CN103189309B - 通过化学气相沉积生产碳纳米结构和网状结构 - Google Patents

通过化学气相沉积生产碳纳米结构和网状结构 Download PDF

Info

Publication number
CN103189309B
CN103189309B CN201180044915.7A CN201180044915A CN103189309B CN 103189309 B CN103189309 B CN 103189309B CN 201180044915 A CN201180044915 A CN 201180044915A CN 103189309 B CN103189309 B CN 103189309B
Authority
CN
China
Prior art keywords
carbon
network structure
structured
metal nanoparticle
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180044915.7A
Other languages
English (en)
Other versions
CN103189309A (zh
Inventor
克里希纳·纳拉扬·库马尔·科夫尔基
赫拉尔杜斯·约瑟夫·玛丽亚·科佩
拉尔藤 鲁特格尔·亚历山大·戴维·范
鲁特格尔·亚历山大·戴维·范拉尔藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universiteit Delft
Original Assignee
Technische Universiteit Delft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universiteit Delft filed Critical Technische Universiteit Delft
Publication of CN103189309A publication Critical patent/CN103189309A/zh
Application granted granted Critical
Publication of CN103189309B publication Critical patent/CN103189309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • B01J35/45Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/753Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc. with polymeric or organic binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及用于制备结晶碳纳米结构和/或结晶碳纳米结构的网状结构的方法,包括(i)提供包含具有1至100nm之间的平均粒径的金属纳米颗粒的双连续微乳剂;(ii)引入所述双连续微乳剂以与基板接触;并且(iii)将所述金属纳米颗粒和气态碳源经受化学气相沉积,因此形成碳纳米结构和/或碳纳米结构的网状结构。随即,能够获得结晶碳纳米结构的网状结构,优选碳纳米管网状结构。

Description

通过化学气相沉积生产碳纳米结构和网状结构
技术领域
本发明涉及碳纳米结构如碳纳米管(CNTs)、呋仑碳(富勒烯,fullerenes)和石墨烯。更具体地,本发明涉及碳纳米结构的网状结构,尤其是碳纳米管网状结构及其生产,以及在复合材料中这些网状结构的用途。本发明还涉及在纳米网状结构生产中适合使用的组合物。
背景技术
碳纳米管是通过一层或多层石墨烯形成的管状结构。自从九十年代早期发现制造碳纳米管的合成方法以来,由于碳纳米管具有优异的电学、热学及机械性能以及大的比表面,已将大量的注意力集中于碳纳米管。基于以上特点,已经提出从微电子元件、显示器、无线通讯至燃料电池的各种应用。
具有三种主要方法用于合成单-壁和多-壁碳纳米管,包括石墨棒的电弧放电、碳的激光烧蚀(激光消融)和烃类的化学气相沉积。然而,用于合成碳纳米管的最为成本有效的方法是基于化学气相沉积(CVD)。通常金属催化的热化学气相沉积(CVD)使用便宜的原料并且具有相对低的能量需求,因此吸引人的关注点在于大量合成的目的。在化学气相沉积方法中,含碳的气体在高温下分解并且在细分的催化剂(通常是铁、镍、钴或其他过渡金属或合金)的影响下,这些碳原子结合以形成碳纳米管(CNTs)。可以通过金属有机化合物的分解在原位生产催化剂颗粒或者可以将在固定基板上的催化剂颗粒插入化学气相沉积炉中。
EP1952467涉及纳米线(nanowire)结构和包含这种结构的互联多孔的纳米线网状结构。纳米线充当用于碳网状结构生长的模板的核。为了使催化剂的可达性(可及性,accessibility)和利用性达到最大,例如在燃料电池应用中,EP’467教导了在纳米线的表面上设置薄膜或一层金属催化剂。然而,在纳米线载体(支撑物)和设置在其上的催化剂颗粒之间的紧密键接反映出有限的催化效率和导电性能。另外,位于碳结构顶部上的催化颗粒使它们更易受脱附的影响。并且,这样获得的纳米结构并不是结晶的,这将致使这些结构对于很多应用都不适用。通过引用将EP’467的内容结合于本文中。
本领域广泛公认的,除了其他原因外通常由于化学气相沉积几乎不受催化剂性能控制而导致产生大量的杂质。US2006/0104889教导了小的平均粒径及窄粒径分布的催化剂,但是很难合成。US’889提出了具有1至50nm之间的尺寸、以1:1–1:50的颗粒与载体重量比率负载在粉末氧化物上的催化剂颗粒。通过引用将US’889的内容结合至本文中。
EP1334064公开一种用于制造碳纳米管的方法,该方法包括将纳米尺度的细金属颗粒以气相悬浮。这使得碳纳米管的形状和结构被控制。金属纳米颗粒具有几个至几百纳米量级的平均尺寸。该发明尝试通过使用表面活性剂(其能够防止胶体金属颗粒的粘聚)来控制碳纳米管的纯度。通过引用将EP’064的内容结合至本文中。
EP2123602公开了使用化学气相沉积方法生长的纳米管,其中将蛋白的S-层产生在基板上并且将其用作掩模(mask),其中通过保温(incubation)和减少相应的金属盐溶液将无机纳米颗粒沉积掩模上。在图1和2中提出这些离散的纳米结构的物理组装,而在这些结构之间没有任何化学的内部连接性(互联性,interconnectivity)。通过引用将EP2123602的内容结合至本文中。
然而,应用于如上所述的本领域中的窄尺寸分布的金属催化剂颗粒只能在低密度下提供。即使由微乳剂制得以稳定金属颗粒的应用,由于浑浊性凝结(break-up)的损失通常金属颗粒的浓度约是几个mM。为此,EP1334064中的具体实施例,金属颗粒的最大浓度是10mM。然而迄今为止,在这些种类的浓度下还没有在本领域中观察到碳纳米管的网状结构。
同样,不管上述在化学气相沉积中用于控制颗粒尺寸的各种尝试,Takenaka等“Formation of carbon nanotubes through ethylene decompositionover supported Pt catalysts and silica-coated Pt catalysts”Carbon47(2009)1251–1257,显示对金属颗粒的尺寸的起始控制并不能保证成功,这是因为在真正的碳分解过程中没有任何预防性措施来防止金属颗粒严重聚集。
因此,本发明力争更好地控制催化剂聚集,并且因而获得碳纳米结构的纯度和一致性。还存在对于基于单一化学气相沉积方法来生产化学互联的碳纳米结构的网状结构的需要。
发明内容
本发明者已经找到用于制造碳纳米结构(如碳纳米管(CTNs))的成本有效的方法,通过在纳米尺寸的金属颗粒的单分散分布的周围形成和生长纳米结构。尤其是通过该方法可以合成化学互联的碳纳米网状结构,这是史无前例的。当在复合材料中使用这些网状结构作为填充剂时,这些网状结构赋予电性能、机械强度、热性质和化学耐性在本领域中是史无前例的。这些性质的一些实施例将在所附的实施例中给出。
WO2010/041937中公开了技术构成的应用,在碳纳米结构的区域之外,提供高密度和窄尺寸分布的受控尺寸金属颗粒,它们在双连续微乳剂中生长。通过引用将WO’937的内容结合至本文中。微乳剂的特性能够很好地控制颗粒尺寸和单分散性。在化学气相沉积期间,当允许任何纳米结构实际生长时,本发明人的洞察力致使能够显著地降低杂质。避免了催化剂的沉积。
本发明的方法的关键是纳米结构在双连续微乳剂中制备的催化剂颗粒的周围生长。令人惊奇的是,在增高温度的化学气相沉积环境中,当双连续微乳剂的特性消失时,金属颗粒尺寸还在保持,并且聚集不可能发生在本发明中,至于其他稳定化系统更不可能发生。尽管本发明人并不希望受限于任何理论,但是认为的原因在于在颗粒周围的微乳剂碳化在770K以上,因此在碳分解期间防止了它们烧结。
此外,通过使用用于制备金属颗粒的双连续微乳剂,能够达到高于任何其他系统的颗粒浓度,包括如WO81/02688中公开的微滴型(油包水,L2相)微乳剂。在本领域中,术语“L2”是保留用于在连续的油相中包含少量水的表面活性剂聚集物的乳状剂。由于完整性的缘故,在所附的实施例中确认使用的L2-型微乳剂(例如EP2123602的化学气相沉积过程)不产生任何网状结构。然而,应当注意WO’688本身在碳纳米管领域以外,并且对化学气相沉积过程缺少任何指示。
尽管本发明人并不希望受限于任何理论,但是本发明人确信提高的颗粒浓度通过双连续微乳剂的复杂纳米结构有助于控制产物前体原子、核(nucleii)和随后颗粒的动力学。而且,在双连续微乳剂中可获得的高表面活性剂浓度稳定由很多小颗粒产生的巨大表面。随即,它能够比微滴型微乳剂提高数个数量级的金属颗粒浓度。本作者假设通过具有高浓度的催化剂纳米颗粒,产生一些成核中心,这些成核中心进一步生长以形成分支,这些分支形成碳纳米管网状结构的基础。本领域对于这样的网状结构是无记载的(silent)。
在结构和多孔性方面,如此获得的碳纳米结构及其网状结构的产品状态(product-wise)与根据现有技术所生产的那些纳米结构是可区别的,而且在它们的化学、电学和机械性能方面也是可区别的,其通过本领域技术人员使用的常规光谱学技术(例如介电谱(电介质光谱学))可以在无需过度劳动下很容易地证明。这些性能可以有宜于以下应用,如催化作用中(例如非均相的,电催化)、冶金学(例如用于铝生产的正电极)、电子学(例如存储设备,处理器)、传感器(例如用于水中的生物分子和毒性离子)和用于公用项目的框架(例如飞机或汽车部件,运动商品)。将在所附的实施例中详细讨论这些性能。
附图说明
图1比较了使用(a)微滴型微乳剂(“L2”)和(b)双连续微乳剂所生产的铂纳米颗粒;
图2示出通过动态光散射所测定的在双连续微乳剂中生产的纳米颗粒的粒径分布。该特定批次包含与实施例1中的配方对应的5nm的颗粒;
图3a示出碳纳米管网状结构的透射电子显微镜图像。较厚和较长的结构是更小的纳米管簇;
图3b是其中碳纳米管网状结构与例示性叠加的结点处的加亮部分;
图4示出化学互联的纳米管。黑点是用来生长纳米管的纳米颗粒催化剂;
图5示出具有加帽端的多壁碳纳米管。纳米管的黑核周围的较浅外鞘可能是由于非结晶层或者由于因纳米管的弯曲导致的像差;
图6示出本领域工艺状态(state-of-the-art)的纳米管(b)与根据本发明的碳纳米管网状结构(a)之间在形状和结构中的差异。图6a示出根据本发明的“海绵样”化学连接的碳纳米管网状结构。图6b图示典型的商业可获得的在其簇(clump)中无结构的碳纳米管。
图7a-7d:根据本发明具有化学连接的碳纳米管的碳纳米管网状结构,其显示新类型的结点(junction);
图8示出使用(a)铁和(b)银催化剂纳米颗粒所生长的碳纳米管网状结构;
图9:(a)聚甲基丙烯酸甲酯和包含碳纳米管网状结构与聚甲基丙烯酸甲酯(PMMA)的复合材料的导电性;(b)聚酰亚胺和包含碳纳米管网状结构与PI聚酰亚胺的复合材料的储能模量;(c)聚乙烯和包含碳纳米管网状结构与聚乙烯(PE)的复合材料的储能模量和角正切(tanδ,tandelta);以及(d)环氧树脂和包含碳纳米管网状结构与环氧树脂的复合材料的储能模量和角正切(tan delta);
图10比较了(a)多壁碳纳米管和(b)碳纳米管网状结构的拉曼光谱(Raman spectrum);
图11比较了(a)多壁碳纳米管和(b)碳纳米管网状结构的多孔性;
图12:具有碳纳米管网状结构作为电极及作为电解质所构成的燃料电池的极化曲线。
具体实施方式
根据一个方面,本发明涉及一种用于制造结晶碳纳米结构,优选纳米管的方法,包括:(i)提供包含具有平均粒径从1至100纳米的金属纳米颗粒的双连续微乳剂,(ii)使所述双连续微乳剂与基板接触,并且(iii)将所述金属纳米颗粒与气态碳源经受化学气相沉积,因此形成所述结晶碳纳米结构。
有利地,通过在所述双连续微乳剂中将第一双连续微乳剂(其中水相包含能够被还原成最终金属颗粒的金属络盐)和第二双连续微乳剂(其中水相包含能够还原所述金属络盐的还原剂)混合来控制金属颗粒的均一性;当混合的金属铬盐被还原,从而形成金属颗粒。
该受控制的双连续环境稳定颗粒对抗烧结或奥斯特瓦尔德熟化(Ostwald ripening)。很容易控制催化剂颗粒的尺寸、浓度和耐久性。考虑了常规实验以在上述范围内调整平均金属粒径,例如通过修改金属前体对还原剂的摩尔比值。还原剂的相对量的增加产生更小的颗粒。因此所获得的金属颗粒是单分散的,平均粒径的偏差优选在10%以内,更优选在5%以内。
同样,以实际的金属前体能够被还原为条件,本技术对于实际的金属前体的提供没有限制。与现有技术不同,(本发明)没有必要随后将数层活性催化材料沉积在如此形成的金属颗粒上。在催化化学气相沉积中,已知有效的催化剂种类是贵金属(Pt、Pd、Au、Ag),铁族元素(Fe、Co和Ni),Ru和Cu。适合的金属络合物是但不限于(i)铂前体,如H2PtCl6;H2PtCl6.xH2O;K2PtCl4;K2PtCl4.xH2O;Pt(NH3)4(NO3)2;Pt(C5H7O2)2,(ii)钌前体,如Ru(NO)(NO3)3;Ru(dip)3Cl2[dip=4,7-二苯基-1,10-菲咯啉(fenanthroline)];RuCl3,或(iii)钯前体,如Pd(NO3)2,或(iv)镍前体,如NiCl2或NiCl2.xH2O;Ni(NO3)2;Ni(NO3)2.xH2O;Ni(CH3COO)2;Ni(CH3COO)2.xH2O;Ni(AOT)2[AOT=双(2-乙基己基)磺基丁二酸根]。
适合的非限制性还原剂是氢气、硼氢化钠、亚硫酸氢钠、肼或水合肼、乙二醇、甲醇和乙醇。还适合的还原剂是柠檬酸和十二烷基胺(dodecylamine)。
作为所附实施例中的证据,金属前体的类型并不是本发明的要点部分。在一个方面中,双连续微乳剂的金属颗粒优先选自由Pd、Au、Ag、Fe、Co、Ni、Ru和Cu组成的组中,以便控制最终形成的碳纳米管网状结构的形态学。
术语“碳纳米结构”被理解为包含结晶sp2-基的碳同素异形体,即其中碳原子与邻近的三个碳原子以六棱形相连接的物质,包括石墨烯,呋仑碳(富勒烯)和碳纳米管。有利地,通过使用双连续微乳剂以及随即能够提供均一且高的金属颗粒浓度,依赖所应用的实际金属粒径和密度,本领域技术人员能够制备任何所期望的结晶碳纳米结构。
碳纳米管是优选的纳米结构,即具有直径从几埃(angstroms)至几纳米范围与长度从直径的十倍至千倍范围的圆柱状碳分子。涉及制造纳米管的壁的碳层数量,使用本发明能够生产单壁和多壁(例如,双壁)的碳纳米管。
本发明的方法允许多壁碳纳米结构的结晶碳纳米结构的网状结构的生长,将多壁碳纳米结构通过各种结点包括Y-结点和H-结点(参见图7)来化学互联。
本发明的反应过程使用现有技术中描述的化学气相沉积以形成碳纳米管。因此,在本发明中没有特别的限制,用于进行本发明的过程参数,如温度、时间和压力,本领域技术人员可以容易地从现有技术中确定。仅仅作为指南,使用活性催化剂的步骤(iii)中的反应条件,活性催化剂被沉积在负载体或载体上,以催化碳积聚反应用于形成碳纳米管,包括:将惰性气体(例如He、Ar或N2),氢和碳源气体引入高温和1-5巴压力下的反应器中反应1-360分钟的时间。高温环境范围从750至1100K,优选至少800K以上,更优选至少850K,尤其为至少900K。当完成反应时,出去载体以便回收碳纳米管。
该方法优选是分批法,其中将含碳气体和金属催化性颗粒置于反应单元中并且在里面保持用于反应期间的持续时间。可替代地,该方法可以是连续的,其中金属催化性颗粒和含碳气体在反应器中连续给料及混合。
气态碳源包括,饱和的及不饱和的脂肪族烃类,如甲烷、乙烷、丙烷、丁烷、己烷、乙烯、乙炔和丙烯;一氧化碳,氧化烃类,如丙酮和甲醇;芳香烃类,如甲苯、苯和萘;以及上述的混合物,例如一氧化碳和甲烷。使用乙炔促进多壁碳纳米管的形成,而CO和甲烷是优选形成单壁碳纳米管的气体。这些气态碳源可以可选地与稀释气体如氮气、氦气、氩气或氢气混合。
选择载体使得其在非故意地加热过程期间不与活性金属催化剂反应,以使活性金属催化剂可以如所期望的催化碳纳米管的合成反应。载体优先选自钛,铜,不锈钢,钼和惰性氧化物如二氧化硅(玻璃、石英),陶瓷制品和特殊材料(exotic materials)如金刚石。利用用于载体的沸石可以获得优异的结构。与基于双连续乳剂的金属催化剂颗粒一起,载体的类型对于生长的纳米结构并不具有任何不利影响。
作为根据本发明方法的结果,在将金属纳米颗粒嵌入其中并且物理地附着至碳纳米结构,该碳纳米结构在这些颗粒周围形成并生长,获得均一的晶体纳米结构。经过分析发现,在化学气相沉积(CVD)期间金属聚集是最低的,单一的特性(单个个体,singular character)被维持。
在一个方面,本发明涉及通过上述详细描述的方法获得的或可获得的化学连接即共价连接的碳纳米网状结构,优选碳纳米管(CNTs)。在网状结构形成时的金属颗粒的最低浓度依赖于一系列很容易被本领域技术人员控制的参数。尽管金属颗粒的浓度是显著因素,但是其他贡献参数是双连续乳剂的类型包括其有机相和表面活化剂以及它们的相对量。在所附实施例中提供了各实施例。考虑在技术人员的范围内提供充足的金属颗粒密度以使得网状结构形成,使用双连续乳剂有利地使该方法没有限制。
为了取得纳米网状结构,然而优选的是,在至少15mM,优选至少20mM,尤其是至少25mM,特别是30mM的活性金属浓度下使双连续微乳剂中的金属颗粒经受化学气相沉积过程(CVT)。在浓度高于40mM时获得优异的网状结构。这些是催化剂与双连续微乳剂中水相的量的相对浓度。在高催化剂颗粒浓度下,碳纳米管网状结构以其中碳纳米管是化学连接的(方式)获得(图3)。这些相对量优选的是基于贡献的金属颗粒的量。在这方面,由此形成的碳纳米结构与现有技术的不同。
这也反映在碳纳米结构的网状结构的特性中,这并不对应于在非-碳网状结构中发现的行为。现有技术中的碳纳米结构,其不是化学连接的,显示出完全不同的行为。根据一个实施方式,这些网状结构可以通过拉曼光谱表征,在波长是1000–2000cm-1的范围中显示两个部分重叠的信号(但是还可区别),并且在波长是1800–3500cm-1的范围中显示宽的第三信号;信号通常通过具有信噪比至少是5,更优选至少是10,更优选至少是20来鉴定(识别)。宽信号可以通过具有在半高度处信号宽度为至少100cm-1,优选100–800cm-1,更优选100–400cm-1表征。在一个实施方式中,在半高度处信号宽度是至少300cm-1,优选可达1000cm-1。碳纳米管(CNTs)和碳纳米管网状结构之间区别的实施例在图10中示出。
另外的或可替代的,根据本发明的实施方式,通过在温度高于160℃,优选高于175℃下的(第二)过渡(态)(跃迁,transition),碳纳米结构的网状结构或CNT(碳纳米管)网状结构可以与无结构且彼此间无化学连接的碳纳米管(CNT)区别开。第二过渡态的存在是网状结构而不是单个管的指示。在图9c中示出一个实施例。
本发明还涉及包括根据本发明的碳纳米管网状结构的复合材料组合物,还包括聚合物,例如对于基于所述聚合物的复合材料用于增加机械强度。因此它可以以任何量加入,基于复合材料中全部聚合物重量,例如0.1–10wt%,更优选0.5–8wt%,甚至更优选至少1wt%。
本发明还涉及包含具有1至100nm之间平均粒径的金属纳米颗粒的双连续微乳剂,其中来自平均粒径的粒径偏差少于10%,优选少于5%。金属颗粒的浓度优选的是如上文所描述的,致使微乳剂适合提供晶体纳米结构的网状结构。本发明还涉及这些双连续微乳剂在制备碳纳米结构及其网状结构中的应用,如在上文中详细说明的。
实施例
实施例1.通过CVD在铂纳米颗粒上合成碳纳米管
实施例1a.铂纳米催化剂的合成
将氟碳化合物表面活性剂[全氟(4-甲基-3,6-二氧杂辛烷)硫酸盐]与正己醇的混合物添加至水溶液后制备两种微乳剂。第一微乳剂包含铂前体六氯铂酸。向第二微乳剂中添加还原剂联胺(肼)。在混合时,还原剂的量设定为铂络合物浓度的10倍以便获得完全还原。通过混合相等量的两种微乳剂进行纳米颗粒的合成:
H2PtC16(水溶液)+N2H4(水溶液)-->Pt(s)+6H++6Cl-+N2
铂纳米颗粒使用透射电子显微镜法(TEM)和动态光散射(DLS)表征。透射电子显微镜法(TEM)使用Philips CM30T电子显微镜与六硼化镧(LaB6)灯丝在300kV下作为电子源来操作而完成的。通过将样品悬液滴落在载网(网格栅,grid)上,将样品安装在铜载网上支持的微细网孔碳聚合物(microgrid carbon polymer)上。如图1b和图2所示,该颗粒显示约5nm的平均粒径。分析尺寸偏差在平均粒径的10%以内。
对比实施例1a.1.L2-相微乳剂
图1a示出L2-相微乳剂的实施例。该图复制自D.-H.Chen,J.-J.Yeh和T.-C.Huang,J.Coll.Int.Sci.,215,(1999),159–166。它建立了在WO81/02688中应用的用于微乳剂的模型。图1a中约9nm尺寸的纳米颗粒产生自微滴型微乳剂中,并且彼此很好分离。
明显地,图1b中示出的双连续微乳剂具有高于图1a中示出的L2-相微乳剂的均一尺寸及形状的纳米颗粒的密度。在双连续微乳剂中纳米颗粒好像以聚集体(pool)集簇,这些聚集体都被包含纳米颗粒的通道连接,可能是双连续结构的基序的结果,这些都是不可见的因为其与背景不具有反差。据信在化学气相沉积过程中高浓度的催化剂纳米颗粒将导致高度分支的碳纳米管网状结构,随其后形成化学连接的网状结构。
实施例1b.碳纳米管的合成
将包含10mM铂(Pt)沉淀物的微乳剂倾倒在放置在反应器底部的铜载网上。在100ml/min的氮气流下提高温度至973K(10K/min)以后,将乙烯气体(C2H4)以10ml/min引入反应器中。在恒温973K下使在纳米颗粒之上的气体混合物通过反应器持续30分钟。一旦停留步骤(dwellstep)结束,停止合成气体流动,并且在氮气流为100ml/min下将反应器冷却至室温。
这样获得的碳纳米管使用以下来表征:电子显微镜法(图3-图8)、能量分散性x-射线光谱法、介电谱(电介质光谱)(图9a)、机械光谱(图9b)、拉曼光谱(图10)和氮气吸附(图11)。
可以将纳米管调整成具有从5至50nm的直径和从100nm至3μm的长度。如在电子显微镜法(图3)下观察的,每一个实验产生在长度和直径上均一的纳米管。在直径方面的偏差是18%,而在长度方面的偏差是7%。
实施例2.碳纳米管网状结构
在使用100mM(与实施例1不同)的高催化剂浓度下重复实施例1。合成的纳米管通过如在实施例1中提到的相同的技术来表征。该网状结构具有从50μm至1mm的直径(图6)。
实施例3.吸收光谱法
使用Renishaw拉曼成像显微镜(Renishaw Raman ImagingMicroscope)(系统2000,具有20mW氩激光(514nm)),对于根据本发明的纳米管网状结构实施拉曼光谱法。使用硅晶片校准拉曼光谱仪。将该结果与来自获得自以下的碳纳米管得到的那些图相比较:F.Inoue,A.R.Ando and P.Corio,J.Raman Spectrosc.,42,(2011),1379-1383。
在图10中示出了多壁碳纳米管和碳纳米管网状结构的拉曼吸收光谱。针对碳纳米管的ID/IG是0.92,该数值高于纳米管网状结构,这可能由于在纳米管生产期间更多的缺陷导致的。纳米管网状结构的二维(2D)带更宽,这暗示了多层或多壁。
实施例4.氮气吸附
使用Quantachrome Autosorb-1c仪器用于对根据本发明纳米管网状结构进行氮气吸附试验。所有样品在真空下,在350℃下脱气17小时。将该结果与来自获得自以下的碳纳米管得到的那些图相比较:M.Chen,H.-W.Yu,J.-H.Chen and H.-S.Koo,Diamond&Related Materials,16,(2007),1110-1115。
如在图11中示出的,在多壁碳纳米管和碳纳米管网状结构上通过氮气吸附所获得的比表面积,证明纳米管网状结构更活泼。纳米管和纳米管网状结构的平均孔径是相当的,然而由于内部颗粒的空隙使得网状结构具有更宽的分布。
实施例5.机械强度
当添加其他材料时,将能观察到纳米管和纳米管网状结构之间很明显的差别。如图9b所示,在具有聚酰亚胺(PI)的复合材料中,纳米管网状结构比碳纳米管通常产生更高的机械刚度。对于碳纳米管的图获得自:X.Jiang,Y.Bin and M.Matsuo,Polymer,46,(2005),7418-7424。
在超高分子量聚乙烯的情况下,碳纳米管网状结构产生的强度不仅在150℃的第一过渡(第一跃迁)之后导致在储能模量中更长的停滞时间,而且在190℃下也给出新的过渡(跃迁),随后进一步产生更长的停滞时期(plateau)。所有的都在图9c中绘出。
如图9d,添加以重量计2%的碳纳米管网状结构至环氧聚合物中,使得强度变成几乎三倍好(其被保持在50至200℃之间的宽的热范围内)。
使用来自Perkin Elmer Incorporated的Pyris Diamond DMTA用于动态机械分析(dynamic mechanical analysis)。使用三种不同的频率(0.1、1和10Hz)对于每一个样品探查(检测,probe)弯曲模式。
实施例6.电性能
如图9a中示出的,聚甲基丙烯酸甲酯(PMMA)复合材料与碳纳米管网状结构的电导性,显示其不管浓度且不依赖于频率,其是渗滤的指示。这种行为在纯的或纯净的PMMA中是看不到的。在文献:D.O.Kim et al,Organic Electronics,9,(2008),1-13中发现3wt.%的碳纳米管复合的PMMA具有0.01Scm-1的电导率,其比纳米管网状结构复合的PMMA的电导率低两个数量级。
使用来自Novocontrol GmbH的装备有HP4284A精密电感电容电阻测试器(LCR meter)的宽带介电光谱仪(电介质光谱仪)进行电介质分析。最大施加电压是0.9V。
实施例7.热性质
当在2wt.%的碳纳米管网状结构中与硅酮聚合物混合时,在298K下增强了从0.64至0.7Wm-1K-1的导热性。
使用来自Isomett Corporation的Isomet model104(Isomet型号104)以测定导热性。在测量期间所有样品都放置在绝热垫上。报告的导电性是样品的最高和最低表面的平均值。
实施例8.催化性能
使用氢气和氧气分别作为燃料和氧化剂,基于碳纳米管网状结构的电极产生的峰值功率输出是10mWcm-2。能量曲线在图12中示出。
使用7cm2的电极面积。H2:O2压力比是1.5:1,而两种气体的流动速率是50ml/min。使用117薄膜作为电解质。
实施例9.其他金属
将不同类型的表面活性剂、油和金属前体结合以产生双连续微乳剂,这将使得所需要的催化剂颗粒具有不同值的最低浓度,以形成碳纳米管网状结构。
下文表中列出掺入不同浓度的金属颗粒的不同的双连续微乳剂的列表;在各自和每一个情况下获得碳纳米结构的网状结构。
目前的催化剂浓度与微乳剂中水相的量有关。
根据本发明所使用的方法,碳纳米管网状结构不依赖于双连续微乳剂中的催化剂材料而获得。然而,催化剂材料的类型可以对于碳纳米管网状结构的形态学(几何形状)具有影响。例如,铁催化剂纳米颗粒产生更多束状的纳米管网状结构,如图8a所示出的其分支是波动的(波形的,undulating),然而银催化剂纳米颗粒产生更多线性且较厚的分支(图8b)。

Claims (10)

1.一种用于制备结晶碳纳米结构的网状结构的方法,包括
(i)提供包含具有1至100nm之间的平均粒径,并且其中来自所述平均粒径的粒径偏差少于10%的金属纳米颗粒的双连续微乳剂;
(ii)使所述双连续微乳剂与基板接触;并且
(iii)将所述金属纳米颗粒和气态碳源经受化学气相沉积,因此形成碳纳米结构的网状结构。
2.根据权利要求1所述的方法,其中所述双连续微乳剂包含以水相计至少15mM金属纳米颗粒。
3.一种化学互联的结晶碳纳米结构的网状结构,所述网状结构通过根据权利要求1或2所述的方法可获得。
4.根据权利要求3所述的网状结构,其中具有1至100nm之间的平均尺寸的所述金属纳米颗粒被嵌入所述网状结构。
5.根据权利要求3-4中任一项所述的网状结构,是碳纳米管网状结构。
6.包含具有1至100nm之间平均粒径的金属纳米颗粒的双连续微乳剂用于制备通过根据权利要求1或2所述的方法获得的碳纳米结构的网状结构的应用,其中来自所述平均粒径的粒径偏差少于10%。
7.根据权利要求6所述的应用,其中所述碳纳米结构为碳纳米管。
8.根据权利要求6或7所述的应用,其中所述双连续微乳剂包含至少15mM金属纳米颗粒。
9.一种包括根据权利要求3或4所述的结晶碳纳米结构的网状结构的复合材料组合物,还包括聚合物。
10.一种包括根据权利要求3或4所述的结晶碳纳米结构的网状结构的复合材料组合物,还包括聚合物,其中基于所述复合材料组合物中全部聚合物重量,所述网状结构以0.1-10wt%的量加入。
CN201180044915.7A 2010-09-17 2011-09-16 通过化学气相沉积生产碳纳米结构和网状结构 Active CN103189309B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2005365 2010-09-17
NL2005365A NL2005365C2 (en) 2010-09-17 2010-09-17 Carbon nanostructures and networks produced by chemical vapor deposition.
PCT/NL2011/050628 WO2012036555A1 (en) 2010-09-17 2011-09-16 Carbon nanostructures and networks produced by chemical vapor deposition

Publications (2)

Publication Number Publication Date
CN103189309A CN103189309A (zh) 2013-07-03
CN103189309B true CN103189309B (zh) 2016-09-28

Family

ID=43301746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180044915.7A Active CN103189309B (zh) 2010-09-17 2011-09-16 通过化学气相沉积生产碳纳米结构和网状结构

Country Status (23)

Country Link
US (2) US9617156B2 (zh)
EP (2) EP2616391B1 (zh)
JP (1) JP5922126B2 (zh)
KR (1) KR101867545B1 (zh)
CN (1) CN103189309B (zh)
AU (1) AU2011302698B2 (zh)
BR (1) BR112013006310B1 (zh)
CA (1) CA2812166C (zh)
CY (1) CY1122912T1 (zh)
DK (1) DK2616391T3 (zh)
ES (1) ES2739037T3 (zh)
HR (1) HRP20191425T8 (zh)
HU (1) HUE045653T2 (zh)
LT (1) LT2616391T (zh)
ME (1) ME03459B (zh)
MX (1) MX354182B (zh)
NL (1) NL2005365C2 (zh)
PL (1) PL2616391T3 (zh)
PT (1) PT2616391T (zh)
RS (1) RS59084B1 (zh)
RU (1) RU2579075C2 (zh)
SI (1) SI2616391T1 (zh)
WO (1) WO2012036555A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9460827B2 (en) * 2011-11-07 2016-10-04 Dhkgraphenologies Llc Physically functionalized graphene hybrid composite (GHC) and its applications
AU2013323175A1 (en) 2012-09-28 2015-04-02 Applied Nanostructured Solutions, Llc Composite materials formed by shear mixing of carbon nanostructures and related methods
CA2847462A1 (en) * 2013-10-28 2015-04-28 Institut National De La Recherche Scientifique Method of producing a graphene coating on a stainless steel surface
CN103940269B (zh) * 2014-04-25 2017-04-26 上海交通大学 基于碳纳米管吸液芯的热管及其制备方法
CN105329873B (zh) * 2014-07-08 2018-02-27 清华大学 碳纳米管海绵及其制备方法
US10113056B2 (en) * 2014-08-29 2018-10-30 Lg Chem, Ltd. Composite with improved mechanical properties and molded article including the same
CN104860261B (zh) * 2015-06-01 2018-07-20 中国科学院重庆绿色智能技术研究院 一种用于在硅电极上制备横向纳米线网的反应装置
KR102561196B1 (ko) 2016-05-18 2023-07-28 주식회사 라디안큐바이오 다공성 나노구조체의 제조방법, 이에 의해 제조된 다공성 나노구조체를 갖는 3차원 전극 및 센서, 다공성 나노구조체 제조장치
PL3475367T3 (pl) * 2016-06-28 2022-06-27 Carbonx Ip 3 B.V. Wytwarzanie sieci struktur węgla krystalicznego
ES2927426T3 (es) * 2018-05-25 2022-11-04 Carbonx Ip 4 B V Uso de redes de carbono que comprenden nanofibras de carbono
CN109850873B (zh) * 2018-12-28 2022-04-26 温州大学 一种单壁碳纳米管分子内结的制备方法
CN110590173A (zh) * 2019-10-18 2019-12-20 北京大学 一种金属纳米颗粒辅助制备石墨烯玻璃的方法以及一种石墨烯玻璃和一种除雾玻璃
US20230287187A1 (en) 2019-11-28 2023-09-14 CarbonX IP 6 B.V. Use of carbon-nanofibers comprising carbon networks
TW202124269A (zh) * 2019-11-28 2021-07-01 荷蘭商碳素X股份有限公司 用於電磁干擾屏蔽的組成物
US20240092642A1 (en) 2020-11-25 2024-03-21 Carbonx B.V. New production method of carbon (nano)-structures from pyrolysis oil
CN114196236B (zh) * 2021-12-10 2023-07-14 长沙惠科光电有限公司 高色素炭黑及其制备方法和应用

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251666B2 (zh) * 1980-03-24 1990-11-08 Iyutokemisuka Inst
SE9503143D0 (sv) * 1995-09-12 1995-09-12 Astra Ab New preparation
CN1543399B (zh) * 2001-03-26 2011-02-23 艾考斯公司 含碳纳米管的涂层
JP3463092B2 (ja) * 2001-03-27 2003-11-05 独立行政法人産業技術総合研究所 カーボンナノチューブ作製用触媒パターン
US7572427B2 (en) * 2001-07-03 2009-08-11 Facultes Universitaires Notre-Dame De La Paix Catalyst supports and carbon nanotubes produced thereon
KR100432056B1 (ko) * 2001-07-20 2004-05-17 (주)케이에이치 케미컬 탄소나노튜브의 제조 방법
US6891319B2 (en) * 2001-08-29 2005-05-10 Motorola, Inc. Field emission display and methods of forming a field emission display
TW552156B (en) * 2001-12-25 2003-09-11 Univ Nat Cheng Kung Method for fabrication of carbon nanotubes having multiple junctions
JP2003137519A (ja) * 2002-10-21 2003-05-14 National Institute Of Advanced Industrial & Technology カーボンナノチューブ製造用触媒分散液及びその製造方法
US7335344B2 (en) * 2003-03-14 2008-02-26 Massachusetts Institute Of Technology Method and apparatus for synthesizing filamentary structures
US7144563B2 (en) * 2004-04-22 2006-12-05 Clemson University Synthesis of branched carbon nanotubes
CN101023022B (zh) * 2004-09-17 2010-05-26 独立行政法人产业技术综合研究所 纳米胶囊型结构
US7719265B2 (en) 2004-11-17 2010-05-18 Honda Motor Co., Ltd. Methods for determining particle size of metal nanocatalyst for growing carbon nanotubes
KR101390619B1 (ko) 2005-11-21 2014-04-30 나노시스, 인크. 탄소를 포함하는 나노배선 구조체
MXNL06000105A (es) * 2006-12-19 2008-10-09 Ct De Investigacion En Quimica Metodo para preparar nanoparticulas magneticas por precipitacion en microemulsiones bicontinuas.
RU2349542C1 (ru) * 2007-06-22 2009-03-20 Станислав Викторович Хартов Наноэлектромеханическая структура (варианты) и способ ее получения (варианты)
MX2007016100A (es) * 2007-12-13 2009-06-12 Ct De Investigacion En Quimica Método para preparar nanopartículas de plata por precipitación en microemulsiones bicontinuas.
JP2009215146A (ja) * 2008-03-13 2009-09-24 Panasonic Corp 金属含有ナノ粒子、これを用いて成長したカーボンナノチューブ構造体、及びこのカーボンナノチューブ構造体を用いた電子デバイス及びその製造方法
DE102008023229B4 (de) * 2008-05-02 2013-06-27 Helmholtz-Zentrum Dresden - Rossendorf E.V. Verfahren zur Herstellung von Kohlenstoffnanoröhrchen auf einem Trägersubstrat, durch das Verfahren hergestellte Kohlenstoffnanoröhrchen und deren Verwendung
RU85037U1 (ru) * 2008-05-19 2009-07-20 Федеральное государственное унитарное предприятие "Российский научно-исследовательский институт космического приборостроения" Устройство регистрации физических процессов
NL2002071C (nl) 2008-10-07 2010-04-08 Univ Delft Tech Elektrodecompartiment voor elektrochemische cel, verversingssysteem daarvoor en een daarbij te gebruiken emulsie.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学气相沉积法碳纳米管的制备及性能研究;安玉良 等;《炭素技术》;20061231;第25卷(第5期);第5-9页 *

Also Published As

Publication number Publication date
EP2616391B1 (en) 2019-05-15
BR112013006310A2 (pt) 2016-06-07
US9617156B2 (en) 2017-04-11
WO2012036555A1 (en) 2012-03-22
ME03459B (me) 2020-01-20
CY1122912T1 (el) 2021-10-29
DK2616391T3 (da) 2019-07-08
KR101867545B1 (ko) 2018-06-15
PL2616391T3 (pl) 2019-10-31
LT2616391T (lt) 2019-07-25
EP2616391A1 (en) 2013-07-24
EP3486212A1 (en) 2019-05-22
JP5922126B2 (ja) 2016-05-24
AU2011302698B2 (en) 2014-12-18
CN103189309A (zh) 2013-07-03
US10109876B2 (en) 2018-10-23
CA2812166A1 (en) 2012-03-22
RS59084B1 (sr) 2019-09-30
KR20140014069A (ko) 2014-02-05
US20170174518A1 (en) 2017-06-22
BR112013006310B1 (pt) 2018-10-30
MX354182B (es) 2018-02-16
NL2005365C2 (en) 2012-03-20
RU2013117452A (ru) 2014-10-27
US20130244023A1 (en) 2013-09-19
HRP20191425T8 (hr) 2019-12-27
ES2739037T3 (es) 2020-01-28
PT2616391T (pt) 2019-07-30
HRP20191425T1 (hr) 2019-11-15
SI2616391T1 (sl) 2019-08-30
MX2013002973A (es) 2013-07-29
RU2579075C2 (ru) 2016-03-27
JP2013541489A (ja) 2013-11-14
HUE045653T2 (hu) 2020-01-28
CA2812166C (en) 2021-04-06
AU2011302698A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
CN103189309B (zh) 通过化学气相沉积生产碳纳米结构和网状结构
Zhang et al. Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane
Cuenya et al. Nanocatalysis: size-and shape-dependent chemisorption and catalytic reactivity
Song et al. Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity
Kale et al. Amorphous cobalt-manganese sulfide electrode for efficient water oxidation: meeting the fundamental requirements of an electrocatalyst
Zhao et al. Soft synthesis of single-crystal copper nanowires of various scales
Wang et al. Bimetallic PdAu alloyed nanowires: Rapid synthesis via oriented attachment growth and their high electrocatalytic activity for methanol oxidation reaction
Yu et al. One-step synthesis and shape-control of CuPd nanowire networks
CN104870363A (zh) 具有高比表面积的碳纳米管及其制造方法
US10556797B2 (en) Catalyst for manufacturing multi-walled carbon nanotube and method of manufacturing multi-walled carbon nanotube using the same
Tran et al. Recent progress on single atom/sub-nano electrocatalysts for energy applications
Mei et al. One-pot solvothermal synthesis of bimetallic yolk–shell Ni@ PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction
Ramírez-Mondragón et al. Synthesis and characterization of Ni2P and MoS2 on MWCNT as an innovative catalytic material for hydrogen generation
CN107074548A (zh) 具有改善结晶性的碳纳米管
Yu et al. Macroporous carbon decorated with dendritic platinum nanoparticles: one-step synthesis and electrocatalytic properties
Wu et al. Shape-controlled synthesis of Cu-Ni nanocrystals
Zhou et al. Shape-controlled synthesis of Ni nanocrystals via a wet-chemistry strategy and their shape-dependent catalytic activity
Tzitzios et al. Ultrafine Ni2P Nanoparticle-Decorated r-GO: A Novel Liquid-Phase Approach and Dibenzothiophene Hydro-desulfurization
Wu et al. Assembly of Pt Nanowires into Cubelike Superstructures Supported on Aligned Carbon Nanotubes as Highly Stable Electrocatalysts.
Feng et al. Carbon quantum dots modification on hydrangea-like In2O3 for ppb-level formaldehyde detection: Experimental performance and theoretical insight
Bron et al. Carbon materials in low‐temperature polymer electrolyte membrane fuel cells
Mrabate et al. Catalytic hydrogenation of n-butene with nanosized Pt/NBCNT hybrid membranes reinforced with bacterial cellulose
Liu Synthesis of metal nanomaterials with unconventional crystal phases and their applications in electrocatalysis
Mutumbara Tailored synthesis of shaped carbon nanomaterials over supported Au, Ni, La and La-Ni on novel radially aligned nanorutile: Characterisation and investigation of properties
Fang et al. Ultrathin‐Branched Pt Grown on Quasi‐Sphere Pd with Enhanced Electrocatalytic Performances

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: KABOEN KESI PRIVATE CO., LTD.

Free format text: FORMER OWNER: DAIER FUTE CO., LTD.

Effective date: 20140805

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140805

Address after: Delft

Applicant after: UNIV DELFT TECH

Address before: Delft

Applicant before: Delft Enterprises B. V.

C14 Grant of patent or utility model
GR01 Patent grant