CN103220896A - Heat radiation structure and electronic device with the same - Google Patents
Heat radiation structure and electronic device with the same Download PDFInfo
- Publication number
- CN103220896A CN103220896A CN2012100243076A CN201210024307A CN103220896A CN 103220896 A CN103220896 A CN 103220896A CN 2012100243076 A CN2012100243076 A CN 2012100243076A CN 201210024307 A CN201210024307 A CN 201210024307A CN 103220896 A CN103220896 A CN 103220896A
- Authority
- CN
- China
- Prior art keywords
- heat
- insulating
- metal layer
- conducting layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title 1
- 230000017525 heat dissipation Effects 0.000 claims abstract description 109
- 229910052751 metal Inorganic materials 0.000 claims abstract description 108
- 239000002184 metal Substances 0.000 claims abstract description 108
- 239000000463 material Substances 0.000 claims description 14
- 238000009413 insulation Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 description 17
- 239000000126 substance Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000007779 soft material Substances 0.000 description 4
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- -1 For example Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种散热结构,特别涉及一种具有能够将电子装置的表面的温度分布(temperature distribution)均匀化及使内部高热电子元件快速降温的散热结构及具有此散热结构的电子装置。The present invention relates to a heat dissipation structure, in particular to a heat dissipation structure capable of uniforming the temperature distribution on the surface of an electronic device and rapidly reducing the temperature of internal high-heat electronic components, and an electronic device with the heat dissipation structure.
背景技术 Background technique
电源转接器(adapter)与电源供应器(power supply)是各式电器设备运作时不可或缺的电子装置。这些电子装置于其内部的电路板上均具有许多电子元件,其中这些电子元件不但包括高发热功率元件(例如变压器、金属氧化半导体场效晶体管、二极管、电感等)也包括低发热功率元件(例如电容器或电阻器)。当电子装置运作时,若这些电子元件产生的热量无法被有效地移除外界,则热量便会累积于电子装置内进而使得这些电子元件的温度上升。如果这些电子元件的温度过高,电子元件便会发生故障甚至烧毁。Power adapters and power supplies are indispensable electronic devices for the operation of various electrical equipment. These electronic devices have many electronic components on their internal circuit boards, and these electronic components include not only high heating power components (such as transformers, metal oxide semiconductor field effect transistors, diodes, inductors, etc.) but also low heating power components (such as capacitor or resistor). When the electronic device is in operation, if the heat generated by these electronic components cannot be effectively removed from the outside, the heat will be accumulated in the electronic device and the temperature of these electronic components will rise. If the temperature of these electronic components is too high, the electronic components will malfunction or even burn out.
以电源转接器为例。电源转接器用以将外部电源的电压转换为电器设备所使用的电压,其中此电器设备例如是可携式计算机。然而,随着电子元件的集成化,电源转接器的体积亦同步缩小,伴随而生的是因其体积缩小所衍生的散热问题愈形严重。Take the power adapter as an example. The power adapter is used to convert the voltage of the external power supply to the voltage used by the electrical equipment, where the electrical equipment is, for example, a portable computer. However, with the integration of electronic components, the size of the power adapter is also reduced simultaneously, and the heat dissipation problem caused by the smaller size becomes more and more serious.
举例而言,传统的电源转接器的壳体的材质为塑胶。由于塑胶材质不利于热量的扩散,因此当电路板上的电子元件所产生的热量被传递至壳体时,壳体的对应于高发热功率元件的区域的温度往往会高于壳体的其他区域的温度。然而,这种存在于壳体的特定区域的高温却可能会造成使用者的不适,甚至烫伤使用者。此外,这种因为热量集中于壳体的特定区域的现象亦会降低壳体的散热效率。For example, the casing of the conventional power adapter is made of plastic. Since the plastic material is not conducive to the diffusion of heat, when the heat generated by the electronic components on the circuit board is transferred to the housing, the temperature of the area corresponding to the high heating power components of the housing is often higher than other areas of the housing temperature. However, the high temperature existing in a specific area of the casing may cause discomfort to the user, or even burn the user. In addition, the phenomenon that the heat is concentrated in a specific area of the housing will also reduce the heat dissipation efficiency of the housing.
再者,随着电子装置的小型化的趋势,电子装置的内部空间均相当的狭小。在这样狭小的空间下,扣除电子装置内部的电子元件所占的空间之后,电子装置的可用于配置散热结构的空间已所剩无几。所以,狭小的电子装置的内部空间亦会造成设计者在设计散热结构上的难度。Furthermore, with the trend of miniaturization of electronic devices, the internal space of electronic devices is quite narrow. In such a narrow space, after deducting the space occupied by the electronic components inside the electronic device, there is very little space left for disposing the heat dissipation structure of the electronic device. Therefore, the narrow internal space of the electronic device will also make it difficult for the designer to design the heat dissipation structure.
基于上述,如何提供一种可促使电子装置的壳体表面的各个区域的温度能迅速趋于一致及快速将高热电子元件降温的散热结构又不致占据太多电子装置的内部使用空间,实为相关技术领域者目前迫切需要解决的问题。Based on the above, how to provide a heat dissipation structure that can promote the temperature of each area of the housing surface of the electronic device to quickly converge and quickly cool down the high-heat electronic components without occupying too much internal use space of the electronic device is really relevant. It is an urgent problem that people in the technical field need to solve at present.
发明内容 Contents of the invention
为解决上述的电子装置的壳体的温度分布不平均和电子装置内电子元件的温度过高的问题以及内部使用空间的有限,本发明提出一种有效散热且可视散热需求弹性灵活设计运用的散热结构以及具有此散热结构的电子装置。In order to solve the above problems of uneven temperature distribution of the housing of the electronic device, excessively high temperature of the electronic components in the electronic device, and limited internal space, the present invention proposes an effective heat dissipation device that can be flexibly designed and used depending on the heat dissipation requirements. A heat dissipation structure and an electronic device with the heat dissipation structure.
在一实施例中,上述的散热结构包括一第一绝缘导热层以及一金属层。第一绝缘导热层的热传导系数大于0.5W/m·K。金属层与第一绝缘导热层结合以热接触。金属层与第一绝缘导热层化学键结结合。此外,在另一实施例中,散热结构还可以包括一第二绝缘导热层。此绝缘导热层与金属层结合以热接触,并且使金属层介于第一绝缘导热层与第二绝缘导热层之间,其中此绝缘导热层的热传导系数大于0.5W/m·K。In one embodiment, the above-mentioned heat dissipation structure includes a first insulating and heat-conducting layer and a metal layer. The thermal conductivity of the first insulating and heat-conducting layer is greater than 0.5 W/m·K. The metal layer is bonded to the first insulating and thermally conductive layer in thermal contact. The metal layer is chemically bonded with the first insulating and heat-conducting layer. In addition, in another embodiment, the heat dissipation structure may further include a second insulating and heat-conducting layer. The thermally insulating layer is combined with the metal layer for thermal contact, and the metal layer is interposed between the first thermally insulating layer and the second thermally insulating layer, wherein the thermal conductivity of the thermally insulating layer is greater than 0.5 W/m·K.
在一实施例中,上述的电子装置是将上述的散热结构装入电子装置的一壳体中,以移除电子装置的一电路板以及与电路板电性连接的多个电子装置所产生的热,进而增加电子装置的散热效率。在此电子装置中,散热结构的金属层介于壳体与第一绝缘导热层之间,并且第一绝缘导热层包覆电路板或/及这些电子元件。In one embodiment, the above-mentioned electronic device is produced by packing the above-mentioned heat dissipation structure into a casing of the electronic device to remove a circuit board of the electronic device and a plurality of electronic devices electrically connected to the circuit board Heat, thereby increasing the heat dissipation efficiency of electronic devices. In the electronic device, the metal layer of the heat dissipation structure is interposed between the casing and the first insulating and heat-conducting layer, and the first insulating and heat-conducting layer covers the circuit board or/and these electronic components.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
附图说明 Description of drawings
图1为依据本发明第一实施例的电子装置的组合图;FIG. 1 is a combined diagram of an electronic device according to a first embodiment of the present invention;
图2为图1的电子装置的分解图;FIG. 2 is an exploded view of the electronic device of FIG. 1;
图3为沿图1的剖面线3-3所绘制的剖视图;Fig. 3 is a sectional view drawn along section line 3-3 of Fig. 1;
图4为使用现有散热结构的电子装置与本实施例的电子装置的壳体热点温度(其是为一与环境温度的差值温度)的曲线图;4 is a graph of the hot spot temperature (which is the temperature difference between one and the ambient temperature) of the housing of the electronic device using the existing heat dissipation structure and the electronic device of the present embodiment;
图5为现有散热结构的电子装置与本实施例的电子装置内的各电子元件的温度曲线图;5 is a temperature curve diagram of the electronic device with the existing heat dissipation structure and the electronic components in the electronic device of this embodiment;
图6为本发明的第一实施例所衍生的一变化态样的电子装置的剖视示意图;6 is a schematic cross-sectional view of an electronic device in a modified form derived from the first embodiment of the present invention;
图7为本发明第二实施例的电子装置的剖视示意图;7 is a schematic cross-sectional view of an electronic device according to a second embodiment of the present invention;
图8为本发明第一实施例所衍生的另一变化态样的电子装置的分解示意图;FIG. 8 is an exploded schematic view of another electronic device derived from the first embodiment of the present invention;
图9为图8的电子装置的剖视示意图;9 is a schematic cross-sectional view of the electronic device of FIG. 8;
图10为本发明第三实施例的电子装置的剖视示意图;10 is a schematic cross-sectional view of an electronic device according to a third embodiment of the present invention;
图11为本发明第四实施例的电子装置的剖视示意图;11 is a schematic cross-sectional view of an electronic device according to a fourth embodiment of the present invention;
图12为本发明第一实施例所衍生的另一变化态样的电子装置的剖视示意图;12 is a schematic cross-sectional view of another electronic device derived from the first embodiment of the present invention;
图13为本发明第五实施例的电子装置的剖视示意图;13 is a schematic cross-sectional view of an electronic device according to a fifth embodiment of the present invention;
图14为本发明第六实施例的电子装置的剖视示意图。FIG. 14 is a schematic cross-sectional view of an electronic device according to a sixth embodiment of the present invention.
其中,附图标记Among them, reference signs
100 电子装置100 electronic devices
101 电子装置101 electronic devices
102 电子装置102 electronic devices
103 电子装置103 electronic devices
104 电子装置104 electronic devices
105 电子装置105 electronic devices
106 电子装置106 electronic devices
110 电路板110 circuit board
112 电压输入侧112 Voltage input side
114 电压输出侧114 Voltage output side
115 电子元件115 electronic components
116 本体116 body
118 接地接点118 Ground contact
120 第一绝缘导热层120 The first insulation and heat conduction layer
120’ 第一绝缘导热层120' first insulation and heat conduction layer
122 第一部分122
124 第二部分124 Part Two
129a 凸块129a bump
129b 凸块129b bump
122 第一部分122
124 第二部分124 Part Two
126 表面126 surface
128 开口128 openings
130 金属层130 metal layers
130’ 金属层130’ metal layer
132 表面132 surface
134 突起134 protrusions
136 孔洞136 holes
140 壳体140 shell
140a 上表面140a upper surface
140b 下表面140b lower surface
140c 右表面140c right surface
140d 左表面140d left surface
140e 一次侧表面140e primary side surface
140f 二次侧表面140f Secondary side surface
140’ 壳体140’ Shell
142 第一壳体142 The first shell
142’ 第一壳体142’ first shell
144 第二壳体144 Second housing
144’ 第二壳体144’ second shell
146 外表面146 External surface
148a 突出部148a Protrusion
148b 突出部148b Protrusion
150a 电子元件150a electronic components
150b 电子元件150b Electronic components
160 第一连结物160 The first link
170 第二绝缘导热层170 Second insulation and heat conduction layer
180 第二连结物180 Second link
190 第三连结物190 The third link
195 第四连结物195 The fourth link
200 散热结构200 heat dissipation structure
201 散热结构201 heat dissipation structure
202 散热结构202 heat dissipation structure
203 散热结构203 heat dissipation structure
204 散热结构204 heat dissipation structure
205 散热结构205 heat dissipation structure
300 导线300 wire
400 绝缘扣具400 insulation buckle
具体实施方式 Detailed ways
下面结合附图对本发明的结构原理和工作原理作具体的描述:Below in conjunction with accompanying drawing, structural principle and working principle of the present invention are specifically described:
本说明书所述的「热接触」是指两物体之间的结合方式,其能够使热量以热传导的方式自一物体传递至另一物体。The "thermal contact" mentioned in this specification refers to the bonding method between two objects, which can make heat transfer from one object to another object in the form of heat conduction.
另外,本说明书所述的「包覆」是指一包覆物局部或全部环绕于被包覆的物体周围,而且此包覆物可接触或没有接触被包覆的物体。In addition, the "covering" mentioned in this specification means that a covering partially or completely surrounds the object to be covered, and the covering may or may not touch the object to be covered.
图1为依据本发明第一实施例的电子装置的组合图;图2为图1的电子装置的分解图;图3为沿图1的剖面线3-3所绘制的剖视图。请共同参照图1至图3,为了说明上的方便,第一实施例的电子装置100是以电源转接器(adapter)作为举例说明。然而,本实施例并非试图将电子装置100的种类限定为电源转接器。在其他的实施例中,电子装置100也可以是电源供应器(power supply)或是其他种类的电子产品,例如USB数字电视棒。电子装置100包括一电路板110、多个电子元件115(其中因为简洁缘故,只绘出一电子元件作为代表说明)、一散热结构200以及一壳体140,其中散热结构200包括一第一绝缘导热层120以及一金属层130,且第一绝缘导热层120以及金属层130经过适当的处理而结合以构成散热结构200。1 is an assembly diagram of an electronic device according to a first embodiment of the present invention; FIG. 2 is an exploded view of the electronic device in FIG. 1 ; Please refer to FIG. 1 to FIG. 3 together. For the convenience of description, the
这些电子元件115电性设置于电路板110。换句话说,这些电子元件115是电性连接于电路板110,并可设置在电路板110上方或下方。电子元件115例如是金属氧化半导体场效晶体管、二极管、电感、电容器、电阻器或是其他电子零件。在本实施例以及本发明的其他实施例中,电源输入元件150a以及电源输出元件150b分别可以是插头、插座与电源线等其中之一。为便于说明,以下的多个实施例是以电源输入元件150a为插座(意即插座可外接一电源线插头而输入市电),且电子元件150b为电源线(意即通过电源线可电性连接至一电子设备,例如可携式计算机)作为举例说明。此外,基于电源输入元件150a与电源输出元件150b的位置,电路板110可区分出一电压输入侧(或称为一次侧)112以及一电压输出侧(或称为二次侧)114,其中电压输入侧112是指电路板110的电性连接于电源输入元件150a的一侧,电压输出侧114是指电路板110的电性连接于电源输出元件150b的另一侧。The
散热结构200的第一绝缘导热层120包覆电路板110或者这些电子元件115。在本实施例以及部分的其他实施例中,第一绝缘导热层120包括一第一部分122以及一第二部分124。第一部分122与第二部分124共同包覆电路板110以及电路板110上的这些电子元件115。更详细地说,第一部分122以及第二部分124共同形成一六面体结构,并且于此结构的两端开口处,第一部分122以及第二部分124仅曝露出电源输入元件150a与电源输出元件150b。换句话说,第一部分122以及第二部分第二部分124所构成的第一绝缘导热层120遮蔽了部分的电压输入侧112以及部分的电压输出侧114。然而,如同本说明书对于「包覆」这个词的定义,本实施例并非用以限定本发明的第一绝缘导热层120包覆电路板110及电子元件115的方式,在部分的其他实施例中,第一绝缘导热层120亦可以仅包覆电路板110的局部区域,或者是包覆部分的电子元件115,或者包覆电路板110的局部区域及部分的电子元件115。再者,在其他实施例中,第一绝缘导热层120亦可以将电路板110或/及这些电子元件115完全包覆。The first insulating and heat-conducting
第一绝缘导热层120的热传导系数大于0.5W/m·K,且较佳是软性物质,在本实施例中,第一绝缘导热层120的材质是例如导热硅胶或导热橡胶,其他适用的材质亦可。另外,所谓的「绝缘」是指一种物体的性质,由于本实施例的电子装置100是以电源转接器来举例说明,所以在此技术领域其于Hi-Pot测试中,在4242伏特的直流电压或是3000伏特交流电压输入下持续一段规定的时间后,只要无绝缘崩溃的情形发生,则此物体即为绝缘。另外,本发明运用在不同的技术领域中时,「绝缘」会有不同的定义。The thermal conductivity of the first insulating and heat-conducting
金属层130与第一绝缘导热层120热接触,并且金属层130介于第一绝缘导热层120与壳体140之间。结合在第一绝缘导热层120的金属层130的面积与部位可视电子装置100的散热需求或安规要求进行适当调整,换言之第一绝缘导热层120与金属层130两者的覆盖面积不一定等同。如图1和图3所示,由于电源转接器的安规要求,金属层130沿四周围需内缩一距离。或者,金属层130可以是只有局部区域使用。The
金属层130的材质可为铝、铁、铜或是其他的金属。在工艺上,其中的一实施态样是可先将金属层130依散热或壳体形状等的需求成型,然后置放金属层130于一模具中,再将第一绝缘导热层120依金属层130形状或所欲包覆的形状与金属层130结合而成型出散热结构200。The material of the
在本实施例以及部分的其他实施例中,第一绝缘导热层120是经由化学处理与金属层130结合,特别较佳是以化学键结结合的方式,以形成一件式的散热结构200,可作为一个独立的零件。关于上述的化学键结结合,散热结构200更包括一第一连结物160,第一绝缘导热层120是经由例如涂覆第一连结物160而与金属层130结合,其中第一连结物160分别与第一绝缘导热层120以及与金属层130化学键结,其中化学键结的方式可以是例如交联(crosslink)或硫化等反应方式,而第一连结物160可为一种偶合剂(coupling agent),例如硅烷偶合剂(Silane coupling agent)、钛酸酯等。举例而言,第一绝缘导热层120是导热硅胶,金属层130是铝,而此第一连结物160是一硅烷偶合剂。In this embodiment and some other embodiments, the first insulating and heat-conducting
壳体140具有一容置空间P。在本实施例中,壳体140包括一第一壳体142以及一第二壳体144。电路板110配置于第一壳体142上。第二壳体144盖在第一壳体142上,以便将电路板110、这些电子元件115以及散热结构200容纳于第一壳体142与第二壳体144所构成的容置空间P之内,其中散热结构200包覆电路板110和这些电子元件115。壳体140包括一上表面140a、一下表面140b、一右表面140c、一左表面140d、一电源输入侧表面140e以及一电源输出侧表面140f。电源输入侧表面140e相对于电源输出侧表面140f,并且上表面140a、下表面140b、右表面140c以及左表面140d连接电源输入侧表面140e与电源输出侧表面140f的多个侧缘以形成容置空间P。而第一绝缘导热层120覆盖壳体140的相对于上表面140a、下表面140b、右表面140c以及左表面140d、电源输入侧表面140e以及电源输出侧表面140f的内侧表面,以形成一六面体的结构。并且,第一绝缘导热层120遮蔽部分的电压输入侧112以及部分的电压输出侧114。壳体140的材质在本实施例中是例如为塑胶,但其他电子装置的壳体可以是其他适用的材质。此外,散热结构200与壳体140之间可以经由紧配合的方式组装在一起。如此一来,在组装电子装置时,操作者仅需把散热结构200塞入壳体的内侧面内,即可完成散热结构200与壳体140之间的组装。所以,这种经由紧配合的方式而组装在一起的结构,可以增加电子装置的组装效率,进而缩短制造电子装置的时间。The
散热结构200的第一绝缘导热层120可以接触或没有接触电路板110或/及这些电子元件115。The first insulating and heat-conducting
以下将对电子装置100的散热机制进行详细地介绍。The heat dissipation mechanism of the
当电子装置100处于运作状态时,电路板110或是电子元件115所产生的热可经由热对流或是热传导的方式传递至第一绝缘导热层120。之后,在热自第一绝缘导热层120传递至金属层130的过程中,热会在第一绝缘导热层120与金属层130扩散以使散热结构200的各部分的温度趋于一致。When the
之后,在热由金属层130传递至壳体140的过程中,由于金属层130的热传导系数大于第一绝缘导热层120的热传导系数,所以热在金属层130内扩散的速度高于在第一绝缘导热层120扩散的速度。因此,相较于第一绝缘导热层120的表面126的温度分布,金属层130的表面136的各个部分的温度更加地趋于一致。Afterwards, in the process of transferring heat from the
然后,热由壳体140的外表面146散逸至外界环境。The heat is then dissipated from the
在电路板110与电子元件115所产生的热被传递至壳体140的过程中,由于热在被传递至壳体140之前已经先在第一绝缘导热层120以及金属层130均匀扩散,所以相较于现有技术的散热结构(金属散热片加上绝缘片置放在壳体内)而言,本实施例的壳体140的外表面146的各个部分的温度分布较均匀一致。因此,本实施例的散热结构200能够大幅地降低壳体140的外表面146产生热点(hot spot)的温度,使本实施例的电子装置100具有较佳的散热效率。When the heat generated by the
图4为使用现有散热结构的电子装置与本实施例的电子装置100的壳体热点温度(其是为一与环境温度的差值温度)的曲线图。图5为现有散热结构的电子装置与本实施例的电子装置100内的各电子元件的温度曲线图。图4与图5所对应的条件参数是金属层130的厚度为0.3mm,并且绝缘导热层120的厚度为0.45mm。由图4可知,在使用现有散热结构的电子装置的壳体的最热点的温度为摄氏44度,而本实施例的电子装置100的壳体140的最热点的温度(在上表面140a)仅为摄氏37.9度,两者相差6.1度。而在电子装置100的壳体140的下表面140b的热点温度也比现有电子装置的壳体的下表面的热点温度低摄氏5度,此两个表面是使用者经常容易碰触的地方,故其热点温度的降低是非常重要的。再者,即便以上述现有的散热结构再加以金属厚片(至少0.5mm)的多层堆叠或在壳体内侧增加贴附铜铝箔片(0.5mm以下)的方式来改善壳体温度,其壳体温度的最大降幅仅只能达到约为3℃的程度且还必需额外增加成本。由此可见,本实施例的电子装置100能够更加有效地且经济地降低壳体上的热点的温度。FIG. 4 is a graph of the hot spot temperature (which is the temperature difference between one and the ambient temperature) of the housing of the electronic device using the conventional heat dissipation structure and the
此外,相较于上述现有的散热结构组装在电子装置100的整体厚度而言,本实施例的散热结构200具有较薄的厚度,因此在电子装置的尺寸规格固定的情况下,电子装置100的内部具有较大的容置空间可供使用。In addition, compared with the overall thickness of the
由图5可知,本实施例的电子装置100内的各电子元件的温度均较使用现有散热结构的电子装置内的各电子元件的温度来得低,表示各电子元件本身温度都降低。其中,就最热的电子元件(编号D052)而言,温度降幅为7℃,而次热的电子元件(编号D050)的温度降幅更可以高达12℃。由此可知,相较于现有的电子装置而言,本实施例的电子装置100确实能够有效地降低其内部的电子元件的温度。It can be seen from FIG. 5 that the temperature of each electronic component in the
再者,当散热结构200的第一绝缘导热层120的材质是导热硅胶或是导热橡胶等软性材质时,由于金属层130能够提供足够的刚性,所以散热结构200能够维持固定的形状。所以,在组装电子装置100之前,制造者可先行制造并且储备一件式的散热结构200。在组装电子装置100的过程中,制造者可以将此一件式的散热结构200当作是零组件,而利用人力或是机械化设备将散热结构200放入于壳体140内即可。所以,本实施例的散热结构200能够有效减少工序、组装工时及减少作业员人数(约10%)。Moreover, when the material of the first insulating and heat-conducting
图6为本发明的第一实施例所衍生的一变化态样的电子装置的剖视示意图。请参照图6,其中与上述实施例相同标号的元件代表相同或是相似的元件。本实施例的电子装置101与图1的实施例不同之处在于,散热结构201的金属层130与电路板110电性连接,以使电路板110接地,以便防治电子零件的电磁干扰(Electromagnetic Interference,EMI)。更详细地说,第一绝缘导热层120’具有一开口128,其中开口128曝露出散热结构201的部分的金属层130。电路板110’包括一本体116以及一接地接点118。本体116包括一接地层,而接地接点118与本体116的接地层电性连接。接地接点118是经由例如一具有弹性的导电片300与开口128所曝露的金属层130电性连接。FIG. 6 is a schematic cross-sectional view of a modified electronic device derived from the first embodiment of the present invention. Please refer to FIG. 6 , where elements with the same numbers as those in the above embodiments represent the same or similar elements. The difference between the
图7为本发明第二实施例的电子装置的剖视示意图。请参照图7,其中与上述实施例相同标号的元件代表相同或是相似的元件。本实施例的电子装置102与图1的实施例不同之处在于,散热结构202除了包括第一绝缘导热层120以及金属层130之外,还包括一第二绝缘导热层170。较佳,第二绝缘导热层170与第一绝缘导热层120共同包覆金属层130,可避免安规问题。换句话说,金属层130是介于第一绝缘导热层120与第二绝缘导热层170之间。第二绝缘导热层170的热传导系数大于0.5W/m·K,其材质可以例如是导热橡胶或是导热硅胶。由于本实施例的第二绝缘导热层170是软性物质而具有可塑性,是以相较于图1的实施例的金属层130,第二绝缘导热层170与壳体140的接触性较佳,电子元件115所产生的热可更为快速地传递至壳体140表面,使电子元件115的温度能够更快速降低。换句话说,本实施例的散热结构可针对电子装置100内需要快速将热传递至壳体140表面以降温的高热电子元件115进行处理。FIG. 7 is a schematic cross-sectional view of an electronic device according to a second embodiment of the present invention. Please refer to FIG. 7 , where elements with the same numbers as those in the above embodiments represent the same or similar elements. The difference between the
第二绝缘导热层170亦是较佳经由化学键结结合的方式与金属层130结合,并且较佳与第一绝缘导热层120共同完全包覆金属层130以形成一件式的散热结构202。关于上述的化学键结结合,散热结构202包括一第二连结物180。第二绝缘导热层170是经由第二连结物180而与金属层130结合而热接触,其中第二连结物180与第二绝缘导热层170以及与金属层130化学键结的方式类似于第一实施例的第一连结物160与第一绝缘导热层120以及与金属层130的键结方式,在此便不再赘述。The second insulating and heat-conducting
图8为本发明第一实施例所衍生的另一变化态样的电子装置的分解示意图。图9为图8的电子装置的剖视示意图。请参照图8与图9,其中与上述实施例相同标号的元件代表相同或是相似的元件。电子装置103的散热结构203还包括一凸块129a。凸块129a自第一绝缘导热层120向容置空间P延伸,并且与至少一电子元件115热接触,其中凸块129a的热传导系数大于0.5W/m·K。因此,电子元件115所产生的热更可以经由热传导的方式将热传递至凸块129a。接着凸块129a再将热传导至第一绝缘导热层120。如此一来,相较于图1的实施例,电子装置103的电子元件150所产生的热能够更快速地被传递至第一绝缘导热层120。凸块129a的材质可相同或不同于于第一绝缘导热层120的材质,并且较佳地凸块129a是经由一体成形的方式形成于第一绝缘导热层120上。凸块129a亦可以是经由组装的方式而被组装于第一绝缘导热层120上。FIG. 8 is an exploded schematic diagram of another electronic device derived from the first embodiment of the present invention. FIG. 9 is a schematic cross-sectional view of the electronic device of FIG. 8 . Please refer to FIG. 8 and FIG. 9 , wherein elements with the same reference numerals as in the above embodiments represent the same or similar elements. The heat dissipation structure 203 of the
在本实施例中,散热结构203除了包括凸块129a之外,亦可以包括一凸块129b。凸块129b自第一绝缘导热层120向容置空间P延伸,并且与电路板110热接触,其中凸块129b的热传导系数、与电路板110的连接方式以及功能均类似于凸块129a,不再赘述。此外,凸块129b亦可作为支撑物(supporter),以支撑或是定位电路板110,其可以是不导热材质,并且与第一绝缘导热层一体成形制成。凸块129a及凸块129b的位置,可视电子装置100的不同散热需求作适当配置。In this embodiment, the heat dissipation structure 203 may also include a bump 129b in addition to the bump 129a. The bump 129b extends from the first insulating and heat-conducting
图10为本发明第三实施例的电子装置的剖视示意图。请参照图10,其中与上述实施例相同标号的元件代表相同或是相似的元件。本实施例与图7所绘示的实施例不同之处在于,在本实施例中,第二绝缘导热层170是经由一第三连结物190而与壳体140结合,其中第三连结物190分别与第二绝缘导热层170以及与壳体140化学键结。上述的化学键结的方式类似于第一实施例的第一连结物160与第一绝缘导热层120以及与金属层130的键结方式,在此便不再赘述。FIG. 10 is a schematic cross-sectional view of an electronic device according to a third embodiment of the present invention. Please refer to FIG. 10 , where elements with the same numbers as those in the above embodiments represent the same or similar elements. The difference between this embodiment and the embodiment shown in FIG. 7 is that in this embodiment, the second insulating and heat-conducting
图11为本发明第四实施例的电子装置的剖视示意图。请参照图11,其中与上述实施例相同标号的元件代表相同或是相似的元件。本实施例与图3所绘示的实施例不同之处在于,在本实施例中,散热结构204还包括一第四连结物,而金属层130是经由第四连结物195而与壳体140结合,其中第四连结物195分别与金属层130以及与壳体140化学键结。上述的化学键结的方式类似于第一实施例的第一连结物160与第一绝缘导热层120以及与金属层130的键结方式,在此便不再赘述。FIG. 11 is a schematic cross-sectional view of an electronic device according to a fourth embodiment of the present invention. Please refer to FIG. 11 , where elements with the same numbers as those in the above embodiments represent the same or similar elements. The difference between this embodiment and the embodiment shown in FIG. 3 is that in this embodiment, the
图12为本发明第一实施例所衍生的另一变化态样的电子装置的剖视示意图。请参照图12,其中与上述实施例相同标号的元件代表相同或是相似的元件。本实施例的电子装置106与图3所绘示的实施例不同之处在于,壳体140’还包括位于第二壳体144’与第一壳体142’的至少一突起148,较佳可由壳体内侧射出成形,使散热结构200与壳体140’之间产生局部接触。更详细地说,在本实施例中,突起148朝向壳体的容置空间P突出并与散热结构200的金属层130接触,以使散热结构200与壳体140’之间具有一间隙。藉此间隙增加散热结构200与壳体140’之间的热阻,以减缓热自散热结构200直接传导至传递至壳体140’表面的速率,使热能在散热结构内传导扩散地更均匀,如此可进一步降低壳体表面的热点(hot spot)的温度。此外,亦可使金属层130具有至少一突起134。突起134可以例如冲压方式产生并自金属层130朝向壳体140’突出。突起134抵顶壳体140’以使壳体140’与散热结构200之间具有一间隙。突起148及突起134的位置,可视电子装置100的不同散热需求作适当配置。另外,这些突起148及突起134亦可应用于图7的第二实施例中,即在壳体140内侧或第二绝缘导热层170或金属层130产生突起,以使散热结构202与壳体140之间具有一间隙。FIG. 12 is a schematic cross-sectional view of another variation of the electronic device derived from the first embodiment of the present invention. Please refer to FIG. 12 , where elements with the same numbers as those in the above embodiments represent the same or similar elements. The difference between the electronic device 106 of this embodiment and the embodiment shown in FIG. 3 is that the housing 140' further includes at least one protrusion 148 located at the second housing 144' and the first housing 142', preferably by The inner side of the housing is injection molded to make local contact between the
有关散热结构200的第一绝缘导热层120以及金属层130的结合方式,除了上述的化学键结方法外,亦可利用其他化学或物理结合的方式例如叠合或其他粘着促进剂等,使第一绝缘导热层120与金属层130热接触。另外,列举其他的具体实施例如下。Regarding the combination of the first insulating and thermally
请参照图13,为本发明第五实施例的电子装置的剖视示意图,其以第一实施例的元件架构为例来说明。电子装置107内的第一绝缘导热层120”亦可以具有一结合部122。结合部122自第一绝缘导热层120”朝向壳体140突出。结合部122自金属层130’的一侧穿贯金属层130’上的一孔洞136并且突出于金属层130’的另一侧。并且结合部122的突出于金属层130’的另一侧的结合部122朝孔洞外延伸形成例如凸状物,以将金属层130’结合固定于第一绝缘导热层120”,形成一件式的散热结构205。于制作散热结构205时,制造者例如可以先将一金属片进行冲孔,以形成孔洞136。之后,使绝缘导热片放置于金属片上。再来利用模具对金属片以及绝缘导热片进行加热并且进行压合,以使部分的绝缘导热片穿过孔洞136,进而形成具有结合部122的第一绝缘导热层120”以及金属层130’。Please refer to FIG. 13 , which is a schematic cross-sectional view of an electronic device according to a fifth embodiment of the present invention, which uses the component structure of the first embodiment as an example for illustration. The first insulating and heat-conducting
请参照图14,为本发明第六实施例的电子装置的剖视示意图,其是以第一实施例的元件架构为例来说明。电子装置108内的第一绝缘导热层120亦可通过一绝缘扣具400,例如,一对塑胶螺丝402以及塑胶螺帽404,与金属层130结合而热接触。Please refer to FIG. 14 , which is a schematic cross-sectional view of an electronic device according to a sixth embodiment of the present invention, which is illustrated by taking the component structure of the first embodiment as an example. The first insulating and heat-conducting
再者,在本发明中,由于第一绝缘导热层或/及第二绝缘导热层可为例如导热橡胶或导热硅胶的软性材质,所以,当第一绝缘导热层或/及第二绝缘导热层与金属层结合时,第一绝缘导热层或/及第二绝缘导热层能够有效吸收第一绝缘导热层或/及第二绝缘导热层与金属层之间因彼此的热膨胀系数不同而产生的结构变异,例如翘曲或脆裂等,同样的情况亦适用在因绝缘导热层与金属层和壳体之间热膨胀系数不同而产生的结构变异。因此,使运用本发明散热结构的电子装置通过高低温冷热冲击(Thermal Shock Test)的测试。另外,软性的第一绝缘导热层或/及第二绝缘导热层亦可以有效吸收电子装置因内部元件产生震动所产生的噪音,因此,使运用本发明散热结构的电子装置通过(NoiseTest)的测试。Furthermore, in the present invention, since the first insulating and heat-conducting layer or/and the second insulating and heat-conducting layer can be soft materials such as heat-conducting rubber or heat-conducting silica gel, when the first insulating and heat-conducting layer or/and the second insulating and heat-conducting layer When the layer is combined with the metal layer, the first insulating and heat-conducting layer or/and the second insulating and heat-conducting layer can effectively absorb the heat generated between the first insulating and heat-conducting layer or/and the second insulating and heat-conducting layer and the metal layer due to the difference in thermal expansion coefficient between each other. Structural variation, such as warping or brittle cracking, etc., the same situation also applies to the structural variation caused by the difference in thermal expansion coefficient between the insulating heat-conducting layer and the metal layer and the shell. Therefore, the electronic device using the heat dissipation structure of the present invention can pass the test of high and low temperature thermal shock (Thermal Shock Test). In addition, the soft first insulating and heat-conducting layer or/and the second insulating and heat-conducting layer can also effectively absorb the noise generated by the vibration of the internal components of the electronic device. test.
由上述各实施例以及衍生的各种变化态样的说明可知,将本发明的散热结构运用在电子装置,不但相较于现有技术可使壳体的表面的温度分布较均匀并有效降低壳体的表面热点的温度,而且在工艺组装上有效地减少工序、组装工时及作业员人数,达到降低成本并且提高生产良率的优点。同时,不但可符合安规绝缘需求,亦符合各种机构测试要求。再者,本发明的散热结构可提供极具弹性设计的运用,即可视电子装置的各种不同散热需求,针对壳体的表面热点的温度或内部高热电子元件降温,进行壳体和散热结构上的配合设计。It can be seen from the descriptions of the above-mentioned embodiments and various derived variations that the application of the heat dissipation structure of the present invention to electronic devices can not only make the temperature distribution on the surface of the casing more uniform and effectively reduce the temperature of the casing compared to the prior art. The temperature of the hot spot on the surface of the body, and effectively reduce the process, assembly man-hours and the number of operators in the process assembly, so as to achieve the advantages of reducing costs and improving production yield. At the same time, it not only meets the insulation requirements of safety regulations, but also meets the testing requirements of various agencies. Furthermore, the heat dissipation structure of the present invention can provide extremely flexible design applications, that is, depending on the various heat dissipation requirements of the electronic device, the temperature of the surface hot spots of the casing or the temperature of the internal high-heat electronic components can be adjusted to optimize the casing and heat dissipation structure. matching design.
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。Certainly, the present invention also can have other multiple embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding Changes and deformations should belong to the scope of protection of the appended claims of the present invention.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210024307.6A CN103220896B (en) | 2012-01-20 | 2012-01-20 | Heat dissipation structure and electronic device with the heat dissipation structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210024307.6A CN103220896B (en) | 2012-01-20 | 2012-01-20 | Heat dissipation structure and electronic device with the heat dissipation structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103220896A true CN103220896A (en) | 2013-07-24 |
CN103220896B CN103220896B (en) | 2015-11-25 |
Family
ID=48818181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210024307.6A Active CN103220896B (en) | 2012-01-20 | 2012-01-20 | Heat dissipation structure and electronic device with the heat dissipation structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103220896B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104640414A (en) * | 2013-11-11 | 2015-05-20 | 富泰华精密电子(郑州)有限公司 | Mobile terminal |
CN105323605A (en) * | 2014-06-04 | 2016-02-10 | 安徽省磊鑫科技有限公司 | Television stick |
CN108345368A (en) * | 2017-01-25 | 2018-07-31 | 联昌电子企业股份有限公司 | Heat dissipation structure and heat dissipation method of power supply |
CN108882502A (en) * | 2017-05-11 | 2018-11-23 | 裕晨科技股份有限公司 | Circuit board with heat conduction and heat dissipation functions |
CN114007396A (en) * | 2021-11-22 | 2022-02-01 | 京东方科技集团股份有限公司 | Power supply, light adjusting window and assembling method |
JP7555256B2 (en) | 2020-12-10 | 2024-09-24 | シャープ株式会社 | Electronic device and display device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030161132A1 (en) * | 2002-02-05 | 2003-08-28 | Mitsubishi Denki Kabushiki Kaisha | Communication device |
CN201349384Y (en) * | 2008-12-24 | 2009-11-18 | 彭泰企业有限公司 | High heat conduction and dissipation aluminum-coated metal substrate structure |
CN201804859U (en) * | 2010-08-19 | 2011-04-20 | 欣兴电子股份有限公司 | circuit board |
-
2012
- 2012-01-20 CN CN201210024307.6A patent/CN103220896B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030161132A1 (en) * | 2002-02-05 | 2003-08-28 | Mitsubishi Denki Kabushiki Kaisha | Communication device |
CN201349384Y (en) * | 2008-12-24 | 2009-11-18 | 彭泰企业有限公司 | High heat conduction and dissipation aluminum-coated metal substrate structure |
CN201804859U (en) * | 2010-08-19 | 2011-04-20 | 欣兴电子股份有限公司 | circuit board |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104640414A (en) * | 2013-11-11 | 2015-05-20 | 富泰华精密电子(郑州)有限公司 | Mobile terminal |
US9552026B2 (en) | 2013-11-11 | 2017-01-24 | Hon Hai Precision Industry Co., Ltd. | Mobile terminal |
CN105323605A (en) * | 2014-06-04 | 2016-02-10 | 安徽省磊鑫科技有限公司 | Television stick |
CN108345368A (en) * | 2017-01-25 | 2018-07-31 | 联昌电子企业股份有限公司 | Heat dissipation structure and heat dissipation method of power supply |
CN108882502A (en) * | 2017-05-11 | 2018-11-23 | 裕晨科技股份有限公司 | Circuit board with heat conduction and heat dissipation functions |
JP7555256B2 (en) | 2020-12-10 | 2024-09-24 | シャープ株式会社 | Electronic device and display device |
CN114007396A (en) * | 2021-11-22 | 2022-02-01 | 京东方科技集团股份有限公司 | Power supply, light adjusting window and assembling method |
Also Published As
Publication number | Publication date |
---|---|
CN103220896B (en) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI484897B (en) | Heat dissipation structure and electronic device having the same | |
CN103220896B (en) | Heat dissipation structure and electronic device with the heat dissipation structure | |
US9137928B2 (en) | Planar heat dissipation structure and electronic device utilizing the same | |
CN104813760B (en) | A kind of radiating subassembly and electronic equipment | |
TWI584720B (en) | Electronic device and heat dissipation and electromagnetic shielding structure thereof | |
US7965514B2 (en) | Assemblies and methods for dissipating heat from handheld electronic devices | |
US9258928B2 (en) | Assemblies and methods for dissipating heat from handheld electronic devices | |
US20120147565A1 (en) | Heat dissipation and temperature-homogenizing structure and electronic device having the same | |
TWI395541B (en) | Heat dissipating structure of socket pins | |
JP2017536693A (en) | Electronic circuit board assembly comprising an EMI shield structure and a heat dissipation pad | |
TWM377062U (en) | Electronic device with a heat insulating structure | |
US20150194816A1 (en) | Electrically powered portable device | |
CN116995893A (en) | Power adapter and manufacturing method thereof | |
CN107546197B (en) | Electronic device and its heat dissipation and electromagnetic shielding structure | |
US20140247559A1 (en) | Heat dissipation structure of electronic shield cover | |
CN202488907U (en) | Heat radiation structure and electronic device with the same | |
TWI492702B (en) | Planar heat dissipation structureand electronic device | |
CN210379025U (en) | Power device packaging structure | |
CN207611764U (en) | The mos devices and electronic equipment of height heat dissipation | |
TWI598726B (en) | Portable electronic product and heat-dissipating casing structure applied thereto | |
TWI537567B (en) | Electronic load testing device | |
CN108345368A (en) | Heat dissipation structure and heat dissipation method of power supply | |
KR20120055345A (en) | Smps:switching mode power supply | |
TWM461036U (en) | Heat dissipation case | |
CN102098898B (en) | Universal Serial Bus device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170313 Address after: Wujin, Changzhou province high tech Industrial Development Zone, 88 Yang Lake Road, No. Patentee after: Lite on Technology (Changzhou) Co., Ltd. Patentee after: Lite-On Technology Corporation Address before: Ruiguang road Taiwan Taipei City Neihu district China No. 392 22 floor Patentee before: Lite-On Technology Corporation |