control unit determines the spot center position L 2 reflected by the heliostat according to the image acquired by the image sensor group ;
e. 控制单元计算此时光斑中心位置 L2与公称位置 G2新的距离偏差 ,此时, 设定偏差值 =η02 , 其中 G2L!为反射图像中心理想移动距离; 0<η 1 ; e. The control unit calculates a new distance deviation between the spot center position L 2 and the nominal position G 2 at this time. At this time, the set deviation value = η 0 2 , where G 2 L! is the ideal moving distance of the reflected image center; 0<η 1 ;
f. 控制单元根据反射光斑中心位置 L2以及公称位置 G3与定日镜镜面中心的注册位置 a3, 计算出旋 转到公称位置 G3所需的一组调整角度, 控制系统控制所述定日镜完成旋转; f. The control unit calculates a set of adjustment angles required to rotate to the nominal position G 3 according to the reflected spot center position L 2 and the nominal position G 3 and the registered position a 3 of the center of the heliostat mirror, and the control system controls the setting The sun mirror completes the rotation;
g. 图像传感器组绕所述支撑塔 9再次旋转, 采集定日镜的反射图像, 所述控制单元根据所述图像传 感器组采集的图像, 确定所述定日镜反射的光斑中心位置 L3 ; g. The image sensor group is rotated again around the support tower 9 to collect a reflection image of the heliostat, and the control unit determines the spot center position L 3 of the heliostat reflection according to the image acquired by the image sensor group ;
h. 控制单元计算此时光斑中心位置 L3与公称位置 G3新的距离偏差 e3,此时, 设定偏差值 d3=nG3L2, 其中 G3L2为反射图像中心理想移动距离; 0<η 1 ; h. The control unit calculates a new distance deviation e 3 between the spot center position L 3 and the nominal position G 3 at this time, and at this time, sets the deviation value d 3 =nG 3 L 2 , where G 3 L 2 is the ideal movement of the reflected image center Distance; 0<η 1 ;
1. 根据 e2与 d2以及 e3与 d2相比, 当 <d2以及 e3<d3时, 只需校准俯仰角、 平摇角误差、 定日镜中 心位置误差, 通过已经获得的光斑中心位置及定日镜旋转角度信息可以计算获得; 当 e2>d2或者 e3>d3时, 校准全部误差, 根据校准误差的个数 9, 旋转定日镜至少 5次, 图像传感器组运动, 获 得相应的光斑中心位置以及定日镜旋转角度, 计算所需更新的误差值。 1. According to e 2 and d 2 and e 3 and d 2 , when <d 2 and e 3 <d 3 , only the pitch angle, the pan angle error, and the heliostat center position error need to be calibrated. The position of the center of the spot and the rotation angle information of the heliostat can be calculated. When e 2 >d 2 or e 3 >d 3 , all the errors are calibrated. According to the number of calibration errors 9, the heliostat is rotated at least 5 times, the image The sensor group moves to obtain the corresponding spot center position and the heliostat rotation angle, and calculates the error value of the required update.
本实施例中, 公称位置 Gi, G2, G3相同。 上述误差校准公式为:In this embodiment, the nominal positions Gi, G 2 , G 3 are the same. The above error calibration formula is:
-、 ¾- Φ  -, 3⁄4- Φ
其中, φΐ为定日镜绕 X轴旋转的俯仰角; Where φΐ is the pitch angle of the heliostat rotating around the X axis;
φ2为定日镜绕 Υ轴旋转的俯仰角■'  Φ2 is the pitch angle of the heliostat rotating around the ■ axis ■'
S为与水平面垂直的单位向量;  S is a unit vector perpendicular to the horizontal plane;
¾为太阳光光线向量;  3⁄4 is the sun light ray vector;
k为光斑中心位置坐标;  k is the position coordinate of the spot center;
0为定日镜镜面中心位置坐标。  0 is the coordinate of the center position of the mirror surface of the heliostat.
实施例 4 Example 4
图 12为本实施例中的校准系统, 其与实施例 1的校准系统基本一致, 其区别点在于: 本实施例中的 定日镜场位于所述接收器 1其中的一侧地面上, 所述图像传感器 3安装于位于所述定日镜场与接收器 1之 间的平面安装支架 10上, 所述图像传感器组沿水平方向排列, 其沿所述平面安装支架 10上下移动。  12 is a calibration system in the embodiment, which is substantially identical to the calibration system of Embodiment 1, and the difference is that: the heliostat field in this embodiment is located on one side of the receiver 1 on the ground. The image sensor 3 is mounted on a plane mounting bracket 10 between the heliostat field and the receiver 1, and the image sensor group is arranged in a horizontal direction, and moves up and down along the plane mounting bracket 10.
本实施例中, 所述图像传感器组的移动方式为以一定时间间隔的间歇性移动, 这种移动方式可以在所 述图像传感器组停下来时获得定日镜场反射光斑, 其成像质量高。 同时, 间歇性移动可以方便地调整减光 装置的减光率。 本实施例中定日镜的校准方法与实施例 1中的校准方法一致。 In this embodiment, the moving mode of the image sensor group is intermittent movement at a certain time interval, and the moving mode can obtain a heliostat field reflection spot when the image sensor group stops, and the imaging quality is high. At the same time, the intermittent movement can easily adjust the dimming rate of the dimming device. The calibration method of the heliostat in this embodiment is identical to the calibration method in the first embodiment.
实施例 5 Example 5
图 13为本实施例的定日镜校准系统, 其与实施例 1的校准系统基本一致, 其区别点在于: 所述图像 传感器组以固定的方式安装于位于所述接收器 1与所述定日镜之间的固定支架 11上。 其采集的范围覆盖 了所述定日镜 2的反射误差范围。 这样, 所述图像传感器组即可以直接采集定日镜 2的反射轮廓。  13 is a heliostat calibration system of the embodiment, which is substantially identical to the calibration system of Embodiment 1, and the difference is that: the image sensor group is mounted in a fixed manner on the receiver 1 and the predetermined The fixing bracket 11 between the sun mirrors. The range of its acquisition covers the range of reflection errors of the heliostat 2. Thus, the image sensor group can directly capture the reflection profile of the heliostat 2.
本实施例中定日镜的校准方法与实施例 1中的校准方法基本一致, 区别在于图像传感器组直接采集定 日镜图像不需要移动。  The calibration method of the heliostat in this embodiment is basically the same as the calibration method in the first embodiment, except that the image sensor group directly acquires the heliostat image without moving.
实施例 6 Example 6
图 14为本实施例的定日镜校准系统, 其与实施例 1的校准系统基本一致, 其区别点在于: 所述图像传感器 3为安装于位于所述接收器 1与所述定日镜场之间的安装支架 4上的摄像机。如图 15 所示, 所述图像传感器组分为 a,b,c,d4组, 4组图像传感器环绕所述接收器 1的周向设置, 且所述图像传感 器 3的采集面面向所述接收器 1设置, 4组图像传感器分别沿安装支架 4上下移动。 a,b,c,d四组传感器分 别对应 3、 4、 1、 2四个区域内的定日镜。 通过 4个图像传感器组的分别移动对四个区域内的定日镜进行 校准。 图像传感器移动时, 通过所述接收器 1上的图像传感器由于受到接收器 1的遮挡, 不能采集到照射 到接收器 1上的定日镜的光斑, 图像传感器 3只能采集到没有照射到接收器 1上的定日镜反射光斑。  14 is a heliostat calibration system of the present embodiment, which is substantially identical to the calibration system of Embodiment 1, and the difference is that: the image sensor 3 is mounted on the receiver 1 and the heliostat field. Between the camera on the mounting bracket 4. As shown in FIG. 15, the image sensor components are groups a, b, c, and d4, four sets of image sensors are disposed around the circumference of the receiver 1, and the collection surface of the image sensor 3 faces the The receiver 1 is set, and four sets of image sensors are moved up and down along the mounting bracket 4, respectively. The four sets of sensors a, b, c, and d correspond to heliostats in the four areas of 3, 4, 1, and 2. The heliostats in the four regions are calibrated by the respective movements of the four image sensor groups. When the image sensor moves, the image sensor on the receiver 1 can not collect the spot of the heliostat irradiated onto the receiver 1 due to the occlusion of the receiver 1. The image sensor 3 can only collect and receive no illumination. The heliostat on the device 1 reflects the spot.
该定日镜校准系统中 1区域的定日镜的校准方法包括以下步骤:  The calibration method of the heliostat in the region 1 of the heliostat calibration system includes the following steps:
a. 控制单元控制所述 1区域定日镜转动, 使所述定日镜的反射光斑对准接收器;  a control unit controls the rotation of the 1 area heliostat to align the reflected light spot of the heliostat to the receiver;
b. 图像传感器 c组由接收器上部至接收器下部第一次移动, 采集定日镜的反射光斑, 所述控制单元 根据所述图像传感器 c组采集的光斑, 确定所述定日镜反射的光斑中心位置 , 并将光斑中心位 置 与公称位置 进行比对, 确定未对准接收器的光斑的中心位置与公称位置偏差 ei及对应的 定日镜; 并通过所述角度传感器的测量值或者控制单元的命令得到所述定日镜旋转角度; c 控制单元根据此时反射图像中心位置 以及公称位置 G2与定日镜镜面中心的注册位置 , 计算 出旋转到公称位置 G2所需的一组角度, 控制系统控制所述定日镜完成旋转; b. The image sensor c group moves from the upper portion of the receiver to the lower portion of the receiver for the first time to collect the reflected light spot of the heliostat, and the control unit determines the reflection of the heliostat according to the spot collected by the image sensor c group. Positioning the center of the spot, and comparing the center position of the spot with the nominal position, determining the center position of the spot that is not aligned with the receiver and the nominal position deviation ei and the corresponding heliostat; and passing the measured value or control of the angle sensor The command of the unit obtains the rotation angle of the heliostat; c The control unit calculates a group required to rotate to the nominal position G 2 according to the center position of the reflected image at this time and the registered position of the nominal position G 2 and the center of the mirror surface of the heliostat Angle, the control system controls the heliostat to complete the rotation;
d. 图像传感器 c组由接收器下侧至接收器上侧移动一次, 采集 1区域定日镜的反射光斑, 所述控制 单元根据所述图像传感器组采集的光斑, 确定所述定日镜反射的光斑中心位置 L2 ; d. The image sensor c group is moved once from the lower side of the receiver to the upper side of the receiver, and the reflected spot of the 1 area heliostat is acquired, and the control unit determines the heliostat reflection according to the spot collected by the image sensor group. The spot center position L 2 ;
e. 控制单元计算此时光斑中心位置 L2与公称位置 G2新的距离偏差 e2, 此时, 设定偏差值 d2为固定 设定值 0.2m; e. The control unit calculates a new distance deviation e2 between the spot center position L 2 and the nominal position G 2 at this time, at this time, the set deviation value d 2 is a fixed set value of 0.2 m;
f. 根据 e2与 d2以及 e3与 d2相比, 当 <d2时, 此时的定日镜偏差较小, 只需定日镜中心位置误差, 通过已经获得的光斑中心位置及定日镜旋转角度信息可以计算获得; 当 e2>d2时,此时定日镜偏差 较大, 根据校准误差的个数 9, 旋转定日镜 6次, 图像传感器组运动, 获得相应的光斑中心位置 以及定日镜旋转角度, 计算所需更新的误差值。 f. According to e 2 and d 2 and e 3 and d 2 , when <d 2 , the heliostat deviation at this time is small, only the center position error of the heliostat is required, and the center position of the spot that has been obtained is The heliostat rotation angle information can be calculated and obtained; when e 2 >d 2 , the heliostat deviation is large at this time, according to the number of calibration errors 9, the heliostat is rotated 6 times, the image sensor group moves, and the corresponding The position of the center of the spot and the angle of rotation of the heliostat, calculate the error value of the desired update.
2,3,4区域的定日镜分别通过以上方式进行校准。 上述误差校准公式为:
Figure imgf000011_0001
其中, ω为定日镜绕旋转轴旋转的平摇角;
The heliostats in the 2, 3, and 4 regions are calibrated by the above methods. The above error calibration formula is:
Figure imgf000011_0001
Where ω is a panning angle of the heliostat rotating about the axis of rotation;
φ为定日镜绕旋转轴旋转的俯仰角;  φ is the pitch angle of the heliostat rotating about the axis of rotation;
S为与水平面垂直的单位向量;  S is a unit vector perpendicular to the horizontal plane;
£为太阳光光线向量;  £ is the sun light ray vector;
k为光斑中心位置坐标;  k is the position coordinate of the spot center;
0为定日镜镜面中心位置坐标。  0 is the coordinate of the center position of the mirror surface of the heliostat.
步骤 a中, 当所述图像传感器 3采集的光斑为部分光斑时, 控制单元首先根据已经获得的部分光斑轮 廓, 计算面积值 A; 推算出对应的定日镜, 然后根据定日镜的注册位置计算反射光斑的面积 AO值, 得出 剩余光斑面积值为 A0-A, 通过矩形的方式补足剩余光斑轮廓。 最终计算出部分光斑轮廓与补足面积相加 图形的几何形心, 所述控制单元控制所述定日镜旋转, 使定日镜转动到整个光斑落在可以被图像传感器组 捕捉到的位置。  In step a, when the spot collected by the image sensor 3 is a partial spot, the control unit first calculates the area value A according to the partial spot profile that has been obtained; calculates the corresponding heliostat, and then according to the registered position of the heliostat Calculate the area AO value of the reflected spot, and obtain the remaining spot area value as A0-A, and fill the remaining spot contour by a rectangle. Finally, the geometric centroid of the partial spot contour and the complementary area is calculated, and the control unit controls the heliostat rotation to rotate the heliostat to the entire spot where it can be captured by the image sensor group.
为提高校准精度, 还可以重复更多次步骤 a-b, 得到更多组的光斑中心位置及定日镜俯仰角及平摇角 度数值, 根据多组数据, 通过误差校准公式计算所需校准的误差值。  In order to improve the calibration accuracy, more steps ab can be repeated to obtain more sets of spot center position and heliostat pitch angle and pan angle value. According to multiple sets of data, the error value of the required calibration is calculated by the error calibration formula. .
实施例 7 Example 7
图 16所示为本实施例的定日镜校准系统, 该校准系统与实施例 1 中的校准系统的不同在于: 图像传 感器组固定安装于位于所述接收器 1与所述定日镜之间的固定安装支架 1Γ上,所述固定安装支架 1Γ环绕 所述接收器 1的接收面下侧的支撑塔 9设置。 本实施例中, 图像传感器沿纵向以及横向均布排列。  16 is a heliostat calibration system of the present embodiment, which is different from the calibration system of Embodiment 1 in that: an image sensor group is fixedly mounted between the receiver 1 and the heliostat The fixed mounting bracket 1 is disposed around the support tower 9 on the lower side of the receiving surface of the receiver 1. In this embodiment, the image sensors are evenly arranged in the longitudinal direction as well as in the lateral direction.
本实施例中定日镜的校准方法与实施例 1中的校准方法基本一致, 区别在于图像传感器组直接采集定 日镜图像不需要移动。  The calibration method of the heliostat in this embodiment is basically the same as the calibration method in the first embodiment, except that the image sensor group directly acquires the heliostat image without moving.
实施例 8 Example 8
图 17为本实施例中的定日镜校准系统, 其与实施例 1的校准系统基本一致, 其区别点在于: 所述图 像传感器 3可上下移动地安装于旋转安装支架 8'上,所述图像传感器 3沿水平方向排列且其采集面面向所 述接收器 1设置, 所述旋转安装支架 8'可绕所述接收器的支撑塔 9转动。 所述控制单元通过图像传感器组 的上下移动以及转动获得所述定日镜反射的光斑中心位置。  17 is a heliostat calibration system in the embodiment, which is substantially identical to the calibration system of the first embodiment, and the difference is that the image sensor 3 is movably mounted on the rotary mounting bracket 8'. The image sensor 3 is arranged in the horizontal direction and its collecting face is arranged facing the receiver 1, and the rotary mounting bracket 8' is rotatable around the support tower 9 of the receiver. The control unit obtains a spot center position reflected by the heliostat by up and down movement and rotation of the image sensor group.
所述定日镜配置有两个与水平面平行的旋转轴 X轴、 Y轴, 所述定日镜分别绕两所述旋转轴进行俯仰 转动; 所述两个旋转轴分别配有角度传感器, 用于精确测定两个旋转轴转过的俯仰角度。  The heliostat is configured with two X-axis and Y-axis of rotation axis parallel to the horizontal plane, and the heliostats respectively perform pitch rotation about the two rotation axes; the two rotation axes are respectively equipped with angle sensors, Accurately measure the pitch angle of two rotating axes.
本实施例中定日镜的校准方法与实施例 3中的校准方法一致。  The calibration method of the heliostat in this embodiment is identical to the calibration method in the third embodiment.
实施例 9  Example 9
图 18为本实施例中的校准系统, 其与实施例 1的校准系统基本一致, 其区别点在于: 所述图像传感 器组为 3组, 其包括安装于所述定日镜场内安装支架 4上的两组图像传感器, 其沿所述安装支架 4上下移 动。 还包括一组安装于平面安装支架 10上的图像传感器, 所述平面安装支架 10位于所述接收器 1的支撑 塔 9上, 所述图像传感器沿水平方向排列, 其随所述平面安装支架 10上下移动。 本实施例中, 三组图像 传感器可以对定日镜场内不同区域的图像传感器进行校准。本实施例中定日镜的校准方法与实施例 1中的 校准方法一致。 本实施例中, 所述图像传感器组的移动方式为以一定时间间隔的间歇性移动, 这种移动方式可以在所 述图像传感器组停下来时获得定日镜场反射光斑, 其成像质量高。 同时, 间歇性移动可以方便地调整减光 装置的减光率。 FIG. 18 is a calibration system in the embodiment, which is substantially identical to the calibration system of Embodiment 1. The difference is that: the image sensor group is three groups, and the mounting bracket 4 is mounted on the heliostat field. The upper two sets of image sensors move up and down along the mounting bracket 4. Also included is a set of image sensors mounted on a planar mounting bracket 10, the planar mounting bracket 10 being located on a support tower 9 of the receiver 1, the image sensors being arranged in a horizontal direction with the planar mounting bracket 10 move up and down. In this embodiment, three sets of image sensors can calibrate image sensors in different regions of the heliostat field. The calibration method of the heliostat in this embodiment is identical to the calibration method in the first embodiment. In this embodiment, the moving mode of the image sensor group is intermittent movement at a certain time interval, and the moving mode can obtain a heliostat field reflection spot when the image sensor group stops, and the imaging quality is high. At the same time, the intermittent movement can easily adjust the dimming rate of the dimming device.
显然, 上述实施例仅仅是为清楚地说明所作的举例, 而并非对实施方式的限定。 对于所属领域的普通 技术人员来说, 在上述说明的基础上还可以做出其它不同形式的变化或变动。 由此所引伸出的显而易见的 变化或变动仍处于本发明创造的保护范围之中。  It is apparent that the above-described embodiments are merely illustrative of the examples, and are not intended to limit the embodiments. Other variations or modifications of the various forms may be made by those skilled in the art in light of the above description. Obvious changes or variations resulting therefrom are still within the scope of the invention.

Claims

权 利 要 求 书 Claim
1. 一种太阳能发电站的定日镜校准系统的校准方法, 其特征在于: 包括以下步骤:  A calibration method for a heliostat calibration system for a solar power plant, comprising: the following steps:
a. 控制单元控制定日镜转动, 使所述定日镜的反射图像对准公称位置 G1 ; a control unit controls the rotation of the heliostat to align the reflected image of the heliostat with the nominal position G 1 ;
b. 图像传感器组采集定日镜的反射图像, 所述控制单元根据所述图像传感器组采集的图像, 确定所 述定日镜的反射图像中心位置 L,并将反射图像中心位置 1^与所述公称位置 ¾进行比对,确定反 射图像的中心位置 1^与所述公称位置 ¾的距离偏差 及对应的定日镜;同时获得此时所述定日镜 旋转角度;  b. The image sensor group collects the reflected image of the heliostat, and the control unit determines the center position L of the reflected image of the heliostat according to the image acquired by the image sensor group, and the center position of the reflected image is Comparing the nominal position 3⁄4, determining a distance deviation between the center position 1^ of the reflected image and the nominal position 3⁄4 and the corresponding heliostat; and simultaneously obtaining the rotation angle of the heliostat at this time;
c 重复 1次步骤 a-b, 得到距离偏差值 与设定偏差值 4比较; 当至少 1^组 >4时, 其中 Kk i, 校准所有参数的误差; 否则, 只需校准部分参数的误差;  c Repeat 1 step a-b to get the distance deviation value compared with the set deviation value 4; when at least 1^ group >4, where Kk i, calibrate the error of all parameters; otherwise, only need to calibrate the error of some parameters;
d. 控制单元根据校准参数个数 m, 确定定日镜旋转的次数, 并根据获得的光斑中心位置及定日镜的 旋转角度, 计算所需校准的误差。  d. The control unit determines the number of rotations of the heliostat according to the number of calibration parameters m, and calculates the error of the required calibration according to the obtained spot center position and the rotation angle of the heliostat.
2. 根据权利要求 1的太阳能发电站的定日镜校准方法, 其特征在于:  2. A heliostat calibration method for a solar power plant according to claim 1, wherein:
步骤 b所述的图像传感器组通过固定或者上下移动或者左右移动或者旋转移动的方式采集定日镜的反 射图像。  The image sensor group described in step b acquires the reflected image of the heliostat by fixed or up-and-down movement or left-right movement or rotational movement.
3. 根据权利要求 1或 2所述的太阳能发电站的定日镜校准方法, 其特征在于:  3. The method of calibrating a heliostat of a solar power plant according to claim 1 or 2, characterized in that:
步骤 c中设定偏差值 4=η¾Ι^, 其中 GLw为反射图像中心理想移动距离; 0<η 1。  In step c, the offset value is set to 4=η3⁄4Ι^, where GLw is the ideal moving distance of the center of the reflected image; 0<η 1.
4. 根据权利要求 1或 2所述的太阳能发电站的定日镜校准方法, 其特征在于:  The method for calibrating a heliostat of a solar power plant according to claim 1 or 2, characterized in that:
步骤 c中设定偏差值 dfn LiLM , 其中 I^LM为反射图像中心实际移动距离; 0<η 1。  In step c, the deviation value dfn LiLM is set, where I^LM is the actual moving distance of the center of the reflected image; 0<η1.
5. 根据权利要求 1或 2所述的太阳能发电站的定日镜校准方法, 其特征在于:  The method for calibrating a heliostat of a solar power station according to claim 1 or 2, characterized in that:
步骤 c中设定偏差值 4为固定值。  In step c, set the deviation value 4 to a fixed value.
6. 根据权利要求 1-5任一所述的太阳能发电站的定日镜校准方法, 其特征在于:  6. The heliostat calibration method for a solar power plant according to any one of claims 1-5, characterized in that:
步骤 d中定日镜旋转的次数为至少 m/2次。  In step d, the number of rotations of the heliostat is at least m/2 times.
7. 根据权利要求 1-6任一所述的太阳能发电站的定日镜校准方法, 其特征在于:  7. The heliostat calibration method for a solar power plant according to any one of claims 1-6, characterized in that:
步骤 c中 k为根据校准精度设定的预设值。  In step c, k is a preset value set according to the calibration accuracy.
8. 根据权利要求 1-7任一所述的太阳能发电站的定日镜校准方法, 其特征在于:  The method for calibrating heliostats of a solar power station according to any one of claims 1 to 7, wherein:
所述部分参数的误差为俯仰角误差及平摇角误差和 /或定日镜中心位置误差。  The error of the partial parameters is a pitch angle error and a pan angle error and/or a heliostat center position error.
9. 根据权利要求 1-8任一所述的太阳能发电站的定日镜校准方法, 其特征在于:  9. A heliostat calibration method for a solar power plant according to any of claims 1-8, characterized in that:
步骤 b中, 由所述角度传感器的测量值或者控制单元的命令得到所述定日镜旋转角度。  In step b, the heliostat rotation angle is obtained by the measured value of the angle sensor or the command of the control unit.
10. 一种应用权利要求 1-9任一所述校准方法的太阳能发电站的定日镜校准系统, 其特征在于: 其包括 接收器 (1 ), 所述接收器 (1 ) 用于接收定日镜反射的太阳光;  10. A heliostat calibration system for a solar power plant using the calibration method of any of claims 1-9, characterized in that it comprises a receiver (1) for receiving Sunlight reflected by the sun mirror;
至少一个定日镜 (2 ) 组成的定日镜场: 其安装于所述接收器的周围;  a heliostat field consisting of at least one heliostat (2): mounted around the receiver;
至少一个图像传感器 (3 ) 组成的图像传感器组: 用于采集定日镜的校准光源反射图像; 以及采用权利要求 1-9任一所述校准方法的控制单元: 用于处理图像传感器组获得的图像信息, 并校 准跟踪太阳的定日镜的参数同时控制定日镜转动;  An image sensor group consisting of at least one image sensor (3): a calibration light source reflection image for collecting heliostats; and a control unit using the calibration method according to any one of claims 1-9: for processing an image sensor group Image information, and calibrating the parameters of the sun's heliostat while controlling the heliostat rotation;
所述控制单元控制所述定日镜 (2 ) 转动, 使所述定日镜 (2 ) 的反射光斑对准公称位置, 所述图像传 感器组 (3 ) 采集所述定日镜反射光斑的图像, 所述控制单元根据图像传感器组采集的图像信息, 确定所 述定日镜 (2) 反射图像中心位置, 将反射图像中心位置与所述公称位置进行比对, 确定没有对准所述公 称位置的定日镜 (2), 并对所述定日镜 (2) 进行校准。 The control unit controls the rotation of the heliostat (2) to align the reflected spot of the heliostat (2) with a nominal position, and the image sensor group (3) collects an image of the reflected spot of the heliostat The control unit determines the location according to the image information collected by the image sensor group Describe the center position of the reflected image (2), compare the center position of the reflected image with the nominal position, determine the heliostat (2) that is not aligned with the nominal position, and determine the heliostat ( 2) Perform calibration.
PCT/CN2012/086006 2011-12-08 2012-12-06 Calibration method and calibration system for heliostat of solar power station WO2013083053A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110406329.4 2011-12-08
CN201110406329.4A CN102495640B (en) 2011-12-08 2011-12-08 Heliostat calibration method and system for solar power station

Publications (1)

Publication Number Publication Date
WO2013083053A1 true WO2013083053A1 (en) 2013-06-13

Family

ID=46187469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086006 WO2013083053A1 (en) 2011-12-08 2012-12-06 Calibration method and calibration system for heliostat of solar power station

Country Status (2)

Country Link
CN (1) CN102495640B (en)
WO (1) WO2013083053A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062265A (en) * 2018-08-29 2018-12-21 中国电力工程顾问集团西北电力设计院有限公司 A kind of sunlight heat power generation heliostat installation error bearing calibration

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495640B (en) * 2011-12-08 2014-06-04 深圳市联讯创新工场科技开发有限公司 Heliostat calibration method and system for solar power station
CN105022410B (en) * 2015-05-07 2018-03-20 浙江中控太阳能技术有限公司 A kind of tower type solar electricity generation system heliostat calibaration system and calibration method
AU2016208290B2 (en) * 2015-08-05 2022-03-17 Commonwealth Scientific And Industrial Research Organisation Closed loop control system for heliostats
CN105334873A (en) * 2015-11-30 2016-02-17 华东交通大学 Method for detecting solar heliostat rotation precision
CN105676411B (en) * 2016-03-18 2018-05-18 东方宏海新能源科技发展有限公司 A kind of focusing data processing method of Salar light-gathering eyeglass
CN105717606B (en) * 2016-03-18 2019-04-16 东方宏海新能源科技发展有限公司 Salar light-gathering eyeglass focusing system and focus adjustment method
CN106940571B (en) * 2017-04-14 2023-06-06 主力能源有限公司 Tower heliostat condensation deviation sensor
CN108413987B (en) * 2018-03-13 2021-03-26 深圳中科能投能源有限公司 Heliostat calibration method, device and system
CN109557947A (en) * 2018-12-21 2019-04-02 中国计量大学 A kind of two close cycles tracking and controlling method of tower heliostat
CN110703813A (en) * 2019-11-11 2020-01-17 深圳东康前海新能源有限公司 Heliostat calibration system and method
CN111765657B (en) * 2020-07-07 2023-08-22 上海晶电新能源有限公司 Heliostat light path closed-loop control system and method
EP4256250A1 (en) * 2020-12-04 2023-10-11 FH Aachen Arrangement and method for detecting radiation
CN114046964A (en) * 2021-11-01 2022-02-15 山东电力建设第三工程有限公司 Method for predicting reflectivity of tower-type heliostat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274376A1 (en) * 2004-06-15 2005-12-15 Litwin Robert Z Feedback control method for a heliostat
US20100139644A1 (en) * 2008-10-29 2010-06-10 Brightsource Industries (Israel), Ltd. Heliostat calibration
CN101918769A (en) * 2007-10-24 2010-12-15 伊苏勒有限公司 Heliostat calibration in a kind of central tower receiver solar power plant and tracking control
CN102495640A (en) * 2011-12-08 2012-06-13 深圳市联讯创新工场科技开发有限公司 Heliostat calibration method and system for solar power station

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266078B (en) * 2008-04-29 2010-04-21 河海大学 Heliostat tracing controlling apparatus and its control method
CN101614445B (en) * 2008-06-23 2010-11-10 中国华电工程(集团)有限公司 Method for improving accuracy of control of automatic sun track following of heliostat

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050274376A1 (en) * 2004-06-15 2005-12-15 Litwin Robert Z Feedback control method for a heliostat
CN101918769A (en) * 2007-10-24 2010-12-15 伊苏勒有限公司 Heliostat calibration in a kind of central tower receiver solar power plant and tracking control
US20100139644A1 (en) * 2008-10-29 2010-06-10 Brightsource Industries (Israel), Ltd. Heliostat calibration
CN102495640A (en) * 2011-12-08 2012-06-13 深圳市联讯创新工场科技开发有限公司 Heliostat calibration method and system for solar power station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, WENBIN ET AL.: "Development of the heliostat shape measuring apparatus of solar tower thermal power plant", CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT, vol. 30, no. 7, July 2009 (2009-07-01), pages 1390 - 1394 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062265A (en) * 2018-08-29 2018-12-21 中国电力工程顾问集团西北电力设计院有限公司 A kind of sunlight heat power generation heliostat installation error bearing calibration

Also Published As

Publication number Publication date
CN102495640A (en) 2012-06-13
CN102495640B (en) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2013083053A1 (en) Calibration method and calibration system for heliostat of solar power station
WO2013044850A1 (en) Calibration system and calibration method for heliostat in solar power station
WO2013044848A1 (en) Calibration system and calibration method for heliostat in solar power station
CN102506810B (en) Heliostat angle deviation detection method for tower type solar thermal power generation system
CN109632103B (en) High-altitude building temperature distribution and surface crack remote monitoring system and monitoring method
CN108413987B (en) Heliostat calibration method, device and system
Berenguel et al. An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant
WO2013044849A1 (en) Heliostat calibration system and calibration method of solar power station
US20130021471A1 (en) Reflective Surface Orientating with Multiple View Ports
CN105022410B (en) A kind of tower type solar electricity generation system heliostat calibaration system and calibration method
CN102506811B (en) Image detection-based on-line detection and correction method of reflection angle of heliostat
CN201983486U (en) Tower type heliostat tracking and controlling device of solar heat generating station
WO2013017097A1 (en) Calibrating device and calibrating method for heliostat
WO2013017099A1 (en) Calibration device and calibration method for heliostat
CN106249764B (en) Heliostat angle zero point automatic calibration device and method with sun as reference object
CN102980313A (en) Heliostat error correction system and method for solar tower optical-thermal power station
CN109458951A (en) A kind of settled date mirror surface-shaped filed detection system and method
CN105335941A (en) Optical axis verticality adjustment apparatus and adjustment method adopting same
CN109557947A (en) A kind of two close cycles tracking and controlling method of tower heliostat
CN104699116A (en) Heliostat tracking error correction method
JP2016056965A (en) Heliostat, sunlight collection system, and control method of sunlight collection system
CN107339933B (en) A kind of installation detection method of groove type solar condenser mirror
CN103438830A (en) Solar energy condenser detection apparatus and detection method thereof
CN102411375A (en) Method and system for accurately controlling sunlight reflection device
CN203489848U (en) Solar condenser detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/11/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12855471

Country of ref document: EP

Kind code of ref document: A1